1
|
Dutta RK, Jun J, Du K, Diehl AM. Hedgehog Signaling: Implications in Liver Pathophysiology. Semin Liver Dis 2023; 43:418-428. [PMID: 37802119 DOI: 10.1055/a-2187-3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.
Collapse
Affiliation(s)
| | - JiHye Jun
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
2
|
Portincasa P, Bonfrate L, Di Ciaula A. AMA-positivity in AIH-patients with bile duct lesions running in between. Novel findings and perspectives. Eur J Intern Med 2023; 116:36-37. [PMID: 37558587 DOI: 10.1016/j.ejim.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Piero Portincasa
- Division of Internal Medicine Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Division of Internal Medicine Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Division of Internal Medicine Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
DHULI KRISTJANA, BONETTI GABRIELE, ANPILOGOV KYRYLO, HERBST KARENL, CONNELLY STEPHENTHADDEUS, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Validating methods for testing natural molecules on molecular pathways of interest in silico and in vitro. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E279-E288. [PMID: 36479497 PMCID: PMC9710400 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Differentially expressed genes can serve as drug targets and are used to predict drug response and disease progression. In silico drug analysis based on the expression of these genetic biomarkers allows the detection of putative therapeutic agents, which could be used to reverse a pathological gene expression signature. Indeed, a set of bioinformatics tools can increase the accuracy of drug discovery, helping in biomarker identification. Once a drug target is identified, in vitro cell line models of disease are used to evaluate and validate the therapeutic potential of putative drugs and novel natural molecules. This study describes the development of efficacious PCR primers that can be used to identify gene expression of specific genetic pathways, which can lead to the identification of natural molecules as therapeutic agents in specific molecular pathways. For this study, genes involved in health conditions and processes were considered. In particular, the expression of genes involved in obesity, xenobiotics metabolism, endocannabinoid pathway, leukotriene B4 metabolism and signaling, inflammation, endocytosis, hypoxia, lifespan, and neurotrophins were evaluated. Exploiting the expression of specific genes in different cell lines can be useful in in vitro to evaluate the therapeutic effects of small natural molecules.
Collapse
Affiliation(s)
- KRISTJANA DHULI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | | | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System, Department of Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA7
| | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI’S LAB, Rovereto (TN), Italy
- MAGI EUREGIO, Bolzano, BZ, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
4
|
Portincasa P. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732914220325103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Portincasa P. Meet Our Editorial Board Member. Curr Med Chem 2021. [DOI: 10.2174/092986732814210505081423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
7
|
Hao YL, Bian ZL, Ju LL, Liu Y, Qin G. RANK/RANKL Acts as a Protective Factor by Targeting Cholangiocytes in Primary Biliary Cholangitis. Dig Dis Sci 2020; 65:470-479. [PMID: 31377883 DOI: 10.1007/s10620-019-05758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/22/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the highly selective autoimmune injury of small intrahepatic bile ducts. Studies reported that the cholangiocytes from PBC patients expressed significantly higher levels of both receptor activator of nuclear factor-kappa B (RANK) and its ligand RANKL. However, the accurate role of RANK/RANKL axis in PBC remains unclear. METHODS Forty patients with PBC were enrolled according to the inclusion criteria. The biochemical parameters (alkaline phosphatase, ALP; gamma-glutamyltransferase, GGT; alanine aminotransferase, ALT; aspartate transaminase, AST; total bilirubin, TB) were collected at baseline and followed-up after 6 months of treatment with ursodeoxycholic acid (UDCA, 15 mg/kg d). Stages of PBC were diagnosed based on liver biopsy histopathology according to Nakanuma's criteria. RANK expression in hepatic tissues was detected by immunohistochemistry. The cellular immunofluorescence method was used to locate the distribution of RANK in the human intrahepatic biliary epithelial cells (HIBECs) cultured in vitro. HIBECs were treated with RANKL at a concentration of 100 ng/ml or transfected with RANK-overexpressing lentivirus (LV-RANK). CCK-8 assay and cell cycle assay were used to detect the cell proliferation. Real-time PCR was used to detect the expression of IL-6, E-cadherin, VCAM, ICAM-1, TNF-α, and CD80. RESULTS RANK expression in liver biopsies from early PBC patients (stage I + stage II) was significantly lower than that from advanced PBC patients (stage III + stage IV) (1.7 ± 0.63 vs. 2.3 ± 0.45 scores, P < 0.05). High-RANK patients seemed to have better response to UDCA than low-RANK patients (88.9% vs. 40.9%, P < 0.05). The baseline biochemical parameters between the two groups were comparable. The decline percentages of ALP and GGT after UDCA treatment were more obvious in high-RANK patients than those in low-RANK patients (53.90% ± 9.82% vs. 23.93% ± 6.24%, P < 0.05; 74.11% ± 7.18% vs. 48.00% ± 8.17%, P < 0.05, respectively). HIBECs proliferation was significantly inhibited after treatment of RANKL or transfection with LV-RANK. Increased expression of IL-6 and E-cadherin was observed in HIBECs treated with RANKL or LV-RANK. CONCLUSION The overall hepatic RANK expression was associated with disease severity and biochemical response in PBC patients. Activation of RANK/RANKL signaling pathway inhibited cholangiocytes proliferation in vitro. Our study suggested that RANK/RANKL pathway might be a potential target of immunotherapy of PBC based on its involvement in the occurrence and development of the disease.
Collapse
Affiliation(s)
- Yan-Li Hao
- Center for Liver Diseases, Nantong Third People's Hospital, Nantong University, 60 Mid-Youth Road, Nantong, 226006, Jiangsu, China
| | - Zhao-Lian Bian
- Center for Liver Diseases, Nantong Third People's Hospital, Nantong University, 60 Mid-Youth Road, Nantong, 226006, Jiangsu, China.,Division of Gastroenterology and Hepatology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Lin-Ling Ju
- Center for Liver Diseases, Nantong Third People's Hospital, Nantong University, 60 Mid-Youth Road, Nantong, 226006, Jiangsu, China
| | - Yuan Liu
- Department of Gastroenterology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Gang Qin
- Center for Liver Diseases, Nantong Third People's Hospital, Nantong University, 60 Mid-Youth Road, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
8
|
Rosa R, Cristoferi L, Tanaka A, Invernizzi P. Geoepidemiology and (epi-)genetics in primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:11-15. [PMID: 30343705 DOI: 10.1016/j.bpg.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is a rare female preponderant chronic autoimmune cholestatic liver disease, characterized by intrahepatic ductopenia and progressive fibrosis. During last decades incidence and prevalence showed an increasing rate which vary widely worldwide demonstrating an important interaction between environmental and genetic factors. Heritability suggested by familial occurrence and monozygotic twins concordance have been confirmed in more studies. Epigenetics mechanisms such as histone modification and DNA methylation can partially explain predisposition and inheritance of this disease. Nevertheless, an association with specific class II human leukocyte antigen (HLA) variants have been reported, showing an increase risk in susceptibility. More recently, data regarding a strong protective association between PBC and HLA alleles confirmed this association. After recent genome-wide association studies (GWAS), a more intricate interaction between PBC and the HLA region has been shown. Furthermore, GWAS also identified several immune-related-genes implicated. More genome-wide association studies on this disease are needed to reach a complete and systematic knowledge of this disease. In this review we discuss more recent issued data on geoepidemiology of PBC and the role of (epi-)genetic mechanisms in its pathogenesis.
Collapse
Affiliation(s)
- Roberto Rosa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.
| |
Collapse
|
9
|
Gulamhusein AF, Hirschfield GM. Pathophysiology of primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:17-25. [PMID: 30343706 DOI: 10.1016/j.bpg.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a prototypical autoimmune disease characterized by an overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an imbalance between effector and regulatory activity resulting in progressive and self-perpetuating biliary injury. Genome wide studies shed light on important pathways involved in disease, key among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on the missing heritability and female preponderance of disease. Taken together, these findings have dramatically advanced our understanding of disease and may lead to important therapeutic advances.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, 200 Elizabeth Street, Toronto, ON, Canada.
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Asuri S, McIntosh S, Taylor V, Rokeby A, Kelly J, Shumansky K, Field LL, Yoshida EM, Arbour L. Primary Biliary Cholangitis in British Columbia First Nations: Clinical features and discovery of novel genetic susceptibility loci. Liver Int 2018; 38:940-948. [PMID: 29297981 DOI: 10.1111/liv.13686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterized by destruction of intrahepatic bile ducts, portal inflammation and cirrhosis. Although rare in most populations, it is prevalent and often familial in British Columbia First Nations. We hypothesized that major genetic factors increased the risk in First Nations. METHODS In all, 44 individuals with Primary Biliary Cholangitis and 61 unaffected relatives from 32 First Nations families participated. Family history and co-morbidities were documented. Medical records were reviewed and available biopsies were re-reviewed by our team pathologist. Genotyping was performed on DNA from 36 affected persons and 27 unaffected relatives using the Affymetrix Human Mapping 500K Array Set. MERLIN software was used to carry out multipoint parametric and nonparametric linkage analysis. Candidate genes were identified and entered into InnateDB and KEGG software to identify potential pathways affecting pathogenesis. RESULTS In all, 34% of families were multiplex. Fifty per cent of cases and 33% of unaffected relatives reported other autoimmune disease. Three genomic regions (9q21, 17p13 and 19p13) produced LOD scores of 2.3 or greater suggestive of linkage, but no single linkage peak reached statistical significance. Candidate genes identified in the three regions suggested involvement of IL17, NFκB, IL6, JAK-STAT, IFNγ and TGFβ immune signalling pathways. Specifically, four genes-ACT1, PIN1, DNMT1 and NTN1-emerged as having roles in these pathways that may influence Primary Biliary Cholangitis pathogenesis. CONCLUSIONS Our whole genome linkage study results reflect the multifactorial nature of Primary Biliary Cholangitis, support previous studies suggesting signalling pathway involvement and identify new candidate genes for consideration.
Collapse
Affiliation(s)
- Sirisha Asuri
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah McIntosh
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Valerie Taylor
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Andrew Rokeby
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - James Kelly
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karey Shumansky
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lanora Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
11
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Wang X, Wen X, Zhou J, Qi Y, Wu R, Wang Y, Kui Y, Hua R, Jin Q. MicroRNA-223 and microRNA-21 in peripheral blood B cells associated with progression of primary biliary cholangitis patients. PLoS One 2017; 12:e0184292. [PMID: 28886078 PMCID: PMC5590910 DOI: 10.1371/journal.pone.0184292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, there is ample evidence suggesting the important role of microRNAs (miRNAs) in autoimmune diseases via modulating B cells function. Primary biliary cholangitis (PBC) is a progressive immune-mediated liver disease with unclear pathogenic mechanism. Whether the miRNA in peripheral B cells of PBC involve the mechanisms of pathology and progression is not known. The present study explores miRNA deregulation in peripheral B-cell of PBC from stage I to IV and healthy controls. Peripheral B cells were obtained from 72 PBC patients (stage I, n = 17; stage II, n = 23; stage III, n = 16; stage IV, n = 16) and 15 healthy controls. Initially, in a discovery study, miRNA array analysis was performed, subsequently, in a validation study, quantitative PCR was used to investigate miRNA expression profile in B cells of PBS patients compared to healthy controls. Based on bioinformatics analysis, we identified the potential biological processes and significant signaling pathways affected by these microRNAs, and generated the microRNA–gene network. The discovery study identified 558 miRNAs differentially expressed in B cells of PBC patients compared to controls. Interestingly, among all differentially expressed miRNAs, hsa-miR-223-3p and hsa-miR-21-5p were the only miRNAs that showed consistent and significant down-regulation from stage I to stage III of PBC. Bioinformatics showed that potential target genes of both miRNAs involved in migration, cell differentiation, apoptosis, and signal transduction pathways. In conclusion, our results suggest that the expression profiles of miRNA in peripheral B cells of PBC patients are closely associated with the disease progression, especially the down-regulation of hsa-miR-223-3p and hsa-miR-21-5p. Taken together, our study offers novel perspectives on the role of miRNAs in PBC pathogenesis.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry Education, Changchun, China
| | - Xiaoyu Wen
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yue Qi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yiwen Kui
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Rui Hua
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Qinglong Jin
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- * E-mail: .
| |
Collapse
|
13
|
Tanakaa A, Leung PS, Young HA, Gershwin ME. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017; 1:275-287. [PMID: 29057387 PMCID: PMC5646686 DOI: 10.1002/hep4.1044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti‐mitochondrial antibody (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identification and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins, genome‐wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism. Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth factor receptor type II mice, 3) interleukin‐2R α−/− mice, 4) adenylate‐uridylate‐rich element Del−/− mice, and 5) 2‐octynoic acid‐conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but collectively the models point to loss of tolerance to PDC‐E2, the major mitochondrial autoantigen, as the earliest event that occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progression, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We postulate that successful treatment of PBC may require a personalized approach with therapies designed for different stages of disease. (Hepatology Communications 2017;1:275–287)
Collapse
Affiliation(s)
- Atsushi Tanakaa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick Sc Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
14
|
Liver immunology: How to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol 2017; 41:6-16. [PMID: 27526967 DOI: 10.1016/j.clinre.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
There are several examples of liver tolerance: the relative ease by which liver allografts are accepted and the exploitation of the hepatic microenvironment by the malarial parasite and hepatotrophic viruses are notable examples. The vasculature of the liver supports a unique population of antigen presenting cells specialised to maintain immunological tolerance despite continuous exposure to gut-derived antigens. Liver sinusoidal endothelial cells and Kupffer cells appear to be key to the maintenance of immune tolerance, by promoting T cell anergy or deletion and the generation of regulatory cell subsets. Despite this, there are three liver diseases with likely autoimmune involvement: primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. How can we reconcile this with the inherent tolerogenicity of the liver? Genetic studies have uncovered several associations with genes involved in the activation of the innate and adaptive immune systems. There is also evidence pointing to pathogenic and xenobiotic triggers of autoimmune liver disease. Coupled to this, impaired immunoregulatory mechanisms potentially play a permissive role, allowing the autoimmune response to proceed.
Collapse
|
15
|
Kawashima M, Hitomi Y, Aiba Y, Nishida N, Kojima K, Kawai Y, Nakamura H, Tanaka A, Zeniya M, Hashimoto E, Ohira H, Yamamoto K, Abe M, Nakao K, Yamagiwa S, Kaneko S, Honda M, Umemura T, Ichida T, Seike M, Sakisaka S, Harada M, Yokosuka O, Ueno Y, Senju M, Kanda T, Shibata H, Himoto T, Murata K, Miyake Y, Ebinuma H, Taniai M, Joshita S, Nikami T, Ota H, Kouno H, Kouno H, Nakamuta M, Fukushima N, Kohjima M, Komatsu T, Komeda T, Ohara Y, Muro T, Yamashita T, Yoshizawa K, Nakamura Y, Shimada M, Hirashima N, Sugi K, Ario K, Takesaki E, Naganuma A, Mano H, Yamashita H, Matsushita K, Yamauchi K, Makita F, Nishimura H, Furuta K, Takahashi N, Kikuchi M, Masaki N, Tanaka T, Tamura S, Mori A, Yagi S, Shirabe K, Komori A, Migita K, Ito M, Nagaoka S, Abiru S, Yatsuhashi H, Yasunami M, Shimoda S, Harada K, Egawa H, Maehara Y, Uemoto S, Kokudo N, Takikawa H, Ishibashi H, Chayama K, Mizokami M, Nagasaki M, Tokunaga K, Nakamura M. Genome-wide association studies identify PRKCB as a novel genetic susceptibility locus for primary biliary cholangitis in the Japanese population. Hum Mol Genet 2017; 26:650-659. [PMID: 28062665 DOI: 10.1093/hmg/ddw406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
A previous genome-wide association study (GWAS) performed in 963 Japanese individuals (487 primary biliary cholangitis [PBC] cases and 476 healthy controls) identified TNFSF15 (rs4979462) and POU2AF1 (rs4938534) as strong susceptibility loci for PBC. In this study, we performed GWAS in additional 1,923 Japanese individuals (894 PBC cases and 1,029 healthy controls), and combined the results with the previous data. This GWAS, together with a subsequent replication study in an independent set of 7,024 Japanese individuals (512 PBC cases and 6,512 healthy controls), identified PRKCB (rs7404928) as a novel susceptibility locus for PBC (odds ratio [OR] = 1.26, P = 4.13 × 10-9). Furthermore, a primary functional variant of PRKCB (rs35015313) was identified by genotype imputation using a phased panel of 1,070 Japanese individuals from a prospective, general population cohort study and subsequent in vitro functional analyses. These results may lead to improved understanding of the disease pathways involved in PBC, forming a basis for prevention of PBC and development of novel therapeutics.
Collapse
Affiliation(s)
- Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kaname Kojima
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hitomi Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Etsuko Hashimoto
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Rheumatic Diseases, Fukushima Medical University of Medicine, Fukushima, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagaski, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takeji Umemura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takafumi Ichida
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Masataka Seike
- First Department of Internal Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michio Senju
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagaski, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Kazumoto Murata
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yasuhiro Miyake
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio Graduate School of Medicine, Tokyo, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Joshita
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshiki Nikami
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kouno
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nobuyoshi Fukushima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kohjima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Komeda
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yukio Ohara
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toyokichi Muro
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yoko Nakamura
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Sugi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Eiichi Takesaki
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Mano
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Haruhiro Yamashita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kouki Matsushita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiko Yamauchi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiro Takahashi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masahiro Kikuchi
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiko Masaki
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiro Tanaka
- Organ Transplantation Service, The University of Tokyo, Tokyo, Japan
| | - Sumito Tamura
- Hepatobiliarypancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Mori
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Shirabe
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Masahiro Ito
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Michio Yasunami
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihiro Kokudo
- Hepatobiliarypancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiromi Ishibashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Headquaters of PBC Research in the National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquaters of gp210 Working Group in Intractable Liver Disease Research Project Team of the Ministry of Health and Welfare in Japan, Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| |
Collapse
|
16
|
Greene CS, Himmelstein DS. Genetic Association-Guided Analysis of Gene Networks for the Study of Complex Traits. ACTA ACUST UNITED AC 2017; 9:179-84. [PMID: 27094199 DOI: 10.1161/circgenetics.115.001181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Casey S Greene
- From the Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (C.S.G.); and Biological and Medical Informatics, University of California, San Francisco (D.S.H.).
| | - Daniel S Himmelstein
- From the Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (C.S.G.); and Biological and Medical Informatics, University of California, San Francisco (D.S.H.)
| |
Collapse
|
17
|
Grattagliano I, Oliveira P, Vergani L, Portincasa P. Oxidative and Nitrosative Stress in Chronic Cholestasis. LIVER PATHOPHYSIOLOGY 2017:225-237. [DOI: 10.1016/b978-0-12-804274-8.00017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Marzorati S, Lleo A, Carbone M, Gershwin ME, Invernizzi P. The epigenetics of PBC: The link between genetic susceptibility and environment. Clin Res Hepatol Gastroenterol 2016; 40:650-659. [PMID: 27341761 DOI: 10.1016/j.clinre.2016.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Accepted: 05/13/2016] [Indexed: 02/04/2023]
Abstract
Primary biliary cholangitis (PBC) previously known as primary biliary cirrhosis is an autoimmune disease-associated with progressive cholestasis, the presence of autoreactive T cell and characteristic serological autoantibodies. Genetic and genome-wide association studies (GWAS) have recently shed light on the genetic background of PBC. Besides that some causal nucleotide changes and mechanisms remain largely unknown as suggested for example, by the observation that monozygotic twins have an identical DNA sequence even if presents some phenotypic differences that may be consequences of different exposures to environmental stressors. For this reason, it is believed that epigenetic mechanisms may be involved in PBC pathogenesis, as already demonstrated in many autoimmune diseases and can eventually provide an understanding that has been missed from genetics alone. This review will focus on the most commonly studied epigenetic modifications already demonstrated in PBC; special attention will be paid also to other epigenetic mechanisms so far not demonstrated in PBC patients, but that could increase our understanding in PBC pathogenesis.
Collapse
Affiliation(s)
- Simona Marzorati
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Carbone
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA; Program for Autoimmune Liver Diseases, Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza (MB), Italy.
| |
Collapse
|
19
|
Kao PYP, Leung KH, Chan LWC, Yip SP, Yap MKH. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj 2016; 1861:335-353. [PMID: 27888147 DOI: 10.1016/j.bbagen.2016.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) is a major method for studying the genetics of complex diseases. Finding all sequence variants to explain fully the aetiology of a disease is difficult because of their small effect sizes. To better explain disease mechanisms, pathway analysis is used to consolidate the effects of multiple variants, and hence increase the power of the study. While pathway analysis has previously been performed within GWAS only, it can now be extended to examining rare variants, other "-omics" and interaction data. SCOPE OF REVIEW 1. Factors to consider in the choice of software for GWAS pathway analysis. 2. Examples of how pathway analysis is used to analyse rare variants, other "-omics" and interaction data. MAJOR CONCLUSIONS To choose appropriate software tools, factors for consideration include covariate compatibility, null hypothesis, one- or two-step analysis required, curation method of gene sets, size of pathways, and size of flanking regions to define gene boundaries. For rare variants, analysis performance depends on consistency between assumed and actual effect distribution of variants. Integration of other "-omics" data and interaction can better explain gene functions. GENERAL SIGNIFICANCE Pathway analysis methods will be more readily used for integration of multiple sources of data, and enable more accurate prediction of phenotypes.
Collapse
Affiliation(s)
- Patrick Y P Kao
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kim Hung Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Maurice K H Yap
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
20
|
Bae HR, Leung PS, Tsuneyama K, Valencia JC, Hodge DL, Kim S, Back T, Karwan M, Merchant AS, Baba N, Feng D, Park O, Gao B, Yang GX, Gershwin ME, Young HA. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 2016; 64:1189-201. [PMID: 27178326 PMCID: PMC5033675 DOI: 10.1002/hep.28641] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED In most autoimmune diseases the serologic hallmarks of disease precede clinical pathology by years. Therefore, the use of animal models in defining early disease events becomes critical. We took advantage of a "designer" mouse with dysregulation of interferon gamma (IFNγ) characterized by prolonged and chronic expression of IFNγ through deletion of the IFNγ 3'-untranslated region adenylate uridylate-rich element (ARE). The ARE-Del(-/-) mice develop primary biliary cholangitis (PBC) with a female predominance that mimics human PBC that is characterized by up-regulation of total bile acids, spontaneous production of anti-mitochondrial antibodies, and portal duct inflammation. Transfer of CD4 T cells from ARE-Del(-/-) to B6/Rag1(-/-) mice induced moderate portal inflammation and parenchymal inflammation, and RNA sequencing of liver gene expression revealed that up-regulated genes potentially define early stages of cholangitis. Interestingly, up-regulated genes specifically overlap with the gene expression signature of biliary epithelial cells in PBC, implying that IFNγ may play a pathogenic role in biliary epithelial cells in the initiation stage of PBC. Moreover, differentially expressed genes in female mice have stronger type 1 and type 2 IFN signaling and lymphocyte-mediated immune responses and thus may drive the female bias of the disease. CONCLUSION Changes in IFNγ expression are critical for the pathogenesis of PBC. (Hepatology 2016;64:1189-1201).
Collapse
Affiliation(s)
- Heekyong R. Bae
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Julio C. Valencia
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Seohyun Kim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Tim Back
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Megan Karwan
- Laboratory of Animal Science, National Cancer Institute-Frederick, Frederick, Maryland
| | - Anand S. Merchant
- CCR Collaborative Bioinformatics Core, National Cancer Institute, Bethesda, Maryland
| | - Nobuyuki Baba
- Central Laboratory Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| | - Ogyi Park
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| |
Collapse
|
21
|
Lleo A, Bian Z, Zhang H, Miao Q, Yang F, Peng Y, Chen X, Tang R, Wang Q, Qiu D, Fang J, Sobacchi C, Villa A, Di Tommaso L, Roncalli M, Gershwin ME, Ma X, Invernizzi P. Quantitation of the Rank-Rankl Axis in Primary Biliary Cholangitis. PLoS One 2016; 11:e0159612. [PMID: 27631617 PMCID: PMC5025177 DOI: 10.1371/journal.pone.0159612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
There is substantial data that suggests an abnormality of innate immunity in patients with primary biliary cholangitis (PBC) which includes the transcription factor nuclear factor-kB (NF-kB) and well as downstream inflammatory signaling pathways. In addition, ImmunoChip analysis has identified a novel PBC-associated locus near the receptor activator of NF-kB ligand (RANKL) gene. Based on these observations, we investigated the role of the RANKL axis in the liver of patients with PBC compared to controls. We used immunohistochemistry to quantitate liver expression of RANKL, its receptor (RANK), and importantly the decoy receptor osteoprotegerin (OPG), including a total of 122 liver samples (PBC = 37, primary sclerosing cholangitis = 20, autoimmune hepatitis = 26, chronic hepatitis B = 32 and unaffected controls = 7). In addition, we studied RANKL-RANK-OPG co-localization in CD4 and CD8 T cells, B cells, dendritic cells, macrophages, NK, NKT cells, hepatocytes, and cholangiocytes. We report herein that RANK is constitutively expressed by cholangiocytes in both unaffected and diseased liver. However, cholangiocytes from PBC express significantly higher levers of RANK than either the unaffected controls or liver diseased controls. CD4, CD8 and CD19 cells with in the portal areas around bile ducts in PBC express significantly higher levels of RANKL compared to controls. Importantly, the overall hepatic RANKL level and the ratio of hepatic RANKL/OPG correlated with disease severity in PBC. In conclusion, our data indicate a role of RANK-RANKL axis in the innate immune activation in PBC and we hypothesize that the damaged cholangiocytes, which express high levels of RANK, lead to the recruitment of RANKL positive cells and ultimately the classic portal tract infiltrates.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Zhaolian Bian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiyan Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Fang Yang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaoyu Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruqi Tang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dekai Qiu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States of America
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States of America
- International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
22
|
Mousa HS, Carbone M, Malinverno F, Ronca V, Gershwin ME, Invernizzi P. Novel therapeutics for primary biliary cholangitis: Toward a disease-stage-based approach. Autoimmun Rev 2016; 15:870-876. [DOI: 10.1016/j.autrev.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
|
23
|
Abstract
The immune-mediated hepatobiliary diseases, primary biliary cirrhosis and primary sclerosing cholangitis are relatively rare, albeit and account for a significant amount of liver transplant activity and liver-related mortality globally. Precise disease mechanisms are yet to be described although a contributory role of genetic predisposition is firmly established. In addition to links with the major histocompatibility complex, a number of associations outside this region harbor additional loci which underscore the fundamental role of breaks in immune tolerance and mucosal immunogenicity in the pathogenesis of autoimmune biliary disease. We provide an overview of these key discoveries before discussing putative avenues of therapeutic exploitation based on existing findings.
Collapse
|
24
|
Beuers U, Gershwin ME. Unmet challenges in immune-mediated hepatobiliary diseases. Clin Rev Allergy Immunol 2016; 48:127-31. [PMID: 25820618 DOI: 10.1007/s12016-015-8484-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is ironic that the liver, which serves a critical function in immune tolerance, itself becomes the victim of an autoimmune attack. Indeed, liver autoimmunity and the autoimmune diseases associated with both innate and adaptive responses to hepatocytes and/or cholangiocytes are models of human autoimmunity. For example, in primary biliary cirrhosis, there exists a well-defined and characteristic autoantibody and considerable homogeneity between patients. In autoimmune hepatitis, there are clinical characteristics that allow a rigorous subset definition and well-defined inflammatory infiltrates. In both cases, there are defects in a variety of immune pathways and including regulatory cells. In primary sclerosing cholangitis, with its characteristic overlap with inflammatory bowel disease, there are unique defects in innate immunity and particular important contribution of lymphoid homing to disease pathogenesis. In these diseases, as with other human autoimmune processes, there is the critical understanding that pathogenesis requires a genetic background, but is determined by environmental features, and indeed the concordance of these diseases in identical twins highlights the stochastic nature of immunopathology. Unfortunately, despite major advances in basic immunology and in immunopathology in these diseases, there remains a major void in therapy. The newer biologics that are so widely used in rheumatology, neurology, and gastroenterology have not yet seen success in autoimmune liver disease. Future efforts will depend on more rigorous molecular biology and systems analysis in order for successful application to be made to patients.
Collapse
Affiliation(s)
- Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, P.O. Box 22600, 1100 DD, Amsterdam, The Netherlands,
| | | |
Collapse
|
25
|
Abstract
Primary biliary cirrhosis (PBC) is characterized histologically by the presence of chronic non-suppurative destructive cholangitis of the small interlobular bile duct, leading to chronic progressive cholestasis. Most PBC patients are asymptomatic and have a reasonable prognosis, but a few develop esophageal varices or jaundice, rapidly leading to liver failure within a short period. As multiple factors appear to be involved in the onset of PBC, its clinical course may be complicated. Therefore, the use of an animal model would be valuable for clarifying the pathogenesis of PBC. Here, we review recent data of selected PBC models, particularly spontaneous models, xenobiotic immunized models, and infection-triggered models. There are a number of spontaneous models: the NOD.c3c4, dominant-negative TGF-β receptor II, IL-2Rα-/-, Scurfy, and Ae2a,b-/- mice. These animal models manifest distinct clinical and immunological features similar, but also often different, from those of human PBC. It is clear that a combination of genetic predisposition, environmental factors, and immunological dysfunction contribute to the pathogenesis of PBC. The diverse clinical course and complexity of the immunological mechanisms of PBC cannot be fully recapitulated solely any single animal model. The challenge remains to develop a progressive PBC disease model that exhibits fibrosis, and ultimately hepatic failure.
Collapse
|
26
|
Abstract
Genome-wide association studies (GWASs) have been a significant technological advance in our ability to evaluate the genetic architecture of complex diseases such as primary biliary cirrhosis (PBC). To date, six large-scale studies have been performed that have identified 27 risk loci in addition to human leukocyte antigen (HLA) associated with PBC. The identified risk variants emphasize important disease concepts; namely, that disturbances in immunoregulatory pathways are important in the pathogenesis of PBC and that such perturbations are shared among a diverse number of autoimmune diseases-suggesting the risk architecture may confer a generalized propensity to autoimmunity not necessarily specific to PBC. Furthermore, the impact of non-HLA risk variants, particularly in genes involved with interleukin-12 signaling, and ethnic variation in conferring susceptibility to PBC have been highlighted. Although GWASs have been a critical stepping stone in understanding common genetic variation contributing to PBC, limitations pertaining to power, sample availability, and strong linkage disequilibrium across genes have left us with an incomplete understanding of the genetic underpinnings of disease pathogenesis. Future efforts to gain insight into this missing heritability, the genetic variation that contributes to important disease outcomes, and the functional consequences of associated variants will be critical if practical clinical translation is to be realized.
Collapse
Affiliation(s)
- Aliya F. Gulamhusein
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905
| | - Brian D. Juran
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905. Phone: (507) 538-4877. Fax: (507) 284-0762
| |
Collapse
|
27
|
Seldin MF. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. J Autoimmun 2015; 64:1-12. [PMID: 26343334 PMCID: PMC4628839 DOI: 10.1016/j.jaut.2015.08.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/23/2015] [Indexed: 12/18/2022]
Abstract
Progress in defining the genetics of autoimmune disease has been dramatically enhanced by large scale genetic studies. Genome-wide approaches, examining hundreds or for some diseases thousands of cases and controls, have been implemented using high throughput genotyping and appropriate algorithms to provide a wealth of data over the last decade. These studies have identified hundreds of non-HLA loci as well as further defining HLA variations that predispose to different autoimmune diseases. These studies to identify genetic risk loci are also complemented by progress in gene expression studies including definition of expression quantitative trait loci (eQTL), various alterations in chromatin structure including histone marks, DNase I sensitivity, repressed chromatin regions as well as transcript factor binding sites. Integration of this information can partially explain why particular variations can alter proclivity to autoimmune phenotypes. Despite our incomplete knowledge base with only partial definition of hereditary factors and possible functional connections, this progress has and will continue to facilitate a better understanding of critical pathways and critical changes in immunoregulation. Advances in defining and understanding functional variants potentially can lead to both novel therapeutics and personalized medicine in which therapeutic approaches are chosen based on particular molecular phenotypes and genomic alterations.
Collapse
Affiliation(s)
- Michael F Seldin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Tupper Hall Room 4453, Davis, CA 95616, USA; Division of Rheumatology and Allergy, Department of Medicine, University of California, Davis, Tupper Hall Room 4453, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
29
|
Hien DA, Campbell ANC, Ruglass LM, Saavedra L, Mathews AG, Kiriakos G, Morgan-Lopez A. Maximizing Effectiveness Trials in PTSD and SUD Through Secondary Analysis: Benefits and Limitations Using the National Institute on Drug Abuse Clinical Trials Network "Women and Trauma" Study as a Case Example. J Subst Abuse Treat 2015; 56:23-33. [PMID: 25907849 PMCID: PMC4519371 DOI: 10.1016/j.jsat.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 12/31/2022]
Abstract
Recent federal legislation and a renewed focus on integrative care models underscore the need for economical, effective, and science-based behavioral health care treatment. As such, maximizing the impact and reach of treatment research is of great concern. Behavioral health issues, including the frequent co-occurrence of substance use disorders (SUD) and posttraumatic stress disorder (PTSD), are often complex, with a myriad of factors contributing to the success of interventions. Although treatment guides for comorbid SUD/PTSD exist, most patients continue to suffer symptoms following the prescribed treatment course. Further, the study of efficacious treatments has been hampered by methodological challenges (e.g., overreliance on "superiority" designs (i.e., designs structured to test whether or not one treatment statistically surpasses another in terms of effect sizes) and short term interventions). Secondary analyses of randomized controlled clinical trials offer potential benefits to enhance understanding of findings and increase the personalization of treatment. This paper offers a description of the limits of randomized controlled trials as related to SUD/PTSD populations, highlights the benefits and potential pitfalls of secondary analytic techniques, and uses a case example of one of the largest effectiveness trials of behavioral treatment for co-occurring SUD/PTSD conducted within the National Drug Abuse Treatment Clinical Trials Network (NIDA CTN) and producing 19 publications. The paper concludes with implications of this secondary analytic approach to improve addiction researchers' ability to identify best practices for community-based treatment of these disorders. Innovative methods are needed to maximize the benefits of clinical studies and better support SUD/PTSD treatment options for both specialty and non-specialty healthcare settings. Moving forward, planning for and description of secondary analyses in randomized trials should be given equal consideration and care to the primary outcome analysis.
Collapse
Affiliation(s)
- Denise A Hien
- Gordon F. Derner Institute of Advanced Psychological Studies, Adelphi University; Department of Psychiatry, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute.
| | - Aimee N C Campbell
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute
| | - Lesia M Ruglass
- Department of Psychology, The City College of New York, The City University of New York
| | - Lissette Saavedra
- Division of Social Policy, Health, and Economics Research, RTI International, Research Triangle Park, NC
| | | | | | - Antonio Morgan-Lopez
- Division of Social Policy, Health, and Economics Research, RTI International, Research Triangle Park, NC
| |
Collapse
|
30
|
Epigenetics and Primary Biliary Cirrhosis: a Comprehensive Review and Implications for Autoimmunity. Clin Rev Allergy Immunol 2015; 50:390-403. [DOI: 10.1007/s12016-015-8502-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Mousa H, Lleo A, Invernizzi P, Bowlus CL, Gershwin ME. Advances in pharmacotherapy for primary biliary cirrhosis. Expert Opin Pharmacother 2015; 16:633-643. [PMID: 25543678 PMCID: PMC4591873 DOI: 10.1517/14656566.2015.998650] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cirrhosis (PBC) is a chronic autoimmune liver disease mostly seen in middle-aged women characterized by progressive nonsuppurative destruction of small bile ducts resulting in intrahepatic cholestasis, parenchymal injury and ultimately end-stage liver disease. Despite major breakthroughs in our understanding of PBC, there remains only one FDA-approved agent for treatment: ursodeoxycholic acid (UDCA) to which one-third of patients are unresponsive. AREAS COVERED Biochemical response to treatment with UDCA is associated with excellent survival rates in PBC patients. However, there is a need for alternative treatments for nonresponders. Results from human epidemiological and genetic studies as well as preclinical studies in PBC animal models have provided a strong impetus for the development of new therapeutic agents. In this review, we discuss the recent advances in translational research in PBC focusing on promising therapeutic approaches, namely immune-based targeted therapies and agents targeting the synthesis and circulation of bile acids. EXPERT OPINION We are in a new era for the development of novel therapies for PBC. Data on fibrates, budesonide and obeticholic acid offer encouragement for nonresponders to UDCA.
Collapse
Affiliation(s)
- Hani Mousa
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis, Sacramento Medical Center, Sacramento, CA 95817
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616
| |
Collapse
|
32
|
Wang YH, Yang W, Yang JB, Jia YJ, Tang W, Gershwin ME, Ridgway WM, Lian ZX. Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis. J Autoimmun 2015; 59:26-37. [PMID: 25701076 DOI: 10.1016/j.jaut.2015.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/30/2015] [Indexed: 01/05/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) play a non-redundant role in control of excessive immune responses, and defects in Tregs have been shown both in patients and murine models of primary biliary cirrhosis (PBC), a progressive autoimmune biliary disease. Herein, we took advantage of a murine model of PBC, the dominant negative transforming growth factor β receptor II (dnTGFβRII) mice, to assess Treg genetic defects and their functional effects in PBC. By using high-resolution microarrays with verification by PCR and protein expression, we found profound and wide-ranging differences between dnTGFβRII and normal, wild type Tregs. Critical transcription factors were down-regulated including Eos, Ahr, Klf2, Foxp1 in dnTGFβRII Tregs. Functionally, dnTGFβRII Tregs expressed an activated, pro-inflammatory phenotype with upregulation of Ccl5, Granzyme B and IFN-γ. Genetic pathway analysis suggested that the primary effect of loss of TGFβ pathway signaling was to down regulate immune regulatory processes, with a secondary upregulation of inflammatory processes. These findings provide new insights into T regulatory genetic defects; aberrations of the identified genes or genetic pathways should be investigated in human PBC Tregs. This approach which takes advantage of biologic pathway analysis illustrates the ability to identify genes/pathways that are affected both independently and dependent on abnormalities in TGFβ signaling. Such approaches will become increasingly useful in human autoimmunity.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
33
|
Quarneti C, Muratori P, Lalanne C, Fabbri A, Menichella R, Granito A, Masi C, Lenzi M, Cassani F, Pappas G, Muratori L. Fatigue and pruritus at onset identify a more aggressive subset of primary biliary cirrhosis. Liver Int 2015; 35:636-641. [PMID: 24698666 DOI: 10.1111/liv.12560] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In recent years, primary biliary cirrhosis is mostly diagnosed in patients who are asymptomatic; however, a proportion of cases still present with typical complaints such as fatigue and/or pruritus. We compared biochemical, histological and immunological features of patients with or without fatigue and/or pruritus at onset to see whether the different clinical presentation may eventually impact on disease progression. METHODS We analysed the Bologna cohort of 216 patients with primary biliary cirrhosis referred to our Centre between 1997 and 2007, according to symptomatic (fatigue and/or pruritus) or asymptomatic presentation. Clinical, biochemical, histological and immunological feature at diagnosis, response to ursodeoxycholic acid and progression of the disorder were compared after a mean follow-up of 81 ± 75 months. RESULTS At diagnosis, symptomatic patients were significantly more often women (98.6% vs. 87.2%, P = 0.004), younger (mean age 49 ± 12 vs. 55 ± 12 years, P = 0.003) and with more pronounced biochemical activity, as indicated by higher alkaline phosphatase (mean 2.93 ± 2 vs. 2.12, P = 0.002) and aminotransferase (mean 1.92 ± 1 vs. 1.47 ± 1.27, P = 0.014) levels, whereas histological stage and autoantibody profile were similar. Symptomatic patients were less likely to respond to ursodeoxycholic acid therapy (63% vs. 81%, P = 0.006) and developed more often cirrhosis and its complications (31% vs. 13%, P = 0.004). CONCLUSIONS Fatigue and/or pruritus at onset identify a subset of patients with primary biliary cirrhosis who preferentially are women, younger, with a particularly active disease, less responsive to ursodeoxycholic acid treatment, and more inclined to evolve to cirrhosis and its complications.
Collapse
Affiliation(s)
- Chiara Quarneti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Azienda Ospedaliera Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lleo A, Zhang W, McDonald WH, Seeley EH, Leung PS, Coppel RL, Ansari AA, Adams DH, Afford S, Invernizzi P, Gershwin ME. Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology 2014; 60:1314-1323. [PMID: 24841946 PMCID: PMC4175017 DOI: 10.1002/hep.27230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/16/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Shotgun proteomics is a powerful analytic method to characterize complex protein mixtures in combination with multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used this platform for proteomic characterization of apoptotic bodies in an effort to define the complex protein mixtures found in primary cultures of human intrahepatic biliary epithelial cells (HiBEC), human renal proximal tubular epithelial cells, human bronchial epithelial cells, isolated intrahepatic biliary epithelial cells from explanted primary biliary cirrhosis (PBC), and control liver using a total of 24 individual samples. Further, as additional controls and for purposes of comparison, proteomic signatures were also obtained from intact cells and apoptotic bodies. The data obtained from LC-MS/MS, combined with database searches and protein assembly algorithms, allowed us to address significant differences in protein spectral counts and identify unique pathways that may be a component of the induction of the signature inflammatory cytokine response against BECs, including the Notch signaling pathway, interleukin (IL)8, IL6, CXCR2, and integrin signaling. Indeed, there are 11 proteins that localize specifically to apoptotic bodies of HiBEC and eight proteins that were specifically absent in HiBEC apoptotic bodies. CONCLUSION Proteomic analysis of BECs from PBC liver compared to normal liver are significantly different, suggesting that an immunological attack affects the repertoire of proteins expressed and that such cells should be thought of as living in an environment undergoing continuous selection secondary to an innate and adaptive immune response, reflecting an almost "Darwinian" bias.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin H. Seeley
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Ross L. Coppel
- Department of Medical Microbiology, Monash University, Melbourne, Australia
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - David H. Adams
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Simon Afford
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
35
|
Grattagliano I, Calamita G, Cocco T, Wang DQH, Portincasa P. Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World J Gastroenterol 2014; 20:5746-59. [PMID: 24914336 PMCID: PMC4024785 DOI: 10.3748/wjg.v20.i19.5746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/18/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cirrhosis is a multifactor autoimmune disease characterized by hepatic and systemic manifestations, with immune system dysregulation and abnormalities in the hepatic metabolism of bile salts, lipids, and nutrients, as well as destruction of membrane lipids and mitochondrial dysfunction. Both oxidative and nitrosative stress are associated with ongoing manifestations of the disease. In particular, abnormalities in nitric oxide metabolism and thiol oxidation already occur at early stages, thus leading to the hypothesis that these biochemical events play a pathogenic role in primary biliary cirrhosis. Moreover, the association of these metabolic abnormalities with the progression of the disease may indicate some biochemical parameters as early diagnostic markers of disease evolution, and may open up the potential for pharmacological intervention to inhibit intra- and extra-cellular stress events for resuming hepatocellular functions. The following paragraphs summarize the current knowledge by outlining molecular mechanisms of the disease related to these stress events.
Collapse
|
36
|
Carbone M, Lleo A, Sandford RN, Invernizzi P. Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. Eur J Immunol 2014; 44:945-954. [PMID: 24481870 PMCID: PMC4013286 DOI: 10.1002/eji.201344270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) have revolutionized the search for genetic influences on complex disorders, such as primary biliary cirrhosis (PBC). Recent GWAS have identified many disease-associated genetic variants. These, overall, highlighted the remarkable contribution of key immunological pathways in PBC that may be involved in the initial mechanisms of loss of tolerance and the subsequent inflammatory response and chronic bile duct damage. Results from GWAS have the potential to be translated in biological knowledge and, hopefully, clinical application. There are a number of immune pathways highlighted in GWAS that may have therapeutic implications in PBC and in other autoimmune diseases, such as the anti-interleukin-12/interleukin-23, nuclear factor-kb, tumor necrosis factor, phosphatidylinositol signaling and hedgehog signaling pathways. Further areas in which GWAS findings are leading to clinical applications either in PBC or in other autoimmune conditions, include disease classification, risk prediction and drug development. In this review we outline the possible next steps that may help accelerate progress from genetic studies to the biological knowledge that would guide the development of predictive, preventive, or therapeutic measures in PBC.
Collapse
Affiliation(s)
- Marco Carbone
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Richard N. Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| |
Collapse
|
37
|
Selmi C, Cavaciocchi F, Lleo A, Cheroni C, De Francesco R, Lombardi SA, De Santis M, Meda F, Raimondo MG, Crotti C, Folci M, Zammataro L, Mayo MJ, Bach N, Shimoda S, Gordon SC, Miozzo M, Invernizzi P, Podda M, Scavelli R, Martin MR, Seldin MF, LaSalle JM, Gershwin ME. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol 2014; 5:128. [PMID: 24734033 PMCID: PMC3975093 DOI: 10.3389/fimmu.2014.00128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/13/2014] [Indexed: 01/12/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is an uncommon autoimmune disease with a homogeneous clinical phenotype that reflects incomplete disease concordance in monozygotic (MZ) twins. We have taken advantage of a unique collection consisting of genomic DNA and mRNA from peripheral blood cells of female MZ twins (n = 3 sets) and sisters of similar age (n = 8 pairs) discordant for disease. We performed a genome-wide study to investigate differences in (i) DNA methylation (using a custom tiled four-plex array containing tiled 50-mers 19,084 randomly chosen methylation sites), (ii) copy number variation (CNV) (with a chip including markers derived from the 1000 Genomes Project, all three HapMap phases, and recently published studies), and/or (iii) gene expression (by whole-genome expression arrays). Based on the results obtained from these three approaches we utilized quantitative PCR to compare the expression of candidate genes. Importantly, our data support consistent differences in discordant twins and siblings for the (i) methylation profiles of 60 gene regions, (ii) CNV of 10 genes, and (iii) the expression of 2 interferon-dependent genes. Quantitative PCR analysis showed that 17 of these genes are differentially expressed in discordant sibling pairs. In conclusion, we report that MZ twins and sisters discordant for PBC manifest particular epigenetic differences and highlight the value of the epigenetic study of twins.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Francesca Cavaciocchi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy
| | | | | | - Simone A. Lombardi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Francesca Meda
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria Gabriella Raimondo
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Chiara Crotti
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Marco Folci
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Luca Zammataro
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | | | | | - Shinji Shimoda
- Clinical Research Center, National Nagasaki Medical Center, Nagasaki, Japan
| | | | - Monica Miozzo
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy
| | - Mauro Podda
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | | | - Michelle R. Martin
- Genome Center and M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | - Michael F. Seldin
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
- Department of Internal Medicine, University of California at Davis, Davis, CA, USA
| | - Janine M. LaSalle
- Genome Center and M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
38
|
Selmi C, Cavaciocchi F, Lleo A, Cheroni C, De Francesco R, Lombardi SA, De Santis M, Meda F, Raimondo MG, Crotti C, Folci M, Zammataro L, Mayo MJ, Bach N, Shimoda S, Gordon SC, Miozzo M, Invernizzi P, Podda M, Scavelli R, Martin MR, Seldin MF, LaSalle JM, Gershwin ME. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol 2014; 5:128. [PMID: 24734033 PMCID: PMC4132258 DOI: 10.3389/fimmu.2014.00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
Primary biliary cirrhosis (PBC) is an uncommon autoimmune disease with a homogeneous clinical phenotype that reflects incomplete disease concordance in monozygotic (MZ) twins. We have taken advantage of a unique collection consisting of genomic DNA and mRNA from peripheral blood cells of female MZ twins (n = 3 sets) and sisters of similar age (n = 8 pairs) discordant for disease. We performed a genome-wide study to investigate differences in (i) DNA methylation (using a custom tiled four-plex array containing tiled 50-mers 19,084 randomly chosen methylation sites), (ii) copy number variation (CNV) (with a chip including markers derived from the 1000 Genomes Project, all three HapMap phases, and recently published studies), and/or (iii) gene expression (by whole-genome expression arrays). Based on the results obtained from these three approaches we utilized quantitative PCR to compare the expression of candidate genes. Importantly, our data support consistent differences in discordant twins and siblings for the (i) methylation profiles of 60 gene regions, (ii) CNV of 10 genes, and (iii) the expression of 2 interferon-dependent genes. Quantitative PCR analysis showed that 17 of these genes are differentially expressed in discordant sibling pairs. In conclusion, we report that MZ twins and sisters discordant for PBC manifest particular epigenetic differences and highlight the value of the epigenetic study of twins.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Francesca Cavaciocchi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy
| | | | | | - Simone A. Lombardi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Francesca Meda
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria Gabriella Raimondo
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Chiara Crotti
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Marco Folci
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Luca Zammataro
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | | | | | - Shinji Shimoda
- Clinical Research Center, National Nagasaki Medical Center, Nagasaki, Japan
| | | | - Monica Miozzo
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy
| | - Mauro Podda
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | | | - Michelle R. Martin
- Genome Center and M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | - Michael F. Seldin
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
- Department of Internal Medicine, University of California at Davis, Davis, CA, USA
| | - Janine M. LaSalle
- Genome Center and M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
39
|
Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J, Bickeböller H. A network-based kernel machine test for the identification of risk pathways in genome-wide association studies. Hum Hered 2014; 76:64-75. [PMID: 24434848 DOI: 10.1159/000357567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023] Open
Abstract
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). In this study, the kernel converts the genomic information of 2 individuals into a quantitative value reflecting their genetic similarity. With the selection of the kernel, one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for the topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case-control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms.
Collapse
Affiliation(s)
- Saskia Freytag
- Institute of Genetic Epidemiology, Medical School, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nakamura M. Analysis of disease-pathways by susceptibility genes in primary biliary cirrhosis. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
41
|
Invernizzi P. Liver auto-immunology: the paradox of autoimmunity in a tolerogenic organ. J Autoimmun 2013; 46:1-6. [PMID: 24012346 DOI: 10.1016/j.jaut.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023]
Abstract
The study of the liver as a lymphoid organ is a growing field fueled by our better knowledge of the different component of the immune system and how they orchestrate an immune-related response. The liver have highly specialized mechanisms of immune tolerance, mainly because is continuously exposed to microbial and environmental antigens, and dietary components from the gut. Accordingly, the liver contains specialized lymphoid subpopulations acting as antigen-presenting cells. Growing evidences show that the liver is also associated with obesity-associated diseases because of its immune-related capacity to sense metabolic stress induced by nutritional surplus. Finally, the liver produces a pletora of neo-antigens being the primary metabolic organ of the body. Common immune mechanisms play a key pathogenetic role in most of acute and chronic liver diseases and in the rejection of liver allografts. Any perturbations of liver-related immune functions have important clinical implications. This issue of the Journal of Autoimmunity is focused on the more recent advances in our knowledge related to the loss of liver tolerance, a paradox for a tolerogenic organ, that leads to overactivation of the innate and adaptive immune response and the development of autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cirrhosis, and primary sclerosing cholangitis. The invited expert review articles capture the underlying immunomolecular mechanisms of the development and progression of autoimmune liver diseases, the novel field of the immune-related "liver-gut" axis influences to the development of liver autoimmunity, the predominant role of genetic factors, and the increasingly effective immuno-therapeutic possibilities.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
42
|
|