1
|
Atavliyeva S, Auganova D, Tarlykov P. Genetic diversity, evolution and drug resistance of Mycobacterium tuberculosis lineage 2. Front Microbiol 2024; 15:1384791. [PMID: 38827149 PMCID: PMC11140050 DOI: 10.3389/fmicb.2024.1384791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Mycobacterium tuberculosis causes a chronic infectious disease called tuberculosis. Phylogenetic lineage 2 (L2) of M. tuberculosis, also known as the East Asian lineage, is associated with high virulence, increased transmissibility, and the spread of multidrug-resistant strains. This review article examines the genomic characteristics of the M. tuberculosis genome and M. tuberculosis lineage 2, such as the unique insertion sequence and spoligotype patterns, as well as MIRU-VNTR typing, and SNP-based barcoding. The review describes the geographical distribution of lineage 2 and its history of origin. In addition, the article discusses recent studies on drug resistance and compensatory mechanisms of M. tuberculosis lineage 2 and its impact on the pathogen's transmissibility and virulence. This review article discusses the importance of establishing a unified classification for lineage 2 to ensure consistency in terminology and criteria across different studies and settings.
Collapse
Affiliation(s)
- Sabina Atavliyeva
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| | | | - Pavel Tarlykov
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
2
|
Iwamoto T, Arikawa K, Murase Y, Sekizuka T, Kuroda M, Nishiuchi Y, Kusunoki N, Fujiyama R, Mitarai S. Transmission dynamics variability of lineage 2 Mycobacterium tuberculosis strains in Kobe, Japan, determined using population-based whole-genome sequencing analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105495. [PMID: 37652282 DOI: 10.1016/j.meegid.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Currently, tuberculosis (TB) in Japan is highly prevalent among elderly patients who were born during a time when TB was highly prevalent. Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is the predominant strain in the country. Moreover, the proportion of foreign-born patients with TB has been increasing. This epidemiological situation in Japan motivated us to explore the heterogeneity in transmission dynamics among the sublineages of Mtb L2 within this aging population. For this purpose, we conducted a population-based whole genome sequencing analysis of 550 Mtb strains in Kobe, Japan, and employed pairwise single nucleotide polymorphism (SNP) distance clustering and terminal branch length (TBL) distribution analysis to assess Mtb transmission. The genomic clustering rate with a threshold of ≤5 SNPs was significantly lower in elderly patients aged 70 years or higher than in non-elderly patients. The elderly patient group showed significantly longer TBL than the non-elderly group. These results supported the notion that reactivation of distant infection is a major driving force for the high incidence of TB in elderly individuals. The age group distribution and frequency of lineages/sublineages were found to significantly differ between foreign-born and Japan-born patients. The increased proportion of foreign-born patients might have resulted in more strain diversity in Japan. The L2.2.A sublineage demonstrated a significant association with elderly patients and exhibited lower transmission rates, which indicate to be prone to reactivate from long-term latency. In contrast, L2.2.Modern, showed a strong association with younger and foreign-born patients. This sublineage showed a high genomic cluster rate, suggesting its high transmissibility. The other three major sublineages, namely L2.2.AA2, L2.2.AA3.1, and L2.2.AA3.2, exhibited a consistent increase in cluster rates across varying SNP thresholds, indicating their relatively recent emergence as endemic sublineages in Japan. In conclusion, this study highlights distinct differences in the transmission dynamics of L2 sublineages within an aging society.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Kobe Institute of Health, Kobe City, Hyogo, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano City, Osaka, Japan.
| | | | - Yoshiro Murase
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Nishiuchi
- Center for the Planetary Health and Innovation Science, The IDEC Institute, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Riyo Fujiyama
- Kobe City Public Health Center, Kobe city, Hyogo, Japan
| | - Satoshi Mitarai
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan; Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan
| |
Collapse
|
3
|
Zhu C, Yang T, Yin J, Jiang H, Takiff HE, Gao Q, Liu Q, Li W. The Global Success of Mycobacterium tuberculosis Modern Beijing Family Is Driven by a Few Recently Emerged Strains. Microbiol Spectr 2023; 11:e0333922. [PMID: 37272796 PMCID: PMC10434187 DOI: 10.1128/spectrum.03339-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Strains of the Mycobacterium tuberculosis complex (MTBC) Beijing family aroused concern because they were often found in clusters and appeared to be exceptionally transmissible. However, it was later found that strains of the Beijing family were heterogeneous, and the transmission advantage was restricted to sublineage L2.3 or modern Beijing. In this study, we analyzed the previously published genome sequences of 7,896 L2.3 strains from 51 different countries. Using BEAST software to approximate the temporal emergence of L2.3, our calculations suggest that L2.3 initially emerged in northern East Asia during the early 15th century and subsequently diverged into six phylogenetic clades, identified as L2.3.1 through L2.3.6. Using terminal branch length and genomic clustering as proxies for transmissibility, we found that the six clades displayed distinct population dynamics, with the three recently emerged clades (L2.3.4 to L2.3.6) exhibiting significantly higher transmissibility than the older three clades (L2.3.1 to L2.3.3). Of the Beijing family strains isolated outside East Asia, 83.1% belonged to the clades L2.3.4 to L2.3.6, which were also associated with more cross-border transmission. This work reveals the heterogeneity in sublineage L2.3 and demonstrates that the global success of Beijing family strains is driven by the three recently emerged L2.3 clades. IMPORTANCE The recent population dynamics of the global tuberculosis epidemic are heavily shaped by Mycobacterium tuberculosis complex (MTBC) strains with enhanced transmissibility. The infamous Beijing family strain stands out because it has rapidly spread throughout the world. Identifying the strains responsible for the global expansion and tracing their evolution should help to understand the nature of high transmissibility and develop effective strategies to control transmission. In this study, we found that the L2.3 sublineage diversified into six phylogenetic clades (L2.3.1 to L2.3.6) with various transmission characteristics. Clades L2.3.4 to L2.3.6 exhibited significantly higher transmissibility than clades L2.3.1 to L2.3.3, which helps explain why more than 80% of Beijing family strains collected outside East Asia belong to these three clades. We conclude that the global success of L2.3 was not caused by the entire L2.3 sublineage but rather was due to the rapid expansion of L2.3.4 to L2.3.6. Tracking the transmission of L2.3.4 to L2.3.6 strains can help to formulate targeted TB prevention and control.
Collapse
Affiliation(s)
- Chendi Zhu
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | | | - Jinfeng Yin
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Howard E. Takiff
- Instituto Venezolano de Investigaciones Científicas, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Weimin Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
4
|
Multiplexed Strain Phenotyping Defines Consequences of Genetic Diversity in Mycobacterium tuberculosis for Infection and Vaccination Outcomes. mSystems 2022; 7:e0011022. [PMID: 35430871 PMCID: PMC9239107 DOI: 10.1128/msystems.00110-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is growing evidence that genetic diversity in Mycobacterium tuberculosis, the causative agent of tuberculosis, contributes to the outcomes of infection and public health interventions, such as vaccination. Epidemiological studies suggest that among the phylogeographic lineages of M. tuberculosis, strains belonging to a sublineage of Lineage 2 (mL2) are associated with concerning clinical features, including hypervirulence, treatment failure, and vaccine escape. The global expansion and increasing prevalence of this sublineage has been attributed to the selective advantage conferred by these characteristics, yet confounding host and environmental factors make it difficult to identify the bacterial determinants driving these associations in human studies. Here, we developed a molecular barcoding strategy to facilitate high-throughput, experimental phenotyping of M. tuberculosis clinical isolates. This approach allowed us to characterize growth dynamics for a panel of genetically diverse M. tuberculosis strains during infection and after vaccination in the mouse model. We found that mL2 strains exhibit distinct growth dynamics in vivo and are resistant to the immune protection conferred by Bacillus Calmette-Guerin (BCG) vaccination. The latter finding corroborates epidemiological observations and demonstrates that mycobacterial features contribute to vaccine efficacy. To investigate the genetic and biological basis of mL2 strains’ distinctive phenotypes, we performed variant analysis, transcriptional studies, and genome-wide transposon sequencing. We identified functional genetic changes across multiple stress and host response pathways in a representative mL2 strain that are associated with variants in regulatory genes. These adaptive changes may underlie the distinct clinical characteristics and epidemiological success of this lineage. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a remarkably heterogeneous disease, a feature that complicates clinical care and public health interventions. The contributions of pathogen genetic diversity to this heterogeneity are uncertain, in part due to the challenges of experimentally manipulating M. tuberculosis, a slow-growing, biosafety level 3 organism. To overcome these challenges, we applied a molecular barcoding strategy to a panel of M. tuberculosis clinical isolates. This novel application of barcoding permitted the high-throughput characterization of M. tuberculosis strain growth dynamics and vaccine resistance in the mouse model of infection. Integrating these results with genomic analyses, we uncover bacterial pathways that contribute to infection outcomes, suggesting targets for improved therapeutics and vaccines.
Collapse
|
5
|
Tong J, Meng L, Bei C, Liu Q, Wang M, Yang T, Takiff HE, Zhang S, Gao Q, Wang C, Yan B. Modern Beijing sublineage of Mycobacterium tuberculosis shift macrophage into a hyperinflammatory status. Emerg Microbes Infect 2022; 11:715-724. [PMID: 35125072 PMCID: PMC8890550 DOI: 10.1080/22221751.2022.2037395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The high prevalence of the modern Beijing sublineage of Mycobacterium tuberculosis may be related to increased virulence, although the responsible mechanisms remain poorly understood. We previously described enhanced triacylglycerol accumulation in modern Beijing strains. Here we show that modern Beijing strains grow faster in vitro and trigger a vigorous immune response and pronounced macrophage infiltration. Transcriptomic analysis of bone marrow derived macrophages infected with modern Beijing lineage strains revealed a significant enrichment of infection, cholesterol homeostasis and amino acid metabolic pathways. The upregulation of proinflammatory / bactericidal cytokines was confirmed by RT–PCR analysis, which is also in consistent with the reduced bacterial burden in modern strains infected macrophages. These results suggest that modern Beijing strains elicit a hyperinflammatory response which might indicate a stronger virulence and contribute to their extensive global prevalence.
Collapse
Affiliation(s)
- Jingfeng Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - TingTing Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Howard E Takiff
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China.,Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Guyeux C, Senelle G, Refrégier G, Bretelle-Establet F, Cambau E, Sola C. Connection between two historical tuberculosis outbreak sites in Japan, Honshu, by a new ancestral Mycobacterium tuberculosis L2 sublineage. Epidemiol Infect 2022; 150:1-25. [PMID: 35042579 PMCID: PMC8931808 DOI: 10.1017/s0950268822000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022] Open
Abstract
By gathering 680 publicly available Sequence Read Archives from isolates of Mycobacterium tuberculosis complex (MTBC) including 190 belonging to the lineage 2 Beijing , and using an in-house bioinformatical pipeline, the TB-Annotator , that analyses more than 50 000 characters, we describe herein a new L2 sublineage from 20 isolates found in the Tochigi province, (Japan), that we designate as asia ancestral 5 (AAnc5). These isolates harbour a number of specific criteria (42 SNPs) and their intra-cluster pairwise distance suggests historical and not epidemiological transmission. These isolates harbour a mutation in rpoC , and do not fulfil, any of the modern Beijing lineage criteria, nor any of the other ancestral Beijing lineages described so far. Asia ancestral 5 isolates do not possess mutT2 58 and ogt 12 characteristics of modern Beijing , but possess ancestral Beijing SNPs characteristics. By looking into the literature, we found a reference isolate ID381, described in Kobe and Osaka belonging to the ‘G3’ group, sharing 36 out of the 42 specific SNPs found in AAnc5. We also assessed the intermediate position of the asia ancestral 4 (AAnc4) sublineage recently described in Thailand and propose an improved classification of the L2 that now includes AAnc4 and AAnc5. By increasing the recruitment into TB-Annotator to around 3000 genomes (including 642 belonging to L2), we confirmed our results and discovered additional historical ancestral L2 branches that remain to be investigated in more detail. We also present, in addition, some anthropological and historical data from Chinese and Japan history of tuberculosis, as well as from Korea, that could support our results on L2 evolution. This study shows that the reconstruction of the early history of tuberculosis in Asia is likely to reveal complex patterns since its emergence.
Collapse
Affiliation(s)
- Christophe Guyeux
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Gaetan Senelle
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Guislaine Refrégier
- Université Paris-Saclay, Saint-Aubin, France
- Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, 91405, Orsay, France
| | | | - Emmanuelle Cambau
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, GHU Nord, service de mycobactériologie spécialisée et de référence, Laboratoire associé du Centre National de Référence des mycobactéries et résistance des mycobactéries aux antituberculeux (CNR-MyRMA), Paris, France
| | - Christophe Sola
- Université Paris-Saclay, Saint-Aubin, France
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| |
Collapse
|
7
|
Chu H, Hu Y, Zhang B, Sun Z, Zhu B. DNA Methyltransferase HsdM Induce Drug Resistance on Mycobacterium tuberculosis via Multiple Effects. Antibiotics (Basel) 2021; 10:antibiotics10121544. [PMID: 34943756 PMCID: PMC8698436 DOI: 10.3390/antibiotics10121544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Besides the genomic variants, epigenetic mechanisms such as DNA methylation also have an effect on drug resistance. This study aimed to investigate the methylomes of totally/extensively drug-resistant M. tuberculosis clinical isolates using the PacBio single-molecule real-time technology. The results showed they were almost the same as the pan-susceptible ones. Genetics and bioinformatics analysis confirmed three DNA methyltransferases-MamA, MamB, and HsdM. Moreover, anti-tuberculosis drug treatment did not change the methylomes. In addition, the knockout of the DNA methyltransferase hsdM gene in the extensively drug-resistant clinical isolate 11826 revealed that the motifs of GTAYN4ATC modified by HsdM were completely demethylated. Furthermore, the results of the methylated DNA target analysis found that HsdM was mainly involved in redox-related pathways, especially the prodrug isoniazid active protein KatG. HsdM also targeted three drug-targeted genes, eis, embB, and gyrA, and three drug transporters (Rv0194, Rv1410, and Rv1877), which mildly affected the drug susceptibility. The overexpression of HsdM in M. smegmatis increased the basal mutation rate. Our results suggested that DNA methyltransferase HsdM affected the drug resistance of M. tuberculosis by modulating the gene expression of redox, drug targets and transporters, and gene mutation.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Yongfei Hu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhaogang Sun
- Translational Medicine Center Beijing Chest Hospital, Capital Medical University, Beijing 101149, China;
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
- Correspondence: (Z.S.); (B.Z.)
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (Z.S.); (B.Z.)
| |
Collapse
|
8
|
Thawornwattana Y, Mahasirimongkol S, Yanai H, Maung HMW, Cui Z, Chongsuvivatwong V, Palittapongarnpim P. Revised nomenclature and SNP barcode for Mycobacterium tuberculosis lineage 2. Microb Genom 2021; 7. [PMID: 34787541 PMCID: PMC8743535 DOI: 10.1099/mgen.0.000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) lineage 2 (L2) strains are present globally, contributing to a widespread tuberculosis (TB) burden, particularly in Asia where both prevalence of TB and numbers of drug resistant TB are highest. The increasing availability of whole-genome sequencing (WGS) data worldwide provides an opportunity to improve our understanding of the global genetic diversity of Mtb L2 and its association with the disease epidemiology and pathogenesis. However, existing L2 sublineage classification schemes leave >20 % of the Modern Beijing isolates unclassified. Here, we present a revised SNP-based classification scheme of L2 in a genomic framework based on phylogenetic analysis of >4000 L2 isolates from 34 countries in Asia, Eastern Europe, Oceania and Africa. Our scheme consists of over 30 genotypes, many of which have not been described before. In particular, we propose six main genotypes of Modern Beijing strains, denoted L2.2.M1–L2.2.M6. We also provide SNP markers for genotyping L2 strains from WGS data. This fine-scale genotyping scheme, which can classify >98 % of the studied isolates, serves as a basis for more effective monitoring and reporting of transmission and outbreaks, as well as improving genotype-phenotype associations such as disease severity and drug resistance. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose 204-8533, Japan
| | - Htet Myat Win Maung
- National TB Control Programme, Department of Public Health, Ministry of Health and Sports, Naypyitaw 15011, Myanmar.,Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai 90110, Thailand
| | - Zhezhe Cui
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai 90110, Thailand.,Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, 530028, PR China
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
9
|
Oudghiri A, Momen G, Aainouss A, Laglaoui A, El Messaoudi MD, El Mzibri M, Chaoui I. Genotypic diversity of multi- and pre-extremely drug-resistant Mycobacterium tuberculosis isolates from Morocco. PLoS One 2021; 16:e0253826. [PMID: 34214120 PMCID: PMC8253442 DOI: 10.1371/journal.pone.0253826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
In Morocco, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase especially within previously treated cases; these MDR cases may evolve to extensively drug resistant tuberculosis (XDR-TB) raising major concern to TB control programs. From an epidemiological window, scarce informations are available about the genetic diversity of Mycobacterium tuberculosis (MTB) strains fueling these forms of resistance. The aim of this study was to assess to genetic diversity of MDR-MTB strains. Hence, this prospective study was conducted on patients diagnosed with MDR-TB at Pasteur Institute of Casablanca from 2010 to 2013. A total of 70 MDR-MTB isolates were genotyped by spoligotyping and 15-loci MIRU-VNTR methods. Spoligotyping generated four orphan patterns, five unique profiles whereas 61 strains were grouped in nine clusters (2 to 25 strains per cluster), the clustering rates being 87.1%. Subtyping by 15 loci MIRU-VNTR splitted all clusters already established by spoligotyping and generated 70 unique profiles not recognized in SITVIT2 database; clustering rate was equal to zero. HGDI analysis of 15 loci MIRU demonstrated that eight out of 15 loci were highly discriminant. Of note, all pre-XDR strains belongs to many clades, meaning that there no association between gyrA mutants and particular clade. Overall, the data generated by this study (i) describe the population structure of MDR MTBC in Morocco which is highly homogenous, (ii) confirm that TB in Morocco is almost exclusively transmitted by modern and evolutionary lineages with high level of biodiversity seen by MIRU, and (iii) validate the use of optimized 15-loci MIRU-VNTR format for future investigations in Morocco.
Collapse
Affiliation(s)
- Amal Oudghiri
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
- Faculty of Sciences and Techniques, Biotechnology and Bimolecular Engineering Research Laboratory, Tangier, Morocco
| | - Ghizlane Momen
- Laboratory of Mycabacteria, Pasteur Institute of Morocco, Casablanca, Morocco
- Faculty of Sciences, Laboratory of Microbiology Pharmacology, Biotechnology and Environment, Casablanca, Morocco
| | - Achraf Aainouss
- Laboratory of Mycabacteria, Pasteur Institute of Morocco, Casablanca, Morocco
- Faculty of Sciences Ben M’Sik, Laboratory of Ecology and Environment, Casablanca, Morocco
| | - Amin Laglaoui
- Faculty of Sciences and Techniques, Biotechnology and Bimolecular Engineering Research Laboratory, Tangier, Morocco
| | | | - Mohammed El Mzibri
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Imane Chaoui
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
- * E-mail: ,
| |
Collapse
|
10
|
Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc Natl Acad Sci U S A 2021; 118:2017831118. [PMID: 33879609 DOI: 10.1073/pnas.2017831118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During its global dispersal, Mycobacterium tuberculosis (Mtb) has encountered varied geographic environments and host populations. Although local adaptation seems to be a plausible model for describing long-term host-pathogen interactions, genetic evidence for this model is lacking. Here, we analyzed 576 whole-genome sequences of Mtb strains sampled from different regions of high-altitude Tibet. Our results show that, after sequential introduction of a few ancestral strains, the Tibetan Mtb population diversified locally while maintaining strict separation from the Mtb populations on the lower altitude plain regions of China. The current population structure and estimated past population dynamics suggest that the modern Beijing sublineage strains, which expanded over most of China and other global regions, did not show an expansion advantage in Tibet. The mutations in the Tibetan strains showed a higher proportion of A > G/T > C transitions than strains from the plain regions, and genes encoding DNA repair enzymes showed evidence of positive selection. Moreover, the long-term Tibetan exclusive selection for truncating mutations in the thiol-oxidoreductase encoding sseA gene suggests that Mtb was subjected to local selective pressures associated with oxidative stress. Collectively, the population genomics of Mtb strains in the relatively isolated population of Tibet provides genetic evidence that Mtb has adapted to local environments.
Collapse
|
11
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
12
|
Mahghani GA, Kargar M, Kafilzadeh F, Davoodi H, Ghaemi EA. Comparison of two molecular diagnostic methods for identifying Beijing genotype of Mycobacterium tuberculosis. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:209-215. [PMID: 32685117 PMCID: PMC7340603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The Beijing family of Mycobacterium tuberculosis has been identified as a severe pathogen among this species and found in many clinical isolates during the last decade. Early identification of such genotype is important for better prevention and treatment of tuberculosis. The present study performed to compare the efficiency of Real-Time PCR and IS6110-Based Inverse PCR methods to identify the Beijing family. MATERIALS AND METHODS This study was carried out on 173 clinical isolates of Mycobacterium tuberculosis complex in Golestan Province, northern Iran. DNA extraction performed by boiling and determining the Beijing and non-Beijing strains carried out using Real-Time PCR and IS6110-Based Inverse PCR. RESULTS In both Real-Time PCR and IS6110-Based Inverse PCR method, 24 specimens (13.9%) of the Beijing family were identified and the result of the IS6110-Based Inverse PCR method showed that all the Beijing strains in this region belonged to the Ancient Beijing sub-lineage. CONCLUSION Although the efficacy of the two methods in the diagnosis of the Beijing family is similar, the IS6110-Based Inverse PCR is more applicable to the ability to detect new and old Beijing family.
Collapse
Affiliation(s)
- Ghorban Ali Mahghani
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Farshid Kafilzadeh
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Homa Davoodi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Corresponding author: Ezzat Allah Ghaemi, PhD, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran. Tel: +98-9113711770, Fax: +98-1732235452,
| |
Collapse
|
13
|
Fursov MV, Shitikov EA, Bespyatykh JA, Bogun AG, Kislichkina AA, Kombarova TI, Rudnitskaya TI, Grishenko NS, Ganina EA, Domotenko LV, Fursova NK, Potapov VD, Dyatlov IA. Genotyping, Assessment of Virulence and Antibacterial Resistance of the Rostov Strain of Mycobacterium tuberculosis Attributed to the Central Asia Outbreak Clade. Pathogens 2020; 9:pathogens9050335. [PMID: 32365818 PMCID: PMC7281402 DOI: 10.3390/pathogens9050335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
The Central Asia Outbreak (CAO) clade is a growing public health problem for Central Asian countries. Members of the clade belong to the narrow branch of the Mycobacterium tuberculosis Beijing genotype and are characterized by multidrug resistance and increased transmissibility. The Rostov strain of M. tuberculosis isolated in Russia and attributed to the CAO clade based on PCR-assay and whole genome sequencing and the laboratory strain H37Rv were selected to evaluate the virulence on C57Bl/6 mice models by intravenous injection. All mice infected with the Rostov strain succumbed to death within a 48-day period, while more than half of the mice infected by the H37Rv strain survived within a 90-day period. Mice weight analysis revealed irreversible and severe depletion of animals infected with the Rostov strain compared to H37Rv. The histological investigation of lung and liver tissues of mice on the 30th day after injection of mycobacterial bacilli showed that the pattern of pathological changes generated by two strains were different. Moreover, bacterial load in the liver and lungs was higher for the Rostov strain infection. In conclusion, our data demonstrate that the drug-resistant Rostov strain exhibits a highly virulent phenotype which can be partly explained by the CAO-specific mutations.
Collapse
Affiliation(s)
- Mikhail V. Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
- Correspondence: (M.V.F.); (E.A.S.)
| | - Egor A. Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia;
- Correspondence: (M.V.F.); (E.A.S.)
| | - Julia A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia;
| | - Alexander G. Bogun
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Angelina A. Kislichkina
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Tatiana I. Rudnitskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Natalia S. Grishenko
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Elena A. Ganina
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Lubov V. Domotenko
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Nadezhda K. Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Vasiliy D. Potapov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| | - Ivan A. Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia; (A.G.B.); (A.A.K.); (T.I.K.); (T.I.R.); (N.S.G.); (E.A.G.); (L.V.D.); (N.K.F.); (V.D.P.); (I.A.D.)
| |
Collapse
|
14
|
Nieto Ramirez LM, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed "modern" Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One 2020; 15:e0224908. [PMID: 32330146 PMCID: PMC7182180 DOI: 10.1371/journal.pone.0224908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Beijing strains of Mycobacterium tuberculosis (lineage 2) have been associated with drug-resistance and transmission of tuberculosis worldwide. Most of the Beijing strains identified in the Colombian Pacific coast have exhibited a multidrug resistant (MDR) phenotype. We sought to evaluate the clonality and sublineage of Beijing strains circulating in Southwestern Colombia. Thirty-seven Beijing strains were identified through spoligotyping out of 311 clinical isolates collected in 9 years from 2002-2010. Further analysis by MIRU-VNTR 24 loci was conducted for the Beijing strains. For sublineage classification, deletions of RD105, RD207, and RD131 and point mutations at fbpB, mutT2, and acs were evaluated. Drug-resistance associated mutations to first- and second-line anti-TB drugs were also evaluated. Additionally, two Beijing strains were Illumina-whole genome sequenced (one MDR and one drug-susceptible). Among the 37 Beijing strains characterized, 36 belonged to the SIT190 type from which 28 were MDR, four pre-extensively drug resistant (XDR) TB, and four XDR-TB. The remaining strain was SIT1 and drug susceptible. MIRU-VNTR analysis allowed the identification of three Beijing clusters and two unique strains. Beijing strains were confirmed as "modern" sublineage. The mutations rpoB S531L and katG S315T were the most common among MDR strains. Moreover, the two strains evaluated by whole genome sequencing (WGS) shared most of the genetic features with the sublineage 2.2.1 "modern" Beijing previously characterized from Asian strains. WGS analysis of the MDR strain revealed the presence of eight SNPs previously reported in other MDR "Beijing-like" strains from Colombia. The presence of "modern" Beijing strains in Southwestern Colombia, most of them with MDR phenotype, suggests a different origin of this M. tuberculosis sublineage compared to other Beijing strains found in neighboring South American countries. This work may serve as a genetic baseline to study the evolution and spread of M. tuberculosis Beijing strains in Colombia, which play an important role in the propagation of MDR-TB.
Collapse
Affiliation(s)
| | - Beatriz E. Ferro
- Departamento de Salud Pública y Medicina Comunitaria, Universidad Icesi, Cali, Colombia
| | - Gustavo Diaz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Richard M. Anthony
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jessica de Beer
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Wang WF, Lu MYJ, Cheng TJR, Tang YC, Teng YC, Hwa TY, Chen YH, Li MY, Wu MH, Chuang PC, Jou R, Wong CH, Li WH. Genomic Analysis of Mycobacterium tuberculosis Isolates and Construction of a Beijing Lineage Reference Genome. Genome Biol Evol 2020; 12:3890-3905. [PMID: 31971587 PMCID: PMC7058165 DOI: 10.1093/gbe/evaa009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, kills over 1 million people worldwide annually. Development of drug resistance (DR) in the pathogen is a major challenge for TB control. We conducted whole-genome analysis of seven Taiwan M. tuberculosis isolates: One drug susceptible (DS) and five DR Beijing lineage isolates and one DR Euro-American lineage isolate. Developing a new method for DR mutation identification and applying it to the next-generation sequencing (NGS) data from the 6 Beijing lineage isolates, we identified 13 known and 6 candidate DR mutations and provided experimental support for 4 of them. We assembled the genomes of one DS and two DR Beijing lineage isolates and the Euro-American lineage isolate using NGS data. Moreover, using both PacBio and NGS sequencing data, we obtained a high-quality assembly of an extensive DR Beijing lineage isolate. Comparative analysis of these five newly assembled genomes and two published complete genomes revealed a large number of genetic changes, including gene gains and losses, indels and translocations, suggesting rapid evolution of M. tuberculosis. We found the MazEF toxin-antitoxin system in all the seven isolates studied and several interesting mutations in MazEF proteins. Finally, we used the four assembled Beijing lineage genomes to construct a high-quality Beijing lineage reference genome that is DS and contains all the genes in the four genomes. It contains 212 genes not found in the standard reference H37Rv, which is Euro-American. It is therefore a better reference than H37Rv for the Beijing lineage, the predominant lineage in Asia.
Collapse
Affiliation(s)
- Woei-Fuh Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Ching Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chuan Teng
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Teh-Yang Hwa
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Meng-Yun Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hua Wu
- Tuberculosis Research Center, Centers for Disease Control, Taipei, Taiwan
| | - Pei-Chun Chuang
- Tuberculosis Research Center, Centers for Disease Control, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Taipei, Taiwan
| | - Chi-Huey Wong
- Genome Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois
| |
Collapse
|
16
|
Kodio O, Georges Togo AC, Sadio Sarro YD, Fane B, Diallo F, Somboro A, Degoga B, Kone M, Coulibaly G, Tolofoudje M, Bane S, Sanogo M, Kone B, Coulibaly N, Dabitao D, Baya B, Maiga M, Bougoudogo F, Samake F, Dao S, Doumbia S, Diallo S, Diarra B. Competitive fitness of Mycobacterium tuberculosis in vitro. Int J Mycobacteriol 2020; 8:287-291. [PMID: 31512606 PMCID: PMC6918047 DOI: 10.4103/ijmy.ijmy_97_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background While, bacteria resistance mutations can affect competitive fitness, given our multidrug-resistant (MDR) prevalence, we conducted this study to determine the impact of MDR on the competitive fitness of Mycobacterium tuberculosis (MTB) complex MDR strains. We conducted a cross-sectional study at the University Clinical Research Center (UCRC) from January to December 2017. New TB patients over aged of 18 were recruited at University teaching hospital and health reference centers of Bamako in USTTB Ethical committee approved protocols. Methods MDR and drug-susceptible (wild-type [WT]) MTB strains (T1 and Beijing) and MTB H37Rv were competed on solid media in UCRC's Tuberculosis Laboratory. Competitive and individual cultures were incubated for 14 days at 37°C with 7% CO2. Number of generation, generation time, and relative competitive fitness (W) of the strains were calculated. Data were analyzed with Epi-Info 7.1.5.2 software (CDC). P value was considered significant when it was <0.05. Scientific calculator (CS-82TL) was used for competitive fitness parameters calculations. Results We performed 24 competitive cultures and 10 individual cultures. In individual cultures, strains' generation number was for Beijing (WT: 4.60 and mutant MR: 4.40), T1 (WT: 2.69 and MR: 2.37), and H37Rv: 2.91. Generation number of WT strains was less than those of MDR strains in both individual and competitive culture. Relative competitive fitness was below 1 (W<1) in 83.3%. Conclusion MDR strains were less competitive than WT strains in 83.3% of cases. Resistant mutation impacts bacteria fitness.
Collapse
Affiliation(s)
- Ousmane Kodio
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako; National Health Laboratory, Ministry of Health and Social Affairs, Bamako, Mali
| | - Antieme Combo Georges Togo
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bintou Fane
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fatimata Diallo
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Amadou Somboro
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boureima Degoga
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou Kone
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Gagni Coulibaly
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mohamed Tolofoudje
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidy Bane
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moumine Sanogo
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nadie Coulibaly
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Djeneba Dabitao
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bocar Baya
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamoudou Maiga
- Center for Innovation in Global Health Technologies, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Flabou Bougoudogo
- National Institute of Public Health Research, Ministry of Health and Social Affairs, Bamako, Mali
| | - Fasse Samake
- Microbial Biotechnology Laboratory, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sounkalo Dao
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydou Doumbia
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
17
|
Tong J, Liu Q, Wu J, Jiang Y, Takiff HE, Gao Q. Mycobacterium tuberculosis strains of the modern Beijing sublineage excessively accumulate triacylglycerols in vitro. Tuberculosis (Edinb) 2019; 120:101892. [PMID: 31783320 DOI: 10.1016/j.tube.2019.101892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) strains of modern Beijing sublineage appear to be more transmissible and cause more severe disease than strains of other sublineages, but the responsible pathogenic mechanisms remain unclear. We previously identified genetic changes that are specific for the modern Beijing sublineage, and here we characterize the lipidome and transcriptome differences between modern and ancient Beijing sublineages. We report that modern Beijing strains accumulated 2.89 (95%CI: 2.05-3.73) times more triacylglycerol (TAG) than ancient Beijing strains in vitro. We also observed that modern Beijing strains had a 2.64-fold (95%CI: 1.29-4.00) upregulation of tgs2 (annotated as TAG synthetase 2), whose role in TAG accumulation was further confirmed in Mycobacterium marinum (Mm). Because TAG serves as a crucial carbon source and reservoir of free fatty acids, the results suggest that the excessive accumulation of TAG might fuel the growth of modern Beijing strains after infection and lead to rapid development of disease.
Collapse
Affiliation(s)
- Jingfeng Tong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Jie Wu
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Yuan Jiang
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France; Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China.
| |
Collapse
|
18
|
Ajawatanawong P, Yanai H, Smittipat N, Disratthakit A, Yamada N, Miyahara R, Nedsuwan S, Imasanguan W, Kantipong P, Chaiyasirinroje B, Wongyai J, Plitphonganphim S, Tantivitayakul P, Phelan J, Parkhill J, Clark TG, Hibberd ML, Ruangchai W, Palittapongarnpim P, Juthayothin T, Thawornwattana Y, Viratyosin W, Tongsima S, Mahasirimongkol S, Tokunaga K, Palittapongarnpim P. A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages. Sci Rep 2019; 9:13718. [PMID: 31548561 PMCID: PMC6757101 DOI: 10.1038/s41598-019-50078-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/27/2019] [Indexed: 11/08/2022] Open
Abstract
Global Mycobacterium tuberculosis population comprises 7 major lineages. The Beijing strains, particularly the ones classified as Modern groups, have been found worldwide, frequently associated with drug resistance, younger ages, outbreaks and appear to be expanding. Here, we report analysis of whole genome sequences of 1170 M. tuberculosis isolates together with their patient profiles. Our samples belonged to Lineage 1-4 (L1-L4) with those of L1 and L2 being equally dominant. Phylogenetic analysis revealed several new or rare sublineages. Differential associations between sublineages of M. tuberculosis and patient profiles, including ages, ethnicity, HIV (human immunodeficiency virus) infection and drug resistance were demonstrated. The Ancestral Beijing strains and some sublineages of L4 were associated with ethnic minorities while L1 was more common in Thais. L2.2.1.Ancestral 4 surprisingly had a mutation that is typical of the Modern Beijing sublineages and was common in Akha and Lahu tribes who have migrated from Southern China in the last century. This may indicate that the evolutionary transition from the Ancestral to Modern Beijing sublineages might be gradual and occur in Southern China, where the presence of multiple ethnic groups might have allowed for the circulations of various co-evolving sublineages which ultimately lead to the emergence of the Modern Beijing strains.
Collapse
Affiliation(s)
- Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Hideki Yanai
- Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Kiyose, Japan
| | - Nat Smittipat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Areeya Disratthakit
- Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
| | - Norio Yamada
- Research Institute of Tuberculosis, JATA, Kiyose, Japan
| | - Reiko Miyahara
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Worarat Imasanguan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Pacharee Kantipong
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | | | | | - Supada Plitphonganphim
- Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Wuthiwat Ruangchai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | - Tada Juthayothin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Yuttapong Thawornwattana
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wasna Viratyosin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand.
| |
Collapse
|
19
|
Cui Z, Lin D, Chongsuvivatwong V, Graviss EA, Chaiprasert A, Palittapongarnpim P, Lin M, Ou J, Zhao J. Hot and Cold Spot Areas of Household Tuberculosis Transmission in Southern China: Effects of Socio-Economic Status and Mycobacterium tuberculosis Genotypes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101863. [PMID: 31137811 PMCID: PMC6572207 DOI: 10.3390/ijerph16101863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
The aims of the study were: (1) compare sociodemographic characteristics among active tuberculosis (TB) cases and their household contacts in cold and hot spot transmission areas, and (2) quantify the influence of locality, genotype and potential determinants on the rates of latent tuberculosis infection (LTBI) among household contacts of index TB cases. Parallel case-contact studies were conducted in two geographic areas classified as "cold" and "hot" spots based on TB notification and spatial clustering between January and June 2018 in Guangxi, China, using data from field contact investigations, whole genome sequencing, tuberculin skin tests (TSTs), and chest radiographs. Beijing family strains accounted for 64.6% of Mycobacterium tuberculosis (Mtb) strains transmitted in hot spots, and 50.7% in cold spots (p-value = 0.02). The positive TST rate in hot spot areas was significantly higher than that observed in cold spot areas (p-value < 0.01). Living in hot spots (adjusted odds ratio (aOR) = 1.75, 95%, confidence interval (CI): 1.22, 2.50), Beijing family genotype (aOR = 1.83, 95% CI: 1.19, 2.81), living in the same room with an index case (aOR = 2.29, 95% CI: 1.5, 3.49), travelling time from home to a medical facility (aOR = 4.78, 95% CI: 2.96, 7.72), history of Bacillus Calmette-Guérin vaccination (aOR = 2.02, 95% CI: 1.13 3.62), and delay in diagnosis (aOR = 2.56, 95% CI: 1.13, 5.80) were significantly associated with positive TST results among household contacts of TB cases. The findings of this study confirmed the strong transmissibility of the Beijing genotype family strains and this genotype's important role in household transmission. We found that an extended traveling time from home to the medical facility was an important socioeconomic factor for Mtb transmission in the family. It is still necessary to improve the medical facility infrastructure and management, especially in areas with a high TB prevalence.
Collapse
Affiliation(s)
- Zhezhe Cui
- Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, China.
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Dingwen Lin
- Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, China.
| | | | - Edward A Graviss
- Department of Pathology and Genomic Medicine, The Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | - Mei Lin
- Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, China.
| | - Jing Ou
- Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, China.
| | - Jinming Zhao
- Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, China.
| |
Collapse
|
20
|
Qin L, Wang J, Lu J, Yang H, Zheng R, Liu Z, Huang X, Feng Y, Hu Z, Ge B. A deletion in the RD105 region confers resistance to multiple drugs in Mycobacterium tuberculosis. BMC Biol 2019; 17:7. [PMID: 30683096 PMCID: PMC6347829 DOI: 10.1186/s12915-019-0628-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), especially those that are multidrug resistant poses a serious threat to global tuberculosis control. However, the mechanism underlying the occurrence of drug resistance against more than one drug is poorly understood. Given that the Beijing/W strains are associated with outbreaks and multidrug resistance, they may harbor a genetic advantage and provide useful insight into the disease. One marker found in all Beijing/W Mtb strains is a deletion of RD105 region that results in a gene fusion, Rv0071/74, with a variable number (3-9 m) of VDP (V: Val, D: Asp; P: Pro) repeats (coded by gtggacccg repeat sequences) at the N-terminal. Here, we report that this variable number of VDP repeats in Rv0071/74 regulates the development of multidrug resistance. RESULTS We collected and analyzed 1255 Beijing/W clinical strains. The results showed that the number of VDP repeats in Rv0071/74 was related to the development of multidrug resistance, and the deletion of Rv0071/74-9 m from Beijing/W clinical strain restored drug susceptibility. Rv0071/74-9 m also increased resistance to multiple drugs when transferred to different mycobacterial strains. Cell-free assays indicate that the domain carrying 4-9 VDP repeats (4-9 m) showed a variable binding affinity with peptidoglycan and Rv0071/74 cleaves peptidoglycan. Furthermore, Rv0071/74-9 m increased cell wall thickness and reduced the intracellular concentration of antibiotics. CONCLUSIONS These findings not only identify Rv0071/74 with VDP repeats as a newly identified multidrug resistance gene but also provide a new model for the development of multiple drug resistance.
Collapse
Affiliation(s)
- Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Junmei Lu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yonghong Feng
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
21
|
Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, Zhou Y, Zheng HX, Jiang Q, Gan M, Zuo T, Liu M, Yang C, Jin L, Comas I, Gagneux S, Zhao Y, Pepperell CS, Gao Q. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol 2018; 2:1982-1992. [PMID: 30397300 PMCID: PMC6295914 DOI: 10.1038/s41559-018-0680-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
A small number of high-burden countries account for the majority of tuberculosis cases worldwide. Detailed data are lacking from these regions. To explore the evolutionary history of Mycobacterium tuberculosis in China-the country with the third highest tuberculosis burden-we analysed a countrywide collection of 4,578 isolates. Little genetic diversity was detected, with 99.4% of the bacterial population belonging to lineage 2 and three sublineages of lineage 4. The deeply rooted phylogenetic positions and geographic restriction of these four genotypes indicate that their populations expanded in situ following a small number of introductions to China. Coalescent analyses suggest that these bacterial subpopulations emerged in China around 1,000 years ago, and expanded in parallel from the twelfth century onwards, and that the whole population peaked in the late eighteenth century. More recently, sublineage L2.3, which is indigenous to China and exhibited relatively high transmissibility and extensive global dissemination, came to dominate the population dynamics of M. tuberculosis in China. Our results indicate that historical expansion of four M. tuberculosis strains shaped the current tuberculosis epidemic in China, and highlight the long-term genetic continuity of the indigenous M. tuberculosis population.
Collapse
Affiliation(s)
- Qingyun Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Aijing Ma
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lanhai Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Beibei Wu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tao Luo
- West China School of Basic Medical Sciences and Forensic Medicines, Sichuan University, Chengdu, China
| | - Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Jiang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Mingyu Gan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Tianyu Zuo
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, CSIC and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Caitlin S Pepperell
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- Shenzhen Center for Chronic Disease Control, Shenzhen, China.
| |
Collapse
|
22
|
THE DETECTION OF EPIDEMIC SUBTYPES OF BEIJING GENOTYPE OF MYCOBACTERIUM TUBERCULOSIS CIRCULATED IN THE PRIMORSKY KRAI. ACTA ACUST UNITED AC 2018. [DOI: 10.29413/abs.2018-3.5.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background. The Far East is the territory with high rate of incidence and prevalence of tuberculosis. Cases of tuberculosis caused by epidemic strains have high frequency of MDR and XDR. It is important to study the prevalence of TB in areas with a high burden of infection, to which the Far East belongs. The aim of the research is to carry out genotyping of strains and assess the prevalence of CC1 and CC2 subtypes in the territory of Primorsky Krai. Materials and methods. The DNAs of 99 clinical isolates of MBT from Primorsky Krai have been genotyped by the 24-locus MIRU-VNTR and RD105/RD207. Results. The dominant number of strains pertained to Beijing genotype (59.6 %). The express method revealed 22 isolates of the CC2/W148 subtype, which had 6 different MIRU-VNTR-24 profile. According to MLVA classification MtbC 15-9, the most common among the isolates of CC2/W148 profile is 100-32 (59.1 %). Among these profiles the highest frequency of MDR/XDR was recorded – 69,2 %. According to the results of the express analysis, 39 isolates with 26 different MIRU-VNTR-24 profiles belonged to the CC1 subtype, of which the dominant number belonged to 99-32 and 94-32. Conclusions. The methods of express genotyping of epidemic subtypes of the Beijing genotype are very important for epidemiological surveillance and clinical practice. The developed methods allow to define a wider range of strains than previously used methods.
Collapse
|
23
|
Koster K, Largen A, Foster JT, Drees KP, Qian L, Desmond EP, Wan X, Hou S, Douglas JT. Whole genome SNP analysis suggests unique virulence factor differences of the Beijing and Manila families of Mycobacterium tuberculosis found in Hawaii. PLoS One 2018; 13:e0201146. [PMID: 30036392 PMCID: PMC6056056 DOI: 10.1371/journal.pone.0201146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
While tuberculosis (TB) remains a global disease, the WHO estimates that 62% of the incident TB cases in 2016 occurred in the WHO South-East Asia and Western Pacific regions. TB in the Pacific is composed predominantly of two genetic families of Mycobacterium tuberculosis (Mtb): Beijing and Manila. The Manila family is historically under-studied relative to the families that comprise the majority of TB in Europe and North America (e.g. lineage 4), and it remains unclear why this lineage has persisted in Filipino populations despite the predominance of more globally successful Mtb lineages in most of the world. The Beijing family is of particular interest as it is increasingly associated with drug resistance throughout the world. Both of these lineages are important to the State of Hawaii, where they comprise over two-thirds of TB cases. Here, we performed whole genome sequencing on 82 Beijing family, Manila family, and outgroup clinical Mtb isolates from Hawaii to identify lineage-specific SNPs (SNPs found in all isolates from their respective families, and exclusively in those families) in established virulence factor genes. Six non-silent lineage-specific virulence factor SNPs were found in the Beijing family, including mutations in alternative sigma factor sigG and polyketide synthases pks5 and pks7. The Manila family displayed more than eleven non-silent lineage-specific and characteristic virulence factor mutations, including in genes coding for MCE-family protein Mce1B, two mutations in fatty-acid-AMP ligase FadD26, and virulence-regulating transcriptional regulator VirS. This study further identified an ancient clade that shared some virulence factor mutations with the Manila family, and investigated the relationship of those and other "Manila-like" spoligotypes to the Manila family with this SNP dataset. This work identified a set of virulence genes that are worth pursuing to determine potential differences in transmission or virulence displayed by these two Mtb families.
Collapse
Affiliation(s)
- Kent Koster
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Angela Largen
- Hawaii State Department of Health, Honolulu, Hawaii, United States of America
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kevin P. Drees
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Lishi Qian
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Edward P. Desmond
- California Department of Public Health, Richmond, California, United States of America
| | - Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, Hawaii, United States of America
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, Hawaii, United States of America
| | - James T. Douglas
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
24
|
Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect 2018; 7:98. [PMID: 29872078 PMCID: PMC5988693 DOI: 10.1038/s41426-018-0101-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/13/2023]
Abstract
Compensatory mutations have been suggested to promote multidrug-resistant tuberculosis (MDR-TB) transmission, but their role in facilitating the recent transmission of MDR-TB is unclear. To investigate the epidemiological significance of compensatory mutations, we analyzed a four-year population-based collection of MDR-TB strains from Shanghai (the most populous city in China) and 1346 published global MDR-TB strains. We report that MDR-TB strains with compensatory mutations in the rpoA, rpoB, or rpoC genes were neither more frequently clustered nor found in larger clusters than those without compensatory mutations. Our results suggest that compensatory mutations are not a major contributor to the current epidemic of MDR-TB.
Collapse
|
25
|
Zhai X, Luo T, Peng X, Ma P, Wang C, Zhang C, Suo J, Bao L. The truncated Rv2820c of Mycobacterium tuberculosis Beijing family augments intracellular survival of M. smegmatis by altering cytokine profile and inhibiting NO generation. INFECTION GENETICS AND EVOLUTION 2018; 59:75-83. [PMID: 29407192 DOI: 10.1016/j.meegid.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
Abstract
Genetic variations among genes of Mycobacterium tuberculosis may be associated with antigenic variation and immune evasion, which complicates the pathogenesis of M. tuberculosis. The hyper-virulent M. tuberculosis Beijing strains harbored several large sequence deletions, among which RD207 attributed to the deletion of CRISPR loci and several Cas genes. RD207 also gave rise to a truncated gene Rv2820c-Bj with 60% deletion in length at the 3'-end and a new 3'-end of five amino acid mutations. It has been reported that Rv2820c-Bj correlated with enhanced intracellular survival of M. smegmatis in macrophages when compared to its full-length counterpart Rv2820c in M. tuberculosis, however, the respective contribution of the truncation and the new 3'-end of Rv2820c-Bj to this enhancement was unclear. Here, by infecting THP-1 macrophages with Ms_Rv2820c-Bj, Ms_Rv2820c and MS_Rv2820c-Tr (expressing the truncated Rv2820c without five amino acid mutations at 3'-end), we found only Ms_Rv2820c-Bj was responsible for the enhancement of survival of M. smegmatis in macrophages. Furthermore, we detected that Ms_Rv2820c-Tr and Ms_Rv2820c-Bj induced similar cytokine profile and NO production after infection of macrophages, which was distinctly different from Ms_Rv2820c. However, Ms_Rv2820c-Bj evoked higher levels of interleukin-10 (IL-10) and lower levels of interleukin- 6 (IL-6), interleukin-1β (IL-1β) and interleukin-12 (IL-12) in infected THP-1 macrophages than Ms_Rv2820c-Tr. Accordingly, we concluded that the new 3'-end of Rv2820c-Bj was important to dampen host defense and enhance the intracellular survival of M. smegmatis.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Suo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis 2017; 36:2007-2020. [PMID: 28639162 PMCID: PMC5653721 DOI: 10.1007/s10096-017-3024-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.
Collapse
Affiliation(s)
- F Tagini
- Institute of Microbiology, Department of Laboratory, University of Lausanne & University Hospital, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, Department of Laboratory, University of Lausanne & University Hospital, Lausanne, Switzerland.
| |
Collapse
|
27
|
Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep 2017; 7:9227. [PMID: 28835627 PMCID: PMC5569047 DOI: 10.1038/s41598-017-10018-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/01/2017] [Indexed: 11/08/2022] Open
Abstract
Due to its rapid spread and association with the numerous outbreaks, the global spread of East Asian lineage of Mycobacterium tuberculosis strains presents a global concern. Although there were many attempts to describe its population structure, no consensus has been reached yet. To define unbiased classification that will facilitate future studies of this lineage, we analyzed the performance and congruence of eight different genotyping schemes based on phylogenetic analysis of 1,398 strains from 32 countries using whole-genome sequencing (WGS) data. We confirm that East Asian lineage comprises two major clades, designated proto-Beijing, which harbors unusual 43-signal spoligoprofile, and Beijing, with well-known spoligoprofile (deleted signals from 1 to 34). We show that different genotyping methods give high consistency results in description of ancient Beijing strains while the classification of modern Beijing strains is significantly divergent due to star-shaped phylogeny. Using WGS data we intersect different studies and for the first time provide balanced classification with well-defined major groups and their genetic markers. Our reconstructed phylogenetic tree can also be used for further analysis of epidemiologically important clusters and their ancestors as well as white spots of unclassified strains, which are prospective areas of research.
Collapse
|
28
|
Pan XL, Zhang CL, Nakajima C, Fu J, Shao CX, Zhao LN, Cui JY, Jiao N, Fan CL, Suzuki Y, Hattori T, Li D, Ling H. A quantitative and efficient approach to select MIRU-VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages. Emerg Microbes Infect 2017; 6:e68. [PMID: 28745309 PMCID: PMC5567172 DOI: 10.1038/emi.2017.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Although several optimal mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU-VNTR loci were used for genotyping. To efficiently select optimal MIRU-VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU-VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU-VNTR loci to discriminate between divergent M. tuberculosis sublineages.
Collapse
Affiliation(s)
- Xin-Ling Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Chun-Lei Zhang
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150026, China
| | - Chang-Xia Shao
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Li-Na Zhao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Jia-Yi Cui
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Na Jiao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chang-Long Fan
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Toshio Hattori
- Graduate School of Health Science Studies, Kibi International University, Takahashi 7168508, Japan
| | - Di Li
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Hong Ling
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| |
Collapse
|
29
|
Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, Tauch A, Murcia-Aranguren MI. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. INFECTION GENETICS AND EVOLUTION 2017; 54:314-323. [PMID: 28734764 DOI: 10.1016/j.meegid.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M. tuberculosis genomes. We found that the six Beijing-like isolates belong to a modern Beijing sub-lineage and share specific genomic variants: i.e. deletion in the PPE8 gene, in Rv3806c (ubiA) responsible of high ethambutol resistance and in Rv3862c (whiB6) which is involved in granuloma formation and virulence, are some of them. Moreover, each isolated has exclusively single nucleotide polymorphisms (SNPs) in genes related with cell wall processes and cell metabolism. We identified polymorphisms in genes related to drug resistance that could explain the drug-resistant phenotypes found in the six isolates from Colombia. We hypothesize that changes due to these genetic variations contribute to the success of these strains. Finally, we analyzed the IS6110 insertion sequences finding very low variance between them, suggesting that SNPs is the major cause of variability found in Beijing-like strains circulating in Colombia.
Collapse
Affiliation(s)
- Juan Germán Rodríguez-Castillo
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Camilo Pino
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis Fernando Niño
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Rozo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali 760031, Colombia
| | | | - Carlos A Parra-López
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andreas Tauch
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany
| | - Martha Isabel Murcia-Aranguren
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
30
|
Li QJ, Jiao WW, Yin QQ, Li YJ, Li JQ, Xu F, Sun L, Xiao J, Qi H, Wang T, Mokrousov I, Huang HR, Shen AD. Positive epistasis of major low-cost drug resistance mutations rpoB531-TTG and katG315-ACC depends on the phylogenetic background of Mycobacterium tuberculosis strains. Int J Antimicrob Agents 2017; 49:757-762. [PMID: 28456705 DOI: 10.1016/j.ijantimicag.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 02/04/2017] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis Beijing genotype strains increasingly circulate in different world regions, either as historical endemic, e.g. in East Asia, or recently imported, e.g. in South America, and this family is regarded as the most successful lineage of the global tuberculosis (TB) epidemic. Here we analysed the transmission capacity of these strains in the context of their phylogenetic background and drug resistance mutations. The study collection included all multidrug resistant (MDR) strains of Beijing genotype isolated in Beijing Chest Hospital, the largest tertiary TB facility in North China, in 2011-2013 (n = 278). Strains were subjected to NTF/IS6110 and 24-loci MIRU-VNTR analysis. Drug resistance mutations were detected in rpoB, katG, inhA and oxyR-ahpC. A total of 58 and 220 strains were assigned to the ancient and modern Beijing sublineages, respectively. 24-MIRU-VNTR clustering was higher in modern versus ancient Beijing strains (35.9% vs. 12.1%; P <0.001). After taking into consideration the presence of rpoB and katG mutations, clustering decreased to 15.9% in modern and 0% in ancient strains. The most frequent combination of mutations (rpoB531-TTG and katG315-ACC) was more prevalent in clustered versus non-clustered isolates in the modern sublineage (23/35 vs. 47/185; P <0.0001). To conclude, a combination of the known low-fitness-cost rpoB531-TTG and katG315-ACC mutations likely facilitates the increased transmission ability of MDR strains of the modern but not ancient Beijing sublineage. Accordingly, positive epistasis of major low-cost drug resistance-conferring mutations is influenced by the phylogenetic background of M. tuberculosis strains.
Collapse
Affiliation(s)
- Qin-Jing Li
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei-Wei Jiao
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qing-Qin Yin
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ying-Jia Li
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie-Qiong Li
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fang Xu
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lin Sun
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hui Qi
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St Petersburg Pasteur Institute, St Petersburg, Russia.
| | - Hai-Rong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| | - A-Dong Shen
- Ministry of Education Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Evolutionary History and Ongoing Transmission of Phylogenetic Sublineages of Mycobacterium tuberculosis Beijing Genotype in China. Sci Rep 2016; 6:34353. [PMID: 27681182 PMCID: PMC5041183 DOI: 10.1038/srep34353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/09/2016] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium tuberculosis Beijing genotype originated in China and has undergone a dramatic population growth and global spread in the last century. Here, a collection of M. tuberculosis Beijing family isolates from different provinces across all China was genotyped by high-resolution (24-MIRU-VNTR) and low-resolution, high-rank (modern and ancient sublineages) markers. The molecular profiles and global and local phylogenies were compared to the strain phenotype and patient data. The phylogeographic patterns observed in the studied collection demonstrate that large-scale (but not middle/small-scale) distance remains one of the decisive factors of the genetic divergence of M. tuberculosis populations. Analysis of diversity and network topology of the local collections appears to corroborate a recent intriguing hypothesis about Beijing genotype originating in South China. Placing our results within the Eurasian context suggested that important Russian B0/W148 and Asian/Russian A0/94-32 epidemic clones of the Beijing genotype could trace their origins to the northeastern and northwestern regions of China, respectively. The higher clustering of the modern isolates in children and lack of increased MDR rate in any sublineage suggest that not association with drug resistance but other (e.g., speculatively, virulence-related) properties underlie an enhanced dissemination of the evolutionarily recent, modern sublineage of the Beijing genotype in China.
Collapse
|