1
|
Bizen N, Takebayashi H. Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis. J Neurochem 2025; 169:e16238. [PMID: 39374171 DOI: 10.1111/jnc.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.
Collapse
Affiliation(s)
- Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
McCaig CD. Electrical Forces Improve Memory in Old Age. Rev Physiol Biochem Pharmacol 2025; 187:453-520. [PMID: 39838022 DOI: 10.1007/978-3-031-68827-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Kasheke GDS, Hendy BAM, Dorighello GG, Uccelli NA, Gothié JDM, Novorolsky RJ, Oulton MJ, Asainayagam J, Makarov AI, Fraser KS, Vuligonda V, Sanders ME, Kennedy TE, Robertson GS. Selective retinoid X receptor agonism promotes functional recovery and myelin repair in experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2024; 12:197. [PMID: 39707547 DOI: 10.1186/s40478-024-01904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Evidence that myelin repair is crucial for functional recovery in multiple sclerosis (MS) led to the identification of bexarotene (BXT). This clinically promising remyelinating agent activates multiple nuclear hormone receptor subtypes implicated in myelin repair. However, BXT produces unacceptable hyperlipidemia. In contrast, IRX4204 selectively activates the retinoid X receptor (RXR). Given compelling links between RXR activation and increased myelin repair, we employed IRX4204 to investigate the impact of RXR agonism alone on functional recovery in mice subjected to experimental autoimmune encephalomyelitis (EAE). Since gait deficits are common in MS, we used machine learning to obtain highly sensitive and reliable measurements of sagittal hindleg joint movements for mice walking on a treadmill. IRX4204 not only blocked the progressive loss of knee and ankle movements but also reversed joint movement impairments in EAE mice. Our biochemical, transcriptional and histological measurements in spinal cord suggest these gait improvements reflect increased axon survival and remyelination and reduced inflammation. Using microglia, astrocytes and oligodendrocyte progenitor cells, we present additional data suggesting that IRX4204 may act on multiple glial subtypes to orchestrate myelin repair. These results inform the discovery of restorative neural therapeutics for MS by demonstrating that selective RXR agonism is sufficient for effective myelin repair. Moreover, our findings support the therapeutic potential of IRX4204 to promote functional recovery in MS.
Collapse
Affiliation(s)
- Gracious D S Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Basmah A M Hendy
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabriel G Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Nonthué A Uccelli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Robyn J Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Madison J Oulton
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jude Asainayagam
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam I Makarov
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kaitlyn S Fraser
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | | | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - George S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 2E2, Canada.
- , 1348 Summer St, Halifax, NS, B3H 0A8, Canada.
| |
Collapse
|
4
|
Bregalda A, Carducci C, Viscomi MT, Pierigè F, Biagiotti S, Menotta M, Biancucci F, Pascucci T, Leuzzi V, Magnani M, Rossi L. Myelin basic protein recovery during PKU mice lifespan and the potential role of microRNAs on its regulation. Neurobiol Dis 2023; 180:106093. [PMID: 36948260 DOI: 10.1016/j.nbd.2023.106093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
Untreated phenylketonuria (PKU) patients and PKU animal models show hypomyelination in the central nervous system and white matter damages, which are accompanied by myelin basic protein (MBP) impairment. Despite many assumptions, the primary explanation of the mentioned cerebral outcomes remains elusive. In this study, MBP protein and mRNA expression on brains of wild type (WT) and phenylketonuric (ENU2) mice were analyzed throughout mice lifespan (14-60-180-270-360-540 post-natal days, PND). The results confirmed the low MBP expression at first PND times, while revealed an unprecedented progressive MBP protein expression recovery in aged ENU2 mice. Unexpectedly, unaltered MBP mRNA expression between WT and ENU2 was always observed. Additionally, for the same time intervals, a significant decrease of the phenylalanine concentration in the peripheral blood and brain of ENU2 mice was detected, to date, for the first time. In this scenario, a translational hindrance of MBP during initial and late cerebral development in ENU2 mice was hypothesized, leading to the execution of a microRNA microarray analysis on 60 PND brains, which was followed by a proteomic assay on 60 and 360 PND brains in order to validate in silico miRNA-target predictions. Taken together, miR-218 - 1-3p, miR - 1231-3p and miR-217-5p were considered as the most impactful microRNAs, since a downregulation of their potential targets (MAG, CNTNAP2 and ANLN, respectively) can indirectly lead to a low MBP protein expression. These miRNAs, in addition, follow an opposite expression trend compared to MBP during adulthood, and their target proteins revealed a complete normalization in aged ENU2 mice. In conclusion, these results provide a new perspective on the PKU pathophysiology understanding and on a possible treatment, emphasizing the potential modulating role of differentially expressed microRNAs in MBP expression on PKU brains during PKU mouse lifespan.
Collapse
Affiliation(s)
- Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy.
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Sect. Histology and Embryology, Università Cattolica del S. Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Tiziana Pascucci
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00142 Rome, Italy; Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, via dei Sabelli 108, 00185 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| |
Collapse
|
5
|
Sreenivasan VKA, Dore R, Resch J, Maier J, Dietrich C, Henck J, Balachandran S, Mittag J, Spielmann M. Single-cell RNA-based phenotyping reveals a pivotal role of thyroid hormone receptor alpha for hypothalamic development. Development 2023; 150:286776. [PMID: 36715020 PMCID: PMC10110490 DOI: 10.1242/dev.201228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Abstract
Thyroid hormone and its receptor TRα1 play an important role in brain development. Several animal models have been used to investigate this function, including mice heterozygous for the TRα1R384C mutation, which confers receptor-mediated hypothyroidism. These mice display abnormalities in several autonomic functions, which was partially attributed to a developmental defect in hypothalamic parvalbumin neurons. However, whether other cell types in the hypothalamus are similarly affected remains unknown. Here, we used single-nucleus RNA sequencing to obtain an unbiased view on the importance of TRα1 for hypothalamic development and cellular diversity. Our data show that defective TRα1 signaling has surprisingly little effect on the development of hypothalamic neuronal populations, but it heavily affects hypothalamic oligodendrocytes. Using selective reactivation of the mutant TRα1 during specific developmental periods, we find that early postnatal thyroid hormone action seems to be crucial for proper hypothalamic oligodendrocyte maturation. Taken together, our findings underline the well-known importance of postnatal thyroid health for brain development and provide an unbiased roadmap for the identification of cellular targets of TRα1 action in mouse hypothalamic development.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
| | - Riccardo Dore
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Resch
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Maier
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Carola Dietrich
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Jana Henck
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck 23562, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Center of Brain Behavior and Metabolism (CBBM), Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck 23562, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck 23562, Germany
| |
Collapse
|
6
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
A Proposed Role for Interactions between Argonautes, miRISC, and RNA Binding Proteins in the Regulation of Local Translation in Neurons and Glia. J Neurosci 2022; 42:3291-3301. [PMID: 35444007 PMCID: PMC9034781 DOI: 10.1523/jneurosci.2391-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important regulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been placed on characterizing the local transcriptome and regulatory "grammar" directing mRNA localization in neurons and glia, less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a rapid translational response to stimuli. MicroRNA-mediated translation regulation offers a possible solution to this question. Not only do miRNAs provide the specificity needed for targeted gene regulation, but association and dynamic interactions between Argonaute (AGO) with sequence-specific RNA-binding proteins may provide a molecular switch to allow for de-repression of target mRNAs. Here, we review the expression and activity of different AGO proteins in miRNA-induced silencing complexes in neurons and glia and discuss known pathways of miRNA-mediated regulation, including activity-dependent pre-miRNA maturation in dendrites. We further detail work on AGO and RNA-binding protein interactions that allow for the reversal of miRNA-mediated translational silencing, and we propose a model for how intercellular communication may play a role in the regulation of local translation.
Collapse
|
8
|
Jansen van Vuuren J, Pillay S, Naidoo A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022; 14:e23971. [PMID: 35547443 PMCID: PMC9090128 DOI: 10.7759/cureus.23971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been shown to be important. Little data exist on their applicability within SA. This scoping review aimed to evaluate the currently available data pertaining to blood biomarkers that aid in the long-term prognostication of patients following stroke and its potential application in the South African setting. This scoping review followed a 6-stage process to identify and critically review currently available literature pertaining to prognostic biomarkers in stroke. An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the purposes of the scoping review. A number of potential biomarkers were identified and grouped according to the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost and availability will likely limit their application within SA. The burden of stroke is increasing worldwide and appears to be affecting developing countries disproportionately. Access to neuroradiological services is not readily available in all settings and the addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use in the South African setting.
Collapse
Affiliation(s)
- Juan Jansen van Vuuren
- Department of Neurology, Grey's Hospital, Pietermaritzburg, ZAF
- School of Clinical Medicine, PhD programme, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Member, Royal Society of South Africa, Cape Town, ZAF
| | | | - Ansuya Naidoo
- Neurology, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Department of Neurology, Grey's Hospital, University of KwaZulu-Natal, Pietermaritzburg, ZAF
| |
Collapse
|
9
|
Ordak M, Libman-Sokolowska M, Nasierowski T, Badyra B, Kaczmarek L, Muszynska E, Bujalska-Zadrozny M. Matrix metalloproteinase-3 serum levels in schizophrenic patients. Int J Psychiatry Clin Pract 2022; 27:1-7. [PMID: 35357267 DOI: 10.1080/13651501.2022.2057332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES It has been reported that matrix metalloproteinase, MMP-3 may play a significant role in the pathophysiology of mental disorders. However, there are no data on the level of MMP-3 in people suffering from schizophrenia, or its influence on the mental state of these people. The aim of this study was to investigate the effect of an antipsychotic treatment on the blood levels of MMP-3, as well as investigating its relationship with insight into schizophrenia. METHODS Thirty people with schizophrenia were included in the study. The concentration of MMP-3 in the blood serum was assessed using enzyme-linked immunosorbent assay. Insight into the disease was assessed using the Beck Cognitive Insight Scale. RESULTS The antipsychotic treatment applied decreased the levels of MMP-3 in patients with schizophrenia (p = 0.005), however, the statistically significant interaction (p = 0.02) indicates that the decrease only concerned men. There was also a statistically significant correlation between the level of MMP-3 and insight into the disease (p = 0.02). CONCLUSION MMP-3 may be associated with gender, treatment and symptoms in schizophrenic patients.KEY POINTSMMP3 could be used as a potential biomarker for schizophrenia.The level of MMP-3 decreased due to the applied antipsychotic treatment.The higher the level of MMP-3 in a group of people with schizophrenia, the better insight into their disease.
Collapse
Affiliation(s)
- Michal Ordak
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | | | | | - Bogna Badyra
- Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Muszynska
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Hoch-Kraft P, Trotter J, Gonsior C. Missing in Action: Dysfunctional RNA Metabolism in Oligodendroglial Cells as a Contributor to Neurodegenerative Diseases? Neurochem Res 2019; 45:566-579. [PMID: 30843138 DOI: 10.1007/s11064-019-02763-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
The formation of myelin around axons by oligodendrocytes (OL) poses an enormous synthetic and energy challenge for the glial cell. Local translation of transcripts, including the mRNA for the essential myelin protein Myelin Basic Protein (MBP) at the site of myelin deposition has been recognised as an efficient mechanism to assure proper myelin sheath assembly. Oligodendroglial precursor cells (OPCs) form synapses with neurons and may localise many additional mRNAs in a similar fashion to synapses between neurons. In some diseases in which demyelination occurs, an abundance of OPCs is present but there is a failure to efficiently remyelinate and to synthesise MBP. This compromises axonal survival and function. OPCs are especially sensitive to cellular stress as occurring in neurodegenerative diseases, which can impinge on their ability to translate mRNAs into protein. Stress causes the build up of cytoplasmic stress granules (SG) in which many RNAs are sequestered and translationally stalled until the stress ceases. Chronic stress in particular could convert this initially protective reaction of the cell into damage, as persistence of SG may lead to pathological aggregate formation or long-term translation block of SG-associated RNAs. The recent recognition that many neurodegenerative diseases often exhibit an early white matter pathology with a proliferation of surviving OPCs, renders a study of the stress-associated processes in oligodendrocytes and OPCs especially relevant. Here, we discuss a potential dysfunction of RNA regulation in myelin diseases such as Multiple Sclerosis (MS) and Vanishing white matter disease (VWM) and potential contributions of OL dysfunction to neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Fragile X syndrome (FXS).
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Jacqueline Trotter
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Constantin Gonsior
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany.
| |
Collapse
|
11
|
Torvund-Jensen J, Steengaard J, Askebjerg LB, Kjaer-Sorensen K, Laursen LS. The 3'UTRs of Myelin Basic Protein mRNAs Regulate Transport, Local Translation and Sensitivity to Neuronal Activity in Zebrafish. Front Mol Neurosci 2018; 11:185. [PMID: 29946237 PMCID: PMC6006989 DOI: 10.3389/fnmol.2018.00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Formation of functional myelin sheaths within the central nervous system depends on expression of myelin basic protein (MBP). Following process extension and wrapping around axonal segments, this highly basic protein is required for compaction of the multi-layered membrane sheath produced by oligodendrocytes. MBP is hypothesized to be targeted to the membrane sheath by mRNA transport and local translation, which ensures that its expression is temporally and spatially restricted. The mechanistic details of how this might be regulated are still largely unknown, in particular because a model system that allows this process to be studied in vivo is lacking. We here show that the expression of the zebrafish MBP orthologs, mbpa and mbpb, is developmentally regulated, and that expression of specific mbpa isoforms is restricted to the peripheral nervous system. By analysis of transgenic zebrafish, which express a fluorescent reporter protein specifically in myelinating oligodendrocytes, we demonstrate that both mbpa and mbpb include a 3’UTR sequence, by which mRNA transport and translation is regulated in vivo. Further functional analysis suggests that: (1) the 3’UTRs delay the onset of protein expression; and that (2) several regulatory elements contribute to targeting of the mbp mRNA to the myelin sheath. Finally, we show that a pharmacological compound known to enhance neuronal activity stimulates the translation of Mbp in zebrafish in a 3’UTR-dependent manner. A similar effect was obtained following stimulation with a TrkB receptor agonist, and cell-based assays further confirmed that the receptor ligand, BDNF, in combination with other signals reversed the inhibitory effect of the 3’UTR on translation.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jes Steengaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Janowska J, Ziemka-Nalecz M, Sypecka J. The Differentiation of Rat Oligodendroglial Cells Is Highly Influenced by the Oxygen Tension: In Vitro Model Mimicking Physiologically Normoxic Conditions. Int J Mol Sci 2018; 19:ijms19020331. [PMID: 29364139 PMCID: PMC5855553 DOI: 10.3390/ijms19020331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) constitute one of the main populations of dividing cells in the central nervous system (CNS). Physiologically, OPCs give rise to mature, myelinating oligodendrocytes and confer trophic support to their neighboring cells within the nervous tissue. OPCs are known to be extremely sensitive to the influence of exogenous clues which might affect their crucial biological processes, like survival, proliferation, differentiation, and the ability to generate a myelin membrane. Alterations in their differentiation influencing their final potential for myelinogenesis are usually the leading cause of CNS dys- and demyelination, contributing to the development of leukodystrophic disorders. The evaluation of the mechanisms that cause oligodendrocytes to malfunction requires detailed studies based on designed in vitro models. Since OPCs readily respond to changes in local homeostasis, it is crucial to establish restricted culture conditions to eliminate the potential stimuli that might influence oligodendrocyte biology. Additionally, the in vitro settings should mimic the physiological conditions to enable the obtained results to be translated to future preclinical studies. Therefore, the aim of our study was to investigate OPC differentiation in physiological normoxia (5% O2) and a restricted in vitro microenvironment. To evaluate the impact of the combined microenvironmental clues derived from other components of the nervous tissue, which are also influenced by the local oxygen concentration, the process of generating OPCs was additionally analyzed in organotypic hippocampal slices. The obtained results show that OPC differentiation, although significantly slowed down, proceeded correctly through its typical stages in the physiologically relevant conditions created in vitro. The established settings were also conducive to efficient cell proliferation, exerting also a neuroprotective effect by promoting the proliferation of neurons. In conclusion, the performed studies show how oxygen tension influences OPC proliferation, differentiation, and their ability to express myelin components, and should be taken into consideration while planning preclinical studies, e.g., to examine neurotoxic compounds or to test neuroprotective strategies.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
13
|
Yang F, Feng X, Rolfs A, Luo J. Lovastatin promotes myelin formation in NPC1 mutant oligodendrocytes. J Neurol Sci 2018; 386:56-63. [PMID: 29406968 DOI: 10.1016/j.jns.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Niemann-Pick Type C (NPC) disease is a rare neurovisceral disorder caused by mutations of either NPC1 or NPC2 gene and characterized by defective intracellular transport of cholesterol and glycosphingolipids, leading to neuron loss and myelin aberration in the central nervous system. In this study, by comparing protein expression in the cortical white matter tracts from mice at different postnatal days, we identified that in the NPC1 mutant (NPC1-/-) mice, the onset of myelination is delayed and the amount of the major myelin protein MBP and PLP, and oligodendrocyte regulatory factor Olig1 and Olig2, but not NG2 and Sox10, decreased significantly, suggesting a disruption of oligodendrocyte differentiation. Furthermore, in in vitro oligodendrocyte cultivation, NPC1-/- oligodendrocytes showed less response to the stimulation of neuron-conditioned medium (CdM), indicating a defect of oligodendrocyte per se. Interestingly, lovastatin restores the number of mature myelin-forming oligodendrocytes by increasing Olig1 and Olig2 expressions. Our data suggest a potential strategy for improving myelination using lovastatin in NPC disease.
Collapse
Affiliation(s)
- Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
14
|
Hoch-Kraft P, White R, Tenzer S, Krämer-Albers EM, Trotter J, Gonsior C. Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. J Cell Sci 2018; 131:jcs.204750. [DOI: 10.1242/jcs.204750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/28/2018] [Indexed: 01/11/2023] Open
Abstract
In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, DDX5 knockdown results in an increased abundance of MBP exon 2-positive isoforms in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp. Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Robin White
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Constantin Gonsior
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| |
Collapse
|
15
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
16
|
Maggipinto MJ, Ford J, Le KH, Tutolo JW, Furusho M, Wizeman JW, Bansal R, Barbarese E. Conditional knockout of TOG results in CNS hypomyelination. Glia 2017; 65:489-501. [PMID: 28063167 DOI: 10.1002/glia.23106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
The tumor overexpressed gene (TOG) protein is present in RNA granules that transport myelin basic protein (MBP) mRNA in oligodendrocyte processes to the myelin compartment. Its role was investigated by conditionally knocking it out (KO) in myelinating glia in vivo. TOG KO mice have severe motor deficits that are already apparent at the time of weaning. This phenotype correlates with a paucity of myelin in several CNS regions, the most severe being in the spinal cord. In the TOG KO optic nerve <30% of axons are myelinated. The number of oligodendrocytes in the corpus callosum, cerebellum, and cervical spinal cord is normal. In the absence of TOG, the most patent biochemical change is a large reduction in MBP content, yet normal amounts of MBP transcripts are found in the brain of affected animals. MBP transcripts are largely confined to the cell body of the oligodendrocytes in the TOG KO in contrast to the situation in wild type mice where they are found in the processes of the oligodendrocytes and in the myelin compartment. These findings indicate that MBP gene expression involves a post-transcriptional TOG-dependent step. TOG may be necessary for MBP mRNA assembly into translation permissive granules, and/or for transport to preferred sites of translation. GLIA 2017;65:489-501.
Collapse
Affiliation(s)
- Michael J Maggipinto
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Joshay Ford
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kristine H Le
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Jessica W Tutolo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - John W Wizeman
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Elisa Barbarese
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
17
|
Thakurela S, Garding A, Jung RB, Müller C, Goebbels S, White R, Werner HB, Tiwari VK. The transcriptome of mouse central nervous system myelin. Sci Rep 2016; 6:25828. [PMID: 27173133 PMCID: PMC4865983 DOI: 10.1038/srep25828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths.
Collapse
Affiliation(s)
| | - Angela Garding
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | |
Collapse
|
18
|
Schäfer I, Müller C, Luhmann HJ, White R. MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes. J Cell Sci 2016; 129:930-42. [PMID: 26801084 DOI: 10.1242/jcs.172148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/20/2016] [Indexed: 01/24/2023] Open
Abstract
Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments, which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of myelin basic protein (MBP), which is essential for myelin formation. The abundant myelin-associated oligodendrocytic basic protein (MOBP) resembles MBP in several aspects and has also been reported to be localized as mRNA and translated in the peripheral myelin compartment. The signals initiating local MOBP synthesis are so far unknown and the cellular function of MOBP remains elusive. Here, we show, by several approaches in cultured primary oligodendrocytes, that MOBP synthesis is stimulated by Fyn activity. Moreover, we reveal a new function for MOBP in oligodendroglial morphological differentiation.
Collapse
Affiliation(s)
- Isabelle Schäfer
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, Mainz 55128, Germany
| |
Collapse
|
19
|
SncRNA715 Inhibits Schwann Cell Myelin Basic Protein Synthesis. PLoS One 2015; 10:e0136900. [PMID: 26317513 PMCID: PMC4552632 DOI: 10.1371/journal.pone.0136900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023] Open
Abstract
Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.
Collapse
|
20
|
Müller C, Schäfer I, Luhmann HJ, White R. Oligodendroglial Argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase. Front Cell Neurosci 2015; 9:328. [PMID: 26379499 PMCID: PMC4548153 DOI: 10.3389/fncel.2015.00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Oligodendrocytes myelinate neuronal axons in the central nervous system (CNS) facilitating rapid transmission of action potentials by saltatory conduction. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination in the CNS of rodents. Mbp mRNA is not translated immediately after exit from the nucleus in the cytoplasm, but is transported to the plasma membrane in RNA transport granules in a translationally silenced state. We have previously identified the small non-coding RNA 715 (sncRNA715) as an inhibitor of Mbp translation associated with RNA granules. Argonaute (Ago) proteins and small RNAs form the minimal core of the RNA induced silencing complex and together recognize target mRNAs to be translationally inhibited or degraded. Recently, tyrosine phosphorylation of Ago2 was reported to be a regulator of small RNA binding. The oligodendroglial non-receptor tyrosine kinase Fyn is activated by neuronal signals and stimulates the translation of Mbp mRNA at the axon-glial contact site. Here we analyzed the expression of Ago proteins in oligodendrocytes, if they associate with Mbp mRNA transport granules and are tyrosine phosphorylated by Fyn. We show that all Ago proteins (Ago1-4) are expressed by oligodendrocytes and that Ago2 colocalizes with hnRNP A2 in granular cytoplasmic structures. Ago2 associates with hnRNP A2, Mbp mRNA, sncRNA715 and Fyn kinase and is tyrosine phosphorylated in response to Fyn activity. Our findings suggest an involvement of Ago2 in the translational regulation of Mbp. The identification of Ago proteins as Fyn targets will foster further research to understand in more molecular detail how Fyn activity regulates Mbp translation.
Collapse
Affiliation(s)
| | | | | | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, MainzGermany
| |
Collapse
|
21
|
Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain. J Neurosci 2015; 35:7850-65. [PMID: 25995471 DOI: 10.1523/jneurosci.4380-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS.
Collapse
|
22
|
Emery B, Lu QR. Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2015; 7:a020461. [PMID: 26134004 DOI: 10.1101/cshperspect.a020461] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) myelination by oligodendrocytes (OLs) is a highly orchestrated process involving well-defined steps from specification of neural stem cells into proliferative OL precursors followed by terminal differentiation and subsequent maturation of these precursors into myelinating OLs. These specification and differentiation processes are mediated by profound global changes in gene expression, which are in turn subject to control by both extracellular signals and regulatory networks intrinsic to the OL lineage. Recently, basic transcriptional mechanisms that control OL differentiation and myelination have begun to be elucidated at the molecular level and on a genome scale. The interplay between transcription factors activated by differentiation-promoting signals and master regulators likely exerts a crucial role in controlling stage-specific progression of the OL lineage. In this review, we describe the current state of knowledge regarding the transcription factors and the epigenetic programs including histone methylation, acetylation, chromatin remodeling, micro-RNAs, and noncoding RNAs that regulate development of OLs and myelination.
Collapse
Affiliation(s)
- Ben Emery
- Department of Anatomy and Neurobiology, University of Melbourne, Victoria 3010, Australia Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia
| | - Q Richard Lu
- Department of Pediatrics, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
23
|
Stachurska A, Zorro MM, van der Sijde MR, Withoff S. Small and Long Regulatory RNAs in the Immune System and Immune Diseases. Front Immunol 2014; 5:513. [PMID: 25368617 PMCID: PMC4202709 DOI: 10.3389/fimmu.2014.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/02/2014] [Indexed: 12/14/2022] Open
Abstract
Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors. However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs) have given enormous momentum to a whole new field of biology: the regulatory RNAs. In this review, we describe these two classes of regulatory RNAs and summarize what is known about how they regulate aspects of the adaptive and innate immune systems. Finally, we describe what is known about the involvement of micro-RNAs and lncRNAs in three different autoimmune diseases (celiac disease, inflammatory bowel disease, and multiple sclerosis).
Collapse
Affiliation(s)
- Anna Stachurska
- Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Maria M Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Marijke R van der Sijde
- Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
24
|
Bakhti M, Aggarwal S, Simons M. Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 2014; 71:1265-77. [PMID: 24165921 PMCID: PMC11113231 DOI: 10.1007/s00018-013-1492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/11/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- Present Address: Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shweta Aggarwal
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| |
Collapse
|
25
|
Torvund-Jensen J, Steengaard J, Reimer L, Fihl LB, Laursen LS. Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins. J Cell Sci 2014; 127:1550-64. [PMID: 24522184 DOI: 10.1242/jcs.140855] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the developing nervous system, abundant synthesis of myelin basic protein (MBP) in oligodendrocytes is required for the formation of compact myelin sheaths around axons. The MBP mRNA is known to be transported into the processes of oligodendrocytes. However, knowledge of the regulatory mechanisms that ensure the tight temporal and spatial control of MBP translation within these processes is limited. Here, we have identified novel regions within the 3'-UTR of the MBP mRNA that are responsible for the regulation of its translation, and we have demonstrated that each of the mRNA-binding proteins heterogeneous nuclear ribonucleoprotein (hnRNP)-A2, hnRNP-K and hnRNP-E1 serve distinct functions to regulate controlled and localized protein synthesis. hnRNP-A2 is responsible for mRNA transport, not for translational inhibition. By contrast, hnRNP-K and hnRNP-E1 play opposing roles in the translational regulation of MBP mRNA. We have identified shared binding sites within the 3'-UTR, and show that translation is promoted by the exchange of inhibitory hnRNP-E1 for stimulatory hnRNP-K. We further show that this molecular switch in the MBP messenger RNA-ribonucleoprotein (mRNP) complex, which regulates the synthesis of MBP, is important for the normal growth and extension of myelin sheets.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
26
|
White R, Krämer-Albers EM. Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 2014; 7:284. [PMID: 24431989 PMCID: PMC3880936 DOI: 10.3389/fncel.2013.00284] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.
Collapse
Affiliation(s)
- Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
27
|
Müller C, Bauer NM, Schäfer I, White R. Making myelin basic protein -from mRNA transport to localized translation. Front Cell Neurosci 2013; 7:169. [PMID: 24098271 PMCID: PMC3784684 DOI: 10.3389/fncel.2013.00169] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 01/19/2023] Open
Abstract
In the central nervous system (CNS) of most vertebrates, oligodendrocytes enwrap neuronal axons with extensions of their plasma membrane to form the myelin sheath. Several proteins are characteristically found in myelin of which myelin basic protein (MBP) is the second most abundant one after proteolipid protein. The lack of functional MBP in rodents results in a severe hypomyelinated phenotype in the CNS demonstrating its importance for myelin synthesis. Mbp mRNA is transported from the nucleus to the plasma membrane and is translated locally at the axon-glial contact site. Axonal properties such as diameter or electrical activity influence the degree of myelination. As oligodendrocytes can myelinate many axonal segments with varying properties, localized MBP translation represents an important part of a rapid and axon-tailored synthesis machinery. MBP's ability to compact cellular membranes may be problematic for the integrity of intracellular membranous organelles and can also explain why MBP is transported in oligodendrocytes in the form of an mRNA rather than as a protein. Here we review the recent findings regarding intracellular transport and signaling mechanisms leading to localized translation of Mbp mRNA in oligodendrocytes. More detailed insights into the MBP synthesis pathway are important for a better understanding of the myelination process and may foster the development of remyelination therapies for demyelinating diseases.
Collapse
Affiliation(s)
- Christina Müller
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Nawaz S, Schweitzer J, Jahn O, Werner HB. Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 2013; 61:1364-77. [DOI: 10.1002/glia.22520] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Schanila Nawaz
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Jörn Schweitzer
- Developmental Biology; Institute of Biology 1; University of Freiburg; Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| |
Collapse
|
29
|
Simons M, Lyons DA. Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 2013; 25:512-9. [PMID: 23707197 DOI: 10.1016/j.ceb.2013.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023]
Abstract
The formation of myelin in the central nervous system is a multi-step process that involves coordinated cell-cell interactions and dramatic changes in plasma membrane architecture. First, oligodendrocytes send our numerous highly ramified processes to sample the axonal environment and decide which axon(s) to select for myelination. After this decision is made and individual axon to oligodendrocyte contact has been established, the exploratory process of the oligodendrocyte is converted into a flat sheath that spreads and winds along and around its associated axon to generate a multilayered membrane stack. By compaction of the opposing extracellular layers of membrane and extrusion of almost all cytoplasm from the intracellular domain of the sheath, the characteristic membrane-rich multi-lamellar structure of myelin is formed. Here we highlight recent advances in identifying biophysical and signalling based mechanisms that are involved in axonal selection and myelin sheath generation by oligodendrocytes. A thorough understanding of the mechanisms underlying these events is a prerequisite for the design of novel myelin repair strategies in demyelinating and dysmyelinating diseases.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany.
| | | |
Collapse
|
30
|
He L, Lu QR. Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues. Neurosci Bull 2013; 29:129-43. [PMID: 23494530 DOI: 10.1007/s12264-013-1318-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/17/2013] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells for axon ensheathment in the central nervous system, are critical for maximizing and maintaining the conduction velocity of nerve impulses and proper brain function. Demyelination caused by injury or disease together with failure of myelin regeneration disrupts the rapid propagation of action potentials along nerve fibers, and is associated with acquired and inherited disorders, including devastating multiple sclerosis and leukodystrophies. The molecular mechanisms of oligodendrocyte myelination and remyelination remain poorly understood. Recently, a series of signaling pathways including Shh, Notch, BMP and Wnt signaling and their intracellular effectors such as Olig1/2, Hes1/5, Smads and TCFs, have been shown to play important roles in regulating oligodendrocyte development and myelination. In this review, we summarize our recent understanding of how these signaling pathways modulate the progression of oligodendrocyte specification and differentiation in a spatiotemporally-specific manner. A better understanding of the complex but coordinated function of extracellular signals and intracellular determinants during oligodendrocyte development will help to devise effective strategies to promote myelin repair for patients with demyelinating diseases.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics and Obstetrics/Gynaecology, Institute of Stem Cell and Developmental Biology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
31
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|