1
|
Shetty NS, Pampana A, Gaonkar M, Patel N, Vekariya N, Smith JG, Kalra R, Chahal CAA, Semsarian C, Li P, Arora G, Arora P. Association of Pathogenic/Likely Pathogenic Genetic Variants for Cardiomyopathies With Clinical Outcomes: A Multiancestry Analysis in the All of Us Research Program. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025:e005113. [PMID: 40433684 DOI: 10.1161/circgen.124.005113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND This study aimed to evaluate the prevalence of pathogenic/likely pathogenic cardiomyopathy variant carriers in a multiancestry US population and examine the risk of adverse clinical outcomes. METHODS This retrospective cohort study included multiancestry US adults aged ≥18 years with sequencing data from the All of Us Research Program. Pathogenic/likely pathogenic variants in cardiomyopathy genes were identified using the ClinVar database. The primary outcome was heart failure. Secondary outcomes included cardiomyopathy and arrhythmia. Outcomes were identified from electronic health records. Interval-censored Cox models, taking age on the timescale, were used to assess the risk of outcomes in pathogenic/likely pathogenic variant carriers with noncarriers as the reference group. RESULTS Among 167 435 individuals (median age, 55.2 [39.5-66.3] years; 61.7% female; 40.7% non-European ancestry) included, the proportion of pathogenic/likely pathogenic cardiomyopathy variant carriers was 0.7% of the overall population and 0.8%, 0.8%, 0.5%, and 1.2% of European, African, East Asian, and South Asian ancestry individuals, respectively. Over the lifetime, there were 12 867 heart failure events (205 in carriers and 12 662 in noncarriers), with an incidence rate of 3.05 (95% CI, 2.66-3.49) per 1000 person-years in carriers and 1.37 (95% CI, 1.35-1.40) in noncarriers (HRadj, 2.30 [95% CI, 2.04-2.60]). Cardiomyopathy occurred in 5164 (161 in carriers and 5003 in noncarriers), with an incidence rate of 2.38 (95% CI, 2.04-2.78) per 1000 person-years among carriers and 0.54 (95% CI, 0.53-0.56) in noncarriers (HRadj, 4.31 [95% CI, 3.73-4.97]). There were 19 405 arrhythmia events (263 in carriers and 19 142 in noncarriers), with an incidence rate of 3.93 (95% CI, 3.48-4.44) per 1000 person-years among carriers and 2.09 (95% CI, 2.06-2.12) in noncarriers (HRadj, 2.12 [95% CI, 1.78-2.53]). CONCLUSIONS Pathogenic/likely pathogenic cardiomyopathy variant carriers have an increased risk of heart failure, cardiomyopathy, and arrhythmias. Despite the modest overall prevalence, the associated risks suggest potential benefits of targeted genetic screening for early detection and management.
Collapse
Affiliation(s)
- Naman S Shetty
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston (N.S.S.)
- Harvard Medical School, Boston, MA (N.S.S.)
| | - Akhil Pampana
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Mokshad Gaonkar
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Nirav Patel
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Nehal Vekariya
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine and Science for Life Laboratory, University of Gothenburg, Sweden (J.G.S.)
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden (J.G.S.)
- Department of Cardiology, Clinical Sciences, Lund University & Skåne University Hospital (J.G.S.)
- Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Sweden (J.G.S.)
| | - Rajat Kalra
- Cardiovascular Division, University of Minnesota, Minneapolis (R.K.)
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA (C.A.A.C.)
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (C.A.A.C.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (C.A.A.C.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, New South Wales, Australia. (C.S.)
- Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia. (C.S.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia (C.S.)
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham. (P.L.)
| | - Garima Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, AL (P.A.)
| |
Collapse
|
2
|
Rawnsley K, Weisschuh N, Kohl S, Reuter P. Comprehensive functional splicing analysis of non-canonical CNGB3 variants using in vitro minigene splice assays. J Pathol 2025. [PMID: 40304364 DOI: 10.1002/path.6431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Variants in the CNGB3 gene, encoding the B3-subunit of the cone photoreceptor cyclic nucleotide gated channel, are a major cause of autosomal recessive achromatopsia, a rare inherited retinal disease. The mutation spectrum of achromatopsia-associated CNGB3 variants comprises all types of mutations, including those that are straightforward to evaluate in molecular genetic diagnostics, such as frame-shifting, nonsense, and canonical splice site variants. Additionally, variants have been identified within splice regions outside the conserved ±1,2 splice site dinucleotides, making their potential impact on disease association challenging to interpret. This poses a major hurdle for clinical interpretation of causality between the patient's genotype and the proposed clinical diagnosis, but also for the inclusion of such patients into clinical trials for gene augmentation therapy, for which only patients with confirmed (likely) pathogenic CNGB3 variants are eligible. We here performed comprehensive genetic functional analysis of 21 candidate spliceogenic CNGB3 variants-15 reported and 6 novel variants-by means of in vitro minigene splice assays and cDNA analysis, and characterization of spliceogenic events by subcloning, Sanger-sequencing, and capillary fragment analysis. For 16 variants, an impact on splicing was confirmed, supporting the reclassification of 86% of variants of uncertain significance as likely pathogenic or pathogenic according to the ACMG/AMP guidelines. This reclassification enables the confirmation of patients' genotypes, both retrospectively and prospectively. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Katharina Rawnsley
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Veitia RA, Cowles JD, Caburet S. Reclassifying NOBOX variants in primary ovarian insufficiency cases with a corrected gene model and a novel quantitative framework. Hum Reprod 2025:deaf058. [PMID: 40246288 DOI: 10.1093/humrep/deaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
STUDY QUESTION How updated expression and genomic data combined with a disease/disorder-specific classification system can be used to correct a gene model for a better evaluation of the pathogenicity of variants found in patients? SUMMARY ANSWER By combining available genomic and transcriptomic data from several species and a quantitative classification framework with primary ovarian insufficiency (POI)-adjusted parameters, we correct the human NOBOX (newborn ovary homeobox) gene model and provide a reclassification of variants previously reported in POI cases. WHAT IS KNOWN ALREADY The NOBOX gene, encoding a gonad-specific transcription factor with a crucial role in early folliculogenesis and considered a major gene involved in POI, is currently described as being expressed as four transcripts, the longest one considered canonical. All the variants identified in POI cases have been evaluated according to this canonical transcript, and the various functional tests have been performed using the corresponding predicted protein. STUDY DESIGN, SIZE, DURATION We refined and corrected the NOBOX gene model using available genomic and RNAseq data in human and 16 other mammalian species. Expression data were selected for tissue specificity, strand specificity, and coverage. The analysis of RNAseq data from different ovarian fetal stages allows for a time-course description of NOBOX isoforms. Literature was scanned to retrieve NOBOX variants reported in POI cases, and NOBOX variants present in ClinVar and GnomAD 4 databases were also retrieved. PARTICIPANTS/MATERIALS, SETTING, METHODS Strand-specific RNAseq data from human fetal ovaries and human adult testes were analysed to infer the correct human NOBOX gene isoforms. The conservation of the gene structure was verified by combining the aligned genomic sequences from 17 mammalian species covering a wide phylogenetic range and the relevant RNAseq data. As changing a gene model implies a reclassification of variants, we set up a quantitative framework with updated variant frequencies from GnomAD4 and POI-adjusted parameters following the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. Using this framework, we reclassified 44 NOBOX variants reported in POI patients and families, 117 NOBOX variants reported in ClinVar, and 2613 NOBOX variants present in GnomAD4. MAIN RESULTS AND THE ROLE OF CHANCE The corrected NOBOX gene model proposes the invalidation of two transcripts, including the canonical one. The two correct isoforms were present in fetal ovarian samples, and only one was detected in adult testes. Only 14 variants remained as possibly causative for POI. Furthermore, this re-evaluation strongly suggests that NOBOX biallelic variants are the most likely cause of POI. LARGE SCALE DATA Large tables are provided as supplementary data sets on the Zenodo repository. LIMITATIONS, REASONS FOR CAUTION The proposed gene model is robust but relies on available transcriptomic data covering a range of time points and tissues. Our scoring system was manually adjusted and other laboratories can implement it with different parameters. WIDER IMPLICATIONS OF THE FINDINGS For the NOBOX variants that cannot be considered pathogenic or causative anymore, the genome/exome sequencing data of the corresponding patients should be reanalysed. Furthermore, the functional studies performed using the obsolete coding sequence should be reconsidered. The corrected gene model should be taken into account when evaluating novel NOBOX variants identified in POI patients. Our results highlight the importance of the careful assessment of the most updated expression data for validating a gene model, enabling a correct evaluation of the pathogenicity of variants found in patients. The proposed quantitative framework developed here can be used for the classification of variants in other genes underlying POI. Furthermore, the global approach based on quantitatively adjusting the ACMG/AMP guidelines could be extended to other inherited pathologies. STUDY FUNDING/COMPETING INTEREST(S) This project was not funded. All the authors have no conflict of interest to disclose.
Collapse
Affiliation(s)
- Reiner A Veitia
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
- Department of Life Sciences, Université Paris Saclay, Gif-sur-Yvette, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, France
| | - Jamie D Cowles
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
| | - Sandrine Caburet
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
| |
Collapse
|
4
|
Meisner JK, Renberg A, Smith ED, Tsan YC, Elder B, Bullard A, Merritt O, Zheng SL, Lakdawala N, Owens A, Ryan TD, Miller EM, Rossano J, Lin KY, Claggett B, Ashley E, Michels M, Lampert R, Stendahl JC, Abrams D, Semsarian C, Parikh VN, Wheeler M, Ingles J, Day SM, Saberi S, Russell MW, Previs M, Ho C, Ware JS, Helms AS. Low Penetrance Sarcomere Variants Contribute to Additive Risk in Hypertrophic Cardiomyopathy. Circulation 2025; 151:783-798. [PMID: 39633578 PMCID: PMC11913586 DOI: 10.1161/circulationaha.124.069398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Classically, hypertrophic cardiomyopathy (HCM) has been viewed as a single-gene (monogenic) disease caused by pathogenic variants in sarcomere genes. Pathogenic sarcomere variants are individually rare and convey high risk for developing HCM (highly penetrant). Recently, important polygenic contributions have also been characterized. Low penetrance sarcomere variants (LowSVs) at intermediate frequencies and effect sizes have not been systematically investigated. We hypothesize that LowSVs may be common in HCM with substantial influence on disease risk and severity. METHODS Among all sarcomere variants observed in the Sarcomeric Human Cardiomyopathy Registry (SHaRe), we identified putative LowSVs defined by (1) population frequency greater than expected for highly penetrant (monogenic) HCM (allele frequency >5×10-5 in the Genome Aggregation Database, gnomAD) and (2) moderate enrichment (>2×) in patients with HCM compared with gnomAD. LowSVs were examined for their association with disease severity and clinical outcomes. Functional effects of selected LowSVs were assessed using induced pluripotent stem cell-derived cardiomyocytes. Association of LowSVs with HCM-adjacent traits in the general population was tested using UK Biobank cardiac magnetic resonance imaging data. RESULTS Among 6045 patients and 1159 unique variants in sarcomere genes, 12 LowSVs were identified. LowSVs were collectively common in the general population (1:350) and moderately enriched in HCM (aggregate odds ratio, 14.9 [95% CI, 12.5-17.9]). Isolated LowSVs were associated with an older age of HCM diagnosis and fewer adverse events. However, LowSVs in combination with a pathogenic sarcomere variant conferred higher morbidity (eg, composite adverse event hazard ratio, 5.4 [95% CI, 3.0-9.8] versus single pathogenic sarcomere variant, 2.0 [95% CI, 1.8-2.2]; P<0.001). An intermediate functional impact was validated for 2 specific LowSVs-MYBPC3 c.442G>A (partial splice gain) and TNNT2 c.832C>T (intermediate effect on contractile mechanics). Cardiac magnetic resonance imaging analysis of the general population revealed 5 of 12 LowSVs were significantly associated with HCM-adjacent traits without overt HCM. CONCLUSIONS This study establishes a new class of low penetrance sarcomere variants that are relatively common in the population. When penetrant, isolated LowSVs cause mild HCM. In combination with pathogenic sarcomere variants, LowSVs markedly increase disease severity, supporting a clinically significant additive effect. Last, LowSVs also contribute to age-related remodeling even in the absence of overt HCM.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - Aaron Renberg
- Cellular and Molecular Biology Program, Medical School, University of Michigan, Ann Arbor
| | - Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Yao-Chang Tsan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Brynn Elder
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Abbey Bullard
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Owen Merritt
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Sean L Zheng
- National Heart and Lung Institute and MRC Laboratory of Medical Sciences, Imperial College London, United Kingdom
| | - Neal Lakdawala
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA
| | - Anjali Owens
- Penn Center for Inherited Cardiovascular Disease, Hospital of the University of Pennsylvania & Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.O., S.M.D.)
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Erin M Miller
- Department of Pediatrics, University of Cincinnati College of Medicine, Heart Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Joseph Rossano
- Department of Pediatrics, Children’s Hospital of Philadelphia, PA
| | - Kimberly Y Lin
- Department of Pediatrics, Children’s Hospital of Philadelphia, PA
| | - Brian Claggett
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Euan Ashley
- Center for Inherited Cardiovascular Disease, Stanford Medicine, CA
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, The Netherlands
| | - Rachel Lampert
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - John C Stendahl
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Dominic Abrams
- Center for Cardiovascular Genetics, Boston Children’s Hospital, MA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, Sydney Medical School Faculty of Medicine and Health, University of Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Matthew Wheeler
- Center for Inherited Cardiovascular Disease, Stanford Medicine, CA
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and University of New South Wales, Sydney, Australia
| | - Sharlene M Day
- Penn Center for Inherited Cardiovascular Disease, Hospital of the University of Pennsylvania & Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.O., S.M.D.)
| | - Sara Saberi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| | - Mark W Russell
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - Michael Previs
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and University of New South Wales, Sydney, Australia
| | - Carolyn Ho
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA
| | - James S Ware
- National Heart and Lung Institute and MRC Laboratory of Medical Sciences, Imperial College London, United Kingdom
| | - Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
5
|
Gruzin MJ, Hobbs M, Ellsworth RE, Poll S, Aguilar S, Knezovich J, Faulkner N, Olsen N, Aradhya S, Burnett L. Optimizing gene panels for equitable reproductive carrier screening: The Goldilocks approach. Genet Med 2025; 27:101387. [PMID: 40084622 DOI: 10.1016/j.gim.2025.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
PURPOSE Professional organizations recommend pan-ancestry carrier screening for autosomal recessive and X-linked conditions. Advances in DNA sequencing have allowed the analysis of hundreds of genes; however, the optimal number of genes for carrier screening remains unclear. The American College of Medical Genetics and Genomics (ACMG) has proposed a tiered approach recommending screening for 113 genes. METHODS We analyzed ClinVar and gnomAD v4.1.0, for genes associated with serious autosomal recessive and X-linked conditions and modeled screening performance across panels of varying compositions and sizes in diverse genetic ancestries. We also reevaluated the ACMG gene list using the updated gnomAD data. RESULTS We identified potential inconsistencies in the ACMG gene lists, particularly in the carrier test performance (defined as a positive yield) for underrepresented genetic ancestry groups. Modeling of the population data for 1310 genes revealed that the screening of 152, 248, 531, and 725 genes achieved 90%, 95%, 99%, and 99.7% positive yields, respectively, in couples. Real-world data from the screening of more than 60,000 couples were used to validate the model. CONCLUSION Our methodology optimizes the gene content of carrier screening panels for diverse ancestry groups, provides a mechanism for continually updating guidelines, ensures consistency with genomic population data, and improves equity across populations.
Collapse
Affiliation(s)
- Mia J Gruzin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Healthcare Campus, Darlinghurst, NSW, Australia
| | - Matthew Hobbs
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | - Nick Olsen
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, NSW, Australia
| | - Swaroop Aradhya
- Invitae Corporation, San Francisco, CA; Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Leslie Burnett
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Clinical Healthcare Campus, Darlinghurst, NSW, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|
6
|
Rius A, Aguirre N, Erra L, Brunello FG, Biagioli G, Zaiat J, Marti MA. Study of the impact of ClinGen Revisions on ACMG/AMP variant semi-automatic classification for Rare Diseases diagnosis. Clin Chim Acta 2025; 566:120065. [PMID: 39615735 DOI: 10.1016/j.cca.2024.120065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
With the rapid development of massive sequencing technologies, the analysis of genetic variants for clinical diagnosis has exponentially escalated, particularly in the context of Rare Diseases (RDs). Diagnosing them involves identifying the genetic variants responsible for the underlying pathology development. In 2015, the American College of Medical Genetics (ACMG) established a set of recommendations to assess the evidence associated with each variant, aiming to achieve a standardized five tier classification. Over the past 5 years, ClinGen, the NIH-funded Clinical Genome Resource, has reviewed these criteria in order to make variant classification a more reproducible and rigorous process. This paper examines the impact of ClinGen-Rev modifications on variant classification, comparing them with the ACMG-2015 original recommendations. After analyzing sets of genetic variants, extracted from VCFs samples, using both criteria, we observed a change in 8.0 % of the clinical verdicts for these variants. ClinGen-Rev modifications correctly categorized 89.2 % of the curated variants, representing a significant improvement compared to the 65.6 % achieved by ACMG-2015. We also analyzed the modifications impact in a real like clinical setting, showing a significant overall reduction of VUS variants and thus potential reduction in analysis time. Finally, we discuss the underlying reasons for the most relevant changes in terms of specific labels and present their implications on the prioritization and selection process of variants, identifying some recommendations of key significant importance.
Collapse
Affiliation(s)
- Ana Rius
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina.
| | - Nicolas Aguirre
- Bitgenia, Análisis de Datos Genómicos, Camino Parque Centenario N° 2565 - La Plata, Alicia Moreau de Justo N° 1750 3° H - CABA, Buenos Aires, Argentina
| | - Lorenzo Erra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Franco Gino Brunello
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - German Biagioli
- Bitgenia, Análisis de Datos Genómicos, Camino Parque Centenario N° 2565 - La Plata, Alicia Moreau de Justo N° 1750 3° H - CABA, Buenos Aires, Argentina
| | - Jonathan Zaiat
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
7
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. HGG ADVANCES 2025; 6:100354. [PMID: 39318092 PMCID: PMC11525221 DOI: 10.1016/j.xhgg.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Rutgers New Jersey School of Medicine, 185 S Orange Ave, Newark, NJ 07103, USA; Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille University, INSERM, MMG, U 1251 Marseille, France; Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | - Katherine G Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Ionis Pharmaceuticals, Carlsbad CA, USA
| | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Research Center for Genetic Medicine, Children's National Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Ma H, Wang Y, Jia Y, Xie L, Liu L, Zhang D, Ma X, Guo Y, Xu R. Advances in genetic diagnosis and therapy of hereditary heart disease: a bibliometric review from 2004 to 2024. Front Med (Lausanne) 2025; 11:1507313. [PMID: 39845823 PMCID: PMC11750821 DOI: 10.3389/fmed.2024.1507313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Hereditary heart disease (HHD) is a series of cardiac disorders associated with monogenic or polygenic abnormalities and is one of the leading causes of sudden death, particularly in young adults. The updated European Cardiology guideline for cardiomyopathies provides the first comprehensive summary of genotyping, imaging, and therapy recommendations for inherited cardiomyopathies, but still lacks a comprehensive discussion of research advances and future trends in genetic diagnosis and therapy of HHD. Our research aims to fill this gap. Bibliometric analysis software (CiteSpace 6.3.R1, VOSviewer 1.6.18, and Scimago Graphica) was used to analyze the general information, trends, and emerging foci of HHD in the past 20 years, including author, country, institution, keyword, and so on. There were 5,757 publications were screened and aggregated in the database, including 1876 reviews and 3,881 articles. Hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), Brugada syndrome (BrS), myocardial amyloidosis, and Fabry disease (FD) were the main types of HHD that were explored in greater depth. Moreover, new diagnostic methods, clinical cohorts, and genetically targeted therapies for HHD patients are key research hotspots. The relationship between the pathogenicity of genes and prognosis will become increasingly important for therapy.
Collapse
Affiliation(s)
- Huixi Ma
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yun Wang
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Jia
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linjun Xie
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lini Liu
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dingyi Zhang
- West China Medical School, Sichuan University, Chengdu, China
| | - Xinyue Ma
- West China Medical School, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Boeykens F, Abitbol M, Anderson H, Casselman I, de Citres CD, Hayward JJ, Häggström J, Kittleson MD, Lepri E, Ljungvall I, Longeri M, Lyons LA, Ohlsson Å, Peelman L, Smets P, Vezzosi T, van Steenbeek FG, Broeckx BJ. Development and validation of animal variant classification guidelines to objectively evaluate genetic variant pathogenicity in domestic animals. Front Vet Sci 2024; 11:1497817. [PMID: 39703406 PMCID: PMC11656590 DOI: 10.3389/fvets.2024.1497817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Assessing the pathogenicity of a disease-associated genetic variant in animals accurately is vital, both on a population and individual scale. At the population level, breeding decisions based on invalid DNA tests can lead to the incorrect inclusion or exclusion of animals and compromise the long-term health of a population, and at the level of the individual animal, lead to incorrect treatment and even life-ending decisions. Criteria to determine pathogenicity are not standardized, i.e., no guidelines for animal variants are available. Here, we aimed to develop and validate guidelines to be used by the community for Mendelian disorders in domestic animals to classify variants in categories based on standardized criteria. These so-called animal variant classification guidelines (AVCG) were based on those developed for humans by The American College of Medical Genetics and Genomics (ACMG). In a direct comparison, 83% of the pathogenic variants were correctly classified with ACMG, while this increased to 92% with AVCG. We described methods to develop datasets for benchmarking the criteria and identified the most optimal in silico variant effect predictor tools. As the reproducibility was high, we classified 72 known disease-associated variants in cats and 40 other disease-associated variants in eight additional species.
Collapse
Affiliation(s)
- Fréderique Boeykens
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marie Abitbol
- Univ Lyon, VetAgro Sup, 69280 Marcy-l’Etoile, France and Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard, Lyon, France
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science and Diagnostics, Helsinki, Finland
| | - Iris Casselman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Jessica J. Hayward
- Department of Biomedical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jens Häggström
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mark D. Kittleson
- School of Veterinary Medicine and Epidemiology, University of California, Davis, Davis, CA, United States
- Veterinary Information Network, 777 West Covell Boulevard, Davis, CA, United States
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Longeri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Åsa Ohlsson
- Department of Animal Biosciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pascale Smets
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | - Tommaso Vezzosi
- Italian Veterinary Observatory for Cardiac Diseases (OVIC), Associazione Cardiologi ed Ecografisti Clinici Veterinari (CARDIEC), Bergamo, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart J.G. Broeckx
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Centre for Clinical Genetics of Companion Animals, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
10
|
Kingsmore SF, Wright M, Smith LD, Liang Y, Mowrey WR, Protopsaltis L, Bainbridge M, Baker M, Batalov S, Blincow E, Cao B, Caylor S, Chambers C, Ellsworth K, Feigenbaum A, Frise E, Guidugli L, Hall KP, Hansen C, Kiel M, Van Der Kraan L, Krilow C, Kwon H, Madhavrao L, Lefebvre S, Leipzig J, Mardach R, Moore B, Oh D, Olsen L, Ontiveros E, Owen MJ, Reimers R, Scharer G, Schleit J, Shelnutt S, Mehtalia SS, Oriol A, Sanford E, Schwartz S, Wigby K, Willis MJ, Yandell M, Kunard CM, Defay T. Prequalification of genome-based newborn screening for severe childhood genetic diseases through federated training based on purifying hyperselection. Am J Hum Genet 2024; 111:2618-2642. [PMID: 39642867 PMCID: PMC11639087 DOI: 10.1016/j.ajhg.2024.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/09/2024] Open
Abstract
Genome-sequence-based newborn screening (gNBS) has substantial potential to improve outcomes in hundreds of severe childhood genetic disorders (SCGDs). However, a major impediment to gNBS is imprecision due to variants classified as pathogenic (P) or likely pathogenic (LP) that are not SCGD causal. gNBS with 53,855 P/LP variants, 342 genes, 412 SCGDs, and 1,603 therapies was positive in 74% of UK Biobank (UKB470K) adults, suggesting 97% false positives. We used the phenomenon of purifying hyperselection, which acts to decrease the frequency of SCGD causal diplotypes, to reduce false positives. Training of gene-disease-inheritance mode-diplotype tetrads in 618,290 control and affected subjects identified 293 variants or haplotypes and seven genes with variable inheritance contributing higher positive diplotype counts than consistent with purifying hyperselection and with little or no evidence of SCGD causality. With these changes, 2.0% of UKB470K adults were positive. In contrast, gNBS was positive in 7.2% of 3,118 critically ill children with suspected SCGDs and 7.9% of 705 infant deaths. When compared with rapid diagnostic genome sequencing (RDGS), gNBS had 99.1% recall. In eight true-positive children, gNBS was projected to decrease time to diagnosis by a median of 121 days and avoid life-threatening disease presentations in four children, organ damage in six children, ∼$1.25 million in healthcare cost, and ten (1.4%) infant deaths. Federated training predicated on purifying hyperselection provides a general framework to attain high precision in population screening. Federated training across many biobanks and clinical trials can provide a privacy-preserving mechanism for qualification of gNBS in diverse genetic ancestries.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| | - Meredith Wright
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Laurie D Smith
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Yupu Liang
- Alexion, AstraZeneca Rare Disease, Boston, MA 02210, USA
| | | | - Liana Protopsaltis
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Matthew Bainbridge
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sergey Batalov
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eric Blincow
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Bryant Cao
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sara Caylor
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Christina Chambers
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Katarzyna Ellsworth
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Annette Feigenbaum
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Erwin Frise
- Fabric Genomics, Inc., Oakland, CA 94612, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Christian Hansen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mark Kiel
- Genomenon Inc., Ann Arbor, MI 48108, USA
| | - Lucita Van Der Kraan
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Hugh Kwon
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lakshminarasimha Madhavrao
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | | | - Rebecca Mardach
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Danny Oh
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lauren Olsen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eric Ontiveros
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mallory J Owen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Rebecca Reimers
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Gunter Scharer
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jennifer Schleit
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | | | - Albert Oriol
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Erica Sanford
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Kristen Wigby
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mary J Willis
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | | | - Thomas Defay
- Alexion, AstraZeneca Rare Disease, Boston, MA 02210, USA
| |
Collapse
|
11
|
McGurk KA, Qiao M, Zheng SL, Sau A, Henry A, Ribeiro ALP, Ribeiro AH, Ng FS, Lumbers RT, Bai W, Ware JS, O'Regan DP. Genetic and phenotypic architecture of human myocardial trabeculation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1503-1515. [PMID: 39567769 PMCID: PMC11634767 DOI: 10.1038/s44161-024-00564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Cardiac trabeculae form a network of muscular strands that line the inner surfaces of the heart. Their development depends on multiscale morphogenetic processes and, while highly conserved across vertebrate evolution, their role in the pathophysiology of the mature heart is not fully understood. Here we report variant associations across the allele frequency spectrum for trabecular morphology in 47,803 participants of the UK Biobank using fractal dimension analysis of cardiac imaging. We identified an association between trabeculation and rare variants in 56 genes that regulate myocardial contractility and ventricular development. Genome-wide association studies identified 68 loci in pathways that regulate sarcomeric function, differentiation of the conduction system and cell fate determination. We found that trabeculation-associated variants were modifiers of cardiomyopathy phenotypes with opposing effects in hypertrophic and dilated cardiomyopathy. Together, these data provide insights into mechanisms that regulate trabecular development and plasticity, and identify a potential role in modifying monogenic disease expression.
Collapse
Affiliation(s)
- Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mengyun Qiao
- Department of Computing, Department of Brain Sciences and Data Science Institute, Imperial College London, London, UK
| | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Arunashis Sau
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Albert Henry
- Institute of Health Informatics, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, and Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio H Ribeiro
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Wenjia Bai
- Department of Computing, Department of Brain Sciences and Data Science Institute, Imperial College London, London, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
12
|
Sarhangi N, Rouhollah F, Niknam N, Sharifi F, Nikfar S, Larijani B, Patrinos GP, Hasanzad M. Pharmacogenetic DPYD allele variant frequencies: A comprehensive analysis across an ancestrally diverse Iranian population. Daru 2024; 32:715-727. [PMID: 39424756 PMCID: PMC11555172 DOI: 10.1007/s40199-024-00538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/24/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Cancer treatment has improved over the past decades, but many cancer patients still experience adverse drug reactions (ADRs). Pharmacogenomics (PGx), known as personalized treatment, is a pillar of precision medicine that aims to optimize the efficacy and safety of medications by studying the germline variations. Germline variations in the DPYD lead to significant ADRs. The present cross-sectional study aims to evaluate the allele frequency of the DPYD gene variations in the Iranian population to provide insights into personalized treatment decisions in the Iranian population. METHODS The allele frequency of 51 pharmacogenetic variations in the clinically relevant DPYD was assessed in a representative sample set of 1142 unrelated Iranian individuals and subpopulations of different ethnic groups who were genotyped using the Infinium Global Screening Array-24 BeadChip. RESULTS The genotyping assay revealed eight pharmacogenetic variants including DPYD rs1801265 (c.85T > C; DPYD*9A), rs2297595 (c.496A > G), rs1801158 (c.1601G > A; DPYD*4), rs1801159 (c.1627A > G; DPYD*5), rs1801160 (c.2194G > A; DPYD*6), rs17376848 (c.1896T > C), rs56038477 (c.1236G > A; HapB3), and rs75017182 (c.1129-5923C > G; HapB3) with minor allele frequency (MAF) ≥ 1%. CONCLUSION The results of the study reveal significant genetic variations among Iranian population that could significantly influence clinical decision-making. These variants, with their potential to explain the substantial variability in drug response phenotypes among different populations, shed light on a crucial aspect of pharmacogenomics. These findings not only provide valuable insights but also inspire the design and implementation of future pharmacogenomic clinical trials, motivating further research in this crucial area.
Collapse
Affiliation(s)
- Negar Sarhangi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Negar Niknam
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- LifeandMe, Inc., Tehran, 1497719825, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Shekoufeh Nikfar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran.
| |
Collapse
|
13
|
Boßelmann CM, Leu C, Brünger T, Hoffmann L, Baldassari S, Chipaux M, Coras R, Kobow K, Hamer H, Delev D, Rössler K, Bien CG, Kalbhenn T, Pieper T, Hartlieb T, Becker K, Ferguson L, Busch RM, Baulac S, Nürnberg P, Najm I, Blümcke I, Lal D. Analysis of 1386 epileptogenic brain lesions reveals association with DYRK1A and EGFR. Nat Commun 2024; 15:10429. [PMID: 39616148 PMCID: PMC11608322 DOI: 10.1038/s41467-024-54911-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 05/17/2025] Open
Abstract
Lesional focal epilepsy (LFE) is a common and severe seizure disorder caused by epileptogenic lesions, including malformations of cortical development (MCD) and low-grade epilepsy-associated tumors (LEAT). Understanding the genetic etiology of these lesions can inform medical and surgical treatment. We conducted a somatic variant enrichment mega-analysis in brain tissue from 1386 individuals who underwent epilepsy surgery, including 599 previously unpublished individuals with ultra-deep ( > 1600x) targeted panel sequencing. Here we confirm four known associations (BRAF, SLC35A2, MTOR, PTPN11), support eight associations without prior statistical support (FGFR1, PIK3CA, AKT3, NF1, PTEN, RHEB, KRAS, NRAS), and identify novel associations for two genes, DYRK1A and EGFR. Both novel genes show specific histopathological phenotypes, interact with LFE genes and pathways, and may represent promising candidates as biomarkers and potentially druggable targets.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Neurogenetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tobias Brünger
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Neurogenetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, Germany
| | - Lucas Hoffmann
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sara Baldassari
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Mathilde Chipaux
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, 75019, Paris, France
| | - Roland Coras
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hajo Hamer
- Epilepsy Center, EpiCARE Partner, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, EpiCARE Partner, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christian G Bien
- Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Bielefeld, Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, Germany
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Rosenheim, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Rosenheim, Germany
- Paracelsus Medical University, Salzburg, Austria
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, Germany
| | - Lisa Ferguson
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ingmar Blümcke
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Neurogenetics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
| |
Collapse
|
14
|
Margot H, Jones N, Matis T, Bonneau D, Busa T, Bonnet F, Conrad S, Crivelli L, Monin P, Fert-Ferrer S, Mortemousque I, Raad S, Lacombe D, Caux F, Sevenet N, Bubien V, Longy M. Classification of PTEN germline non-truncating variants: a new approach to interpretation. J Med Genet 2024; 61:1071-1079. [PMID: 39358013 DOI: 10.1136/jmg-2024-109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND PTEN hamartoma tumour syndrome (PHTS) encompasses distinct syndromes, including Cowden syndrome resulting from PTEN pathogenic variants. Missense variants account for 30% of PHTS cases, but their classification remains challenging. To address these difficulties, guidelines were published by the Clinical Genome Resource PTEN Variant Curation Expert Panel. METHODS Between 2010 and 2020, the Bergonie Institute reference laboratory identified 76 different non-truncating PTEN variants in 166 patients, 17 of which have not previously been reported. Variants were initially classified following the current guidelines. Subsequently, a new classification method was developed based on four main criteria: functional exploration, phenotypic features and familial segregation, in silico modelling, and allelic frequency. RESULTS This new method of classification is more discriminative and reclassifies 25 variants, including 8 variants of unknown significance. CONCLUSION This report proposes a revision of the current PTEN variant classification criteria which at present rely on functional tests evaluating only the phosphatase activity of PTEN and apply a particularly stringent clinical PHTS score.The classification of non-truncating variants of PTEN is facilitated by taking into consideration protein stability for variants with intact phosphatase activity, clinical and segregation criteria adapted to the phenotypic variability of PHTS and by specifying the allelic frequency of variants in the general population. This novel method of classification remains to be validated in a prospective cohort.
Collapse
Affiliation(s)
- Henri Margot
- Medical Genetics Departement, CHU de Bordeaux, Bordeaux, Nouvelle-Aquitaine, France
| | - Natalie Jones
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Thibaut Matis
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Dominique Bonneau
- U771-CNRS6214, UMR INSERM, Angers, France
- School of Medicine, University of Angers, Angers, France
| | - Tiffany Busa
- Medical Genetics Departement, Marseille Public University Hospital System, Marseille, France
| | - Françoise Bonnet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Solene Conrad
- Medical Genetics Departement, University Hospital Centre Nantes, Nantes, Pays de la Loire, France
| | - Louise Crivelli
- Department of Oncogenetics, Centre Eugene Marquis, Rennes, Bretagne, France
| | - Pauline Monin
- Medical Genetics Departement, Centre Hospitalier Universitaire de Lyon, Lyon, Rhône-Alpes, France
| | - Sandra Fert-Ferrer
- Medical Genetics Departement, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Isabelle Mortemousque
- Cancer Genetics Unit, Centre Hospitalier Régional Universitaire de Tours, Tours, Centre-Val de Loire, France
| | - Sabine Raad
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Didier Lacombe
- Department of Medical Genetics, CHU Bordeaux GH Pellegrin, Bordeaux, Aquitaine, France
- MRGM INSERM U1211, Universite de Bordeaux College Sciences de la Sante, Bordeaux, Nouvelle-Aquitaine, France
| | - Frédéric Caux
- Hospital Avicenne Internal Medicine Service, Bobigny, Île-de-France, France
| | - Nicolas Sevenet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| | - Virginie Bubien
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Michel Longy
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| |
Collapse
|
15
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Metpally RP, Vishweswaraiah S, Krishnamurthy S, Saiyed N, Stahl RC, Golden A, Denisenko A, Staples J, Gonzaga-Jauregui C, Carey DJ, Bechara F, Jemec GBE, Williams H, Radhakrishna U. Identification of Novel Genetic Risk Variants Associated with Hidradenitis Suppurativa in an Exome Sequencing Cohort of 92,455 Individuals. Dermatology 2024; 240:739-749. [PMID: 39396498 DOI: 10.1159/000540359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a prevalent and persistent inflammatory skin disorder, lacking a known cure or effective biomarkers for early diagnosis at present. The genetic determinants of HS have not been fully documented, but it is believed to result from a combination of genetic and environmental factors. METHODS To identify relevant HS gene variants in sporadic HS patients, this study utilized longitudinal electronic health records (EHRs) and whole-exome sequencing. DNA exome sequencing data from 92,455 participant samples in the MyCode biobank, linked to Geisinger's EHR, were analyzed. This cohort included 1,092 HS cases and 91,363 healthy controls. The MyCode EHR has a median longitudinal follow-up of 15 years per participant, with an average of 87 clinical encounters, 687 laboratory tests, and 7 procedures. RESULTS There were 1,092 (901 females and 191 males) participants aged 14-89 years (median 47 years) with HS (L73.2), indicating a 1.18% prevalence and accounting for a 4.7:1 female-to-male ratio among the individuals presenting for clinical care. γ-secretase complex, syndromic, and autoinflammatory gene variants were assessed. Potential pathogenic variants were identified among 66 individuals in the HS genes studied. Molecularly, the estimated HS variant prevalence was 1:1,400 in the cohort, 12.3% of variant carriers had HS diagnosis in EHR. CONCLUSIONS Using longitudinal EHR data, genomic screening identified HS-associated gene variants in a defined group of sporadic HS patients to augment the clinical diagnosis, particularly in cases of ambiguity. Based on this study, the field of skin disorders can benefit from a personalized approach to HS diagnosis using large-scale sequencing.
Collapse
Affiliation(s)
- Raghu P Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Sarathbabu Krishnamurthy
- Center for Precision Medicine and Genomics, Columbia University Irving Medical Center, New York, New York, USA
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Richard C Stahl
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Alicia Golden
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | | | - Jeffrey Staples
- Regeneron Pharmaceuticals Inc, Regeneron Genetics Center, Tarrytown, New York, USA
| | - Claudia Gonzaga-Jauregui
- Center for Precision Medicine and Genomics (CPMG), Columbia University Irving Medical Center, New York, New York, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Falk Bechara
- Dermatologic Surgery Department, Department of Dermatology, Venereology and Allergology Ruhr-University Bochum Gudrunstr, Bochum, Germany
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark
| | | | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, Pal T, Robles-Espinoza CD, Arriaga-González FG, Matsuyama LSAS, Delage E, Dicks E, Ezquina S, Rowlands CF, Turnbull C, Pharoah P, Perry JRB, Jasin M, Waters AJ, Adams DJ. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 2024; 187:5719-5734.e19. [PMID: 39299233 DOI: 10.1016/j.cell.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.
Collapse
Affiliation(s)
- Rebeca Olvera-León
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fang Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Hong Kee Tan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Prashant Gupta
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Tuya Pal
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center (VUMC)/Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, USA
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fernanda G Arriaga-González
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | | | - Erwan Delage
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ed Dicks
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Suzana Ezquina
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Charlie F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK; Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Waters
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
18
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
19
|
Isshiki M, Griffen A, Meissner P, Spencer P, Cabana MD, Klugman SD, Colón M, Maksumova Z, Suglia S, Isasi C, Greally JM, Raj SM. Genetic disease risks of under-represented founder populations in New York City. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.27.24314513. [PMID: 39399040 PMCID: PMC11469344 DOI: 10.1101/2024.09.27.24314513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The detection of founder pathogenic variants, those observed in high frequency only in a group of individuals with increased inter-relatedness, can help improve delivery of health care for that community. We identified 16 groups with shared ancestry, based on genomic segments that are shared through identity by descent (IBD), in New York City using the genomic data of 25,366 residents from the All Of Us Research Program and the Mount Sinai BioMe biobank. From these groups we defined 8 as founder populations, mostly communities currently under-represented in medical genomics research, such as Puerto Rican, Garifuna and Filipino/Pacific Islanders. The enrichment analysis of ClinVar pathogenic or likely pathogenic (P/LP) variants in each group identified 202 of these damaging variants across the 8 founder populations. We confirmed disease-causing variants previously reported to occur at increased frequencies in Ashkenazi Jewish and Puerto Rican genetic ancestry groups, but most of the damaging variants identified have not been previously associated with any such founder populations, and most of these founder populations have not been described to have increased prevalence of the associated rare disease. Twenty-five of 51 variants meeting Tier 2 clinical screening criteria (1/100 carrier frequency within these founder groups) have never previously been reported. We show how population structure studies can provide insights into rare diseases disproportionately affecting under-represented founder populations, delivering a health care benefit but also a potential source of stigmatization of these communities, who should be part of the decision-making about implementation into health care delivery.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Anthony Griffen
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Paul Meissner
- Department of Family and Social Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Obstetrics and Gynecology & Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Paulette Spencer
- Bronx Community Health Network, One Fordham Plaza, Suite 1108, Bronx, NY 10458
| | - Michael D Cabana
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Susan D Klugman
- Department of Obstetrics and Gynecology & Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Mirtha Colón
- Hondurans Against AIDS/Casa Yurumein, 324 E 151st St, Bronx, NY 10451
| | | | - Shakira Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Carmen Isasi
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Srilakshmi M Raj
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
20
|
O'Neill MJ, Yang T, Laudeman J, Calandranis ME, Harvey ML, Solus JF, Roden DM, Glazer AM. ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants. Nat Commun 2024; 15:8320. [PMID: 39333091 PMCID: PMC11437130 DOI: 10.1038/s41467-024-52474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria E Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Lorena Harvey
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
21
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Harikrishnan S, Koshy L, Ganapathi S, Jeemon P, Ramya Das NK, Urulangodi M, Madhuma M, Vysakh Y, Subran A, Lakshmikanth LR. Clinical exome sequencing unravels the diverse spectrum of genetic heterogeneity and genotype-phenotype correlations in hypertrophic cardiomyopathy. Int J Cardiol 2024; 411:132273. [PMID: 38880420 DOI: 10.1016/j.ijcard.2024.132273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Catalogues of pathogenic genetic mutations in hypertrophic cardiomyopathy (HCM) are disproportionately small when compared to that of the size of the population with South Asian ancestry and their collective increased risk of heart disease. METHODS We conducted clinical exome sequencing of 200 HCM patients to identified cardiomyopathy-associated genetic mutations. The clinical and echocardiographic characteristics of genotype-positive and genotype-negative patients were compared, and the likelihood of detecting a positive genetic test result was evaluated. Allelic burden analysis was done to compare the minor allele frequencies (MAF) of the pathogenic or likely pathogenic (P/LP) variants and variants of uncertain significance (VUSs) identified in the cohort against various population genomics databases. RESULTS The genetic yield was 40% for P/LP variants, with MYBPC3 and MYH7 as the predominant sarcomere genes. Younger age-at-diagnosis, family history of HCM, asymmetric hypertrophic (ASH) pattern, the ratio of the interventricular septum to posterior wall thickness (IVS/PW ratio), left atrial (LA) dimensions, severe mitral regurgitation grade (MR grade), late gadolinium enhancement (LGE) detected fibrosis and absence of hypertension were associated with an increased likelihood of HCM-associated variants. Patients who experienced ventricular tachycardia and premature cardiovascular death were significantly likely to carry MYBPC3 or loss-of-function variants. LA and interventricular septal (IVS) dimensions were associated with MYH7 variants. The rare variant burden for P/LP variants and VUSs was significantly enriched in HCM cases compared to population controls. CONCLUSION Our study provides a comprehensive evaluation of HCM-associated genetic mutations from an Indian population. The identified genotype-phenotype associations could improve the yield of targeted genetic testing in HCM.
Collapse
Affiliation(s)
- Sivadasanpillai Harikrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India.
| | - Linda Koshy
- Centre for Advance Research and Excellence in Heart Failure, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - Sanjay Ganapathi
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - Panniyammakal Jeemon
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - N K Ramya Das
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - M Madhuma
- Centre for Advance Research and Excellence in Heart Failure, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - Y Vysakh
- Centre for Advance Research and Excellence in Heart Failure, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - Anjana Subran
- Centre for Advance Research and Excellence in Heart Failure, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| | - L R Lakshmikanth
- Centre for Advance Research and Excellence in Heart Failure, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 011, Kerala, India
| |
Collapse
|
23
|
Parsons MT, de la Hoya M, Richardson ME, Tudini E, Anderson M, Berkofsky-Fessler W, Caputo SM, Chan RC, Cline MS, Feng BJ, Fortuno C, Gomez-Garcia E, Hadler J, Hiraki S, Holdren M, Houdayer C, Hruska K, James P, Karam R, Leong HS, Martins A, Mensenkamp AR, Monteiro AN, Nathan V, O'Connor R, Pedersen IS, Pesaran T, Radice P, Schmidt G, Southey M, Tavtigian S, Thompson BA, Toland AE, Turnbull C, Vogel MJ, Weyandt J, Wiggins GAR, Zec L, Couch FJ, Walker LC, Vreeswijk MPG, Goldgar DE, Spurdle AB. Evidence-based recommendations for gene-specific ACMG/AMP variant classification from the ClinGen ENIGMA BRCA1 and BRCA2 Variant Curation Expert Panel. Am J Hum Genet 2024; 111:2044-2058. [PMID: 39142283 PMCID: PMC11393667 DOI: 10.1016/j.ajhg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.
Collapse
Affiliation(s)
- Michael T Parsons
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid Spain
| | | | - Emma Tudini
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | | | - Sandrine M Caputo
- Department of Genetics, Institut Curie, and Paris Sciences Lettres Research University, 75005 Paris, France
| | | | - Melissa S Cline
- UC Santa Cruz Genomics Institute, Genomics, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bing-Jian Feng
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristina Fortuno
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Encarna Gomez-Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Johanna Hadler
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Claude Houdayer
- University Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, FHU G4 Génomique, F-76000 Rouen, France
| | | | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rachid Karam
- Ambry Genetics Corporation, Aliso Viejo, CA 92656, USA
| | - Huei San Leong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Vaishnavi Nathan
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tina Pesaran
- Ambry Genetics Corporation, Aliso Viejo, CA 92656, USA
| | - Paolo Radice
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Melissa Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sean Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Bryony A Thompson
- Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Clare Turnbull
- Translational Genetics Team, Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Maartje J Vogel
- Department of Human Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jamie Weyandt
- Ambry Genetics Corporation, Aliso Viejo, CA 92656, USA
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Osler TS, Brandenburg JT, Schoeman M, Chen WC, Urban MF, Mathew CG. Prevalence and Reclassification of Genetic Variants in South African Populations with Breast Cancer. Genes Chromosomes Cancer 2024; 63:e23275. [PMID: 39324485 DOI: 10.1002/gcc.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Concurrent testing of numerous genes for hereditary breast cancer (BC) is available but can result in management difficulties. We evaluated use of an expanded BC gene panel in women of diverse South African ancestries and assessed use of African genomic data to reclassify variants of uncertain significance (VUS). A total of 331 women of White, Black African, or Mixed Ancestry with BC had a 9-gene panel test, with an additional 75 genes tested in those without a pathogenic/likely pathogenic (P/LP) variant. The proportion of VUS reclassified using ClinGen gene-specific allele frequency (AF) thresholds or an AF > 0.001 in nonguidelines genes in African genomic data was determined. The 9-gene panel identified 58 P/LP variants, but only two of the P/LP variants detected using the 75-gene panel were in confirmed BC genes, resulting in a total of 60 (18.1%) in all participants. P/LP variant prevalence was similar across ancestry groups, but VUS prevalence was higher in Black African and Mixed Ancestry than in White participants. In total, 611 VUS were detected, representing 324 distinct variants. 10.8% (9/83) of VUS met ClinGen AF thresholds in genomic data while 10.8% (26/240) in nonguideline genes had an AF > 0.001. Overall, 27.0% of VUS occurrences could potentially be reclassified using African genomic data. Thus, expanding the gene panel yielded few clinically actionable variants but many VUS, particularly in participants of Black African and Mixed Ancestry. However, use of African genomic data has the potential to reclassify a significant proportion of VUS.
Collapse
Affiliation(s)
- Tabitha S Osler
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Michael F Urban
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
25
|
Hannah WB, Drumm ML, Nykamp K, Pramparo T, Steiner RD, Schrodi SJ. Using genomic databases to determine the frequency and population-based heterogeneity of autosomal recessive conditions. GENETICS IN MEDICINE OPEN 2024; 2:101881. [PMID: 39669633 PMCID: PMC11613865 DOI: 10.1016/j.gimo.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 12/14/2024]
Affiliation(s)
- William B. Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Mitchell L. Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | | | | | - Robert D. Steiner
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
26
|
Murphy J, Kirk CW, Lambert DM, McGorrian C, Walsh R, McVeigh TP, Prendiville T, Ward D, Galvin J, Lynch SA. Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance. Ir J Med Sci 2024; 193:1775-1785. [PMID: 38489124 DOI: 10.1007/s11845-024-03650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Inherited cardiomyopathies (HCM, DCM, ACM) and cardiac ion channelopathies (long QT/Brugada syndromes, CPVT) are associated with significant morbidity and mortality; however, diagnosis of a familial pathogenic variant in a proband allows for subsequent cascade screening of their at-risk relatives. AIMS We investigated the diagnostic yield from cardiac gene panel testing and reviewed variants of uncertain significance from patients attending three specialist cardiogenetics services in Ireland in the years 2002 to 2020. RESULTS Reviewing molecular genetic diagnostic reports of 834 patients from 820 families, the initial diagnostic yield of pathogenic/likely pathogenic variants was 237/834 patients (28.4%), increasing to 276/834 patients (33.1%) following re-evaluation of cases with variant(s) of uncertain significance. Altogether, 42/85 patients with VUS reviewed (49.4%) had a re-classification that could change their clinical management. Females were more likely to carry pathogenic/likely pathogenic variants than males (139/374, 37.2% vs 137/460, 29.8%, respectively, p = 0.03), and the diagnostic yields were highest in the 0 to < 2 years age group (6/12, 50.0%) and amongst those tested for cardiomyopathy gene panels (13/35, 37.1%). Variants in the MYBPC3/MYH7 (87/109, 79.8%) and KCNQ1/KCNH2 (91/100, 91.0%) genes were the predominant genetic causes for hypertrophic cardiomyopathy and long QT syndrome, respectively. CONCLUSION Our study highlights the importance of collation and review of pre-ACMG genetic variants to increase diagnostic utility of genetic testing for inherited heart disease. Almost half of patients with pre-ACMG VUS reviewed had their variant re-classified to likely pathogenic/likely benign which resulted in a positive clinical impact for patients and their families.
Collapse
Affiliation(s)
- Jane Murphy
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Claire W Kirk
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deborah M Lambert
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine McGorrian
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Terri P McVeigh
- Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, United Kingdom
| | - Terence Prendiville
- Department of Cardiology, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| | - Deirdre Ward
- Centre for Cardiac Risk in the Young Persons, Tallaght University Hospital, Dublin 24, Ireland
| | - Joseph Galvin
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| |
Collapse
|
27
|
Ma JG, O’Neill MJ, Richardson E, Thomson KL, Ingles J, Muhammad A, Solus JF, Davogustto G, Anderson KC, Benjamin Shoemaker M, Stergachis AB, Floyd BJ, Dunn K, Parikh VN, Chubb H, Perrin MJ, Roden DM, Vandenberg JI, Ng CA, Glazer AM. Multisite Validation of a Functional Assay to Adjudicate SCN5A Brugada Syndrome-Associated Variants. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004569. [PMID: 38953211 PMCID: PMC11335442 DOI: 10.1161/circgen.124.004569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Brugada syndrome is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging, and ≈79% of SCN5A missense variants in ClinVar are currently classified as variants of uncertain significance. Automated patch clamp technology enables high-throughput functional studies of ion channel variants and can provide evidence for variant reclassification. METHODS An in vitro SCN5A-Brugada syndrome automated patch clamp assay was independently performed at Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute. The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. Odds of pathogenicity values were derived from the experimental results according to ClinGen Sequence Variant Interpretation recommendations. The calibrated assay was then used to study SCN5A variants of uncertain significance observed in 4 families with Brugada syndrome and other arrhythmia phenotypes associated with SCN5A loss-of-function. RESULTS Variant channel parameters generated independently at the 2 research sites showed strong correlations, including peak INa density (R2=0.86). The assay accurately distinguished benign controls (24/25 concordant variants) from pathogenic controls (23/24 concordant variants). Odds of pathogenicity values were 0.042 for normal function and 24.0 for abnormal function, corresponding to strong evidence for both American College of Medical Genetics and Genomics/Association for Molecular Pathology benign and pathogenic functional criteria (BS3 and PS3, respectively). Application of the assay to 4 clinical SCN5A variants of uncertain significance revealed loss-of-function for 3/4 variants, enabling reclassification to likely pathogenic. CONCLUSIONS This validated high-throughput assay provides clinical-grade functional evidence to aid the classification of current and future SCN5A-Brugada syndrome variants of uncertain significance.
Collapse
Affiliation(s)
- Joanne G. Ma
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | | | - Ebony Richardson
- Clinical Genomics Laboratory, Ctr for Population Genomics, Garvan Inst of Medical Rsrch, Darlinghurst, NSW & Australia & Murdoch Children’s Research Inst, Melbourne, Australia
| | - Kate L. Thomson
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Jodie Ingles
- Clinical Genomics Laboratory, Ctr for Population Genomics, Garvan Inst of Medical Rsrch, Darlinghurst, NSW & Australia & Murdoch Children’s Research Inst, Melbourne, Australia
| | | | - Joseph F. Solus
- Vanderbilt Ctr for Arrhythmia Research & Therapeutics (VanCART), Division of Clinical Pharmacology, Dept of Medicine, Nashville, TN
| | | | | | | | | | - Brendan J. Floyd
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Kyla Dunn
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Victoria N. Parikh
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Henry Chubb
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Mark J. Perrin
- Dept of Genomic Medicine, Royal Melbourne Hospital, Victoria, Australia
| | - Dan M. Roden
- Depts of Pharmacology, and Biomedical Informatics, Vanderbilt Univ Medical Ctr, Nashville, TN
| | - Jamie I. Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Andrew M. Glazer
- Vanderbilt Ctr for Arrhythmia Research & Therapeutics (VanCART), Division of Clinical Pharmacology, Dept of Medicine, Nashville, TN
| |
Collapse
|
28
|
Azab B, Aburizeg D, Shaaban ST, Ji W, Mustafa L, Isbeih NJ, Al-Akily AS, Mohammad H, Jeffries L, Khokha M, Lakhani SA, Al-Ammouri I. Unraveling the genetic tapestry of pediatric sarcomeric cardiomyopathies and masquerading phenocopies in Jordan. Sci Rep 2024; 14:15141. [PMID: 38956129 PMCID: PMC11219879 DOI: 10.1038/s41598-024-64921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Pediatric cardiomyopathies are mostly attributed to variants in sarcomere-related genes. Unfortunately, the genetic architecture of pediatric cardiomyopathies has never been previously studied in Jordan. We sought to uncover the genetic landscape of 14 patients from nine families with several subtypes of pediatric cardiomyopathies in Jordan using Exome sequencing (ES). Our investigation identified pathogenic and likely pathogenic variants in seven out of nine families (77.8%), clustering in sarcomere-related genes. Surprisingly, phenocopies of sarcomere-related hypertrophic cardiomyopathies were evident in probands with glycogen storage disorder and mitochondrial-related disease. Our study underscored the significance of streamlining ES or expanding cardiomyopathy-related gene panels to identify plausible phenocopies of sarcomere-related cardiomyopathies. Our findings also pointed out the need for genetic testing in patients with cardiomyopathy and their at-risk family members. This can potentially lead to better management strategies, enabling early interventions, and ultimately enhancing their prognosis. Finally, our findings provide an initial contribution to the currently absent knowledge about the molecular underpinnings of cardiomyopathies in Jordan.
Collapse
Affiliation(s)
- Bilal Azab
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA.
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| | - Dunia Aburizeg
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sherin T Shaaban
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, Madaba, 11821, Jordan
| | - Weizhen Ji
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Lina Mustafa
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nooredeen Jamal Isbeih
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amal Saleh Al-Akily
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Hashim Mohammad
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Lauren Jeffries
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mustafa Khokha
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Iyad Al-Ammouri
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
29
|
Tory K. The dominant findings of a recessive man: from Mendel's kid pea to kidney. Pediatr Nephrol 2024; 39:2049-2059. [PMID: 38051388 PMCID: PMC11147900 DOI: 10.1007/s00467-023-06238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The research of Mendel, born two centuries ago, still has many direct implications for our everyday clinical work. He introduced the terms "dominant" and "recessive" characters and determined their 3:1 ratio in the offspring of heterozygous "hybrid" plants. This distribution allowed calculation of the number of the phenotype-determining "elements," i.e., the alleles, and has been used ever since to prove the monogenic origin of a disorder. The Mendelian inheritance of monogenic kidney disorders is still of great help in distinguishing them from those with multifactorial origin in clinical practice. Inheritance of most monogenic kidney disorders fits to Mendel's observations: the equal contribution of the two parents and the complete penetrance or the direct correlation between the frequency of the recessive character and the degree of inbreeding. Nevertheless, beyond the truth of these basic concepts, several observations have expanded their genetic characteristics. The extreme genetic heterogeneity, the pleiotropy of the causal genes and the role of modifiers in ciliopathies, the digenic inheritance and parental imprinting in some tubulopathies, and the incomplete penetrance and eventual interallelic interactions in podocytopathies, reflect this expansion. For all these reasons, the transmission pattern in a natural setting may depend not only on the "character" but also on the causal gene and the variant. Mendel's passion for research combined with his modest personality and meticulous approach can still serve as an example in the work required to understand the non-Mendelian universe of genetics.
Collapse
Affiliation(s)
- Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary.
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Greiner AM, Mehdi H, Cevan C, Gutmann R, London B. The role of GPD1L, a sodium channel interacting gene, in the pathogenesis of Brugada Syndrome. Front Med (Lausanne) 2024; 10:1159586. [PMID: 38962240 PMCID: PMC11221213 DOI: 10.3389/fmed.2023.1159586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 07/05/2024] Open
Abstract
Background Brugada Syndrome (BrS) is an inherited arrhythmia syndrome in which mutations in the cardiac sodium channel SCN5A (NaV1.5) account for approximately 20% of cases. Mutations in sodium channel-modifying genes may account for additional BrS cases, though BrS may be polygenic given common SNPs associated with BrS have been identified. Recent analysis, however, has suggested that SCN5A should be regarded as the sole monogenic cause of BrS. Objective We sought to re-assess the genetic underpinnings of BrS in a large mutligenerational family with a putative mutation in GPD1L that affects surface membrane expression of NaV1.5 in vitro. Methods Fine linkage mapping was performed in the family using the Illumina Global Screening Array. Whole exome sequencing of the proband was performed to identify rare variants and mutations, and Sanger sequencing was used to assay previously-reported risk single nucleotide polymorphsims (SNPs) for BrS. Results Linkage analysis decreased the size of the previously-reported microsatellite linkage region to approximately 3 Mb. GPD1L-A280V was the only coding non-synonymous variation present at less than 1% allele frequency in the proband within the linkage region. No rare non-synonymous variants were present outside the linkage area in affected individuals in genes associated with BrS. Risk SNPs known to predispose to BrS were overrepresented in affected members of the family. Conclusion Together, our data suggest GPD1L-A280V remains the most likely cause of BrS in this large multigenerational family. While care should be taken in interpreting variant pathogenicity given the genetic uncertainty of BrS, our data support inclusion of other putative BrS genes in clinical genetic panels.
Collapse
Affiliation(s)
- Alexander M. Greiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- University of Iowa Interdisciplinary Graduate Program in Genetics, Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Chloe Cevan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Rebecca Gutmann
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- University of Iowa Interdisciplinary Graduate Program in Genetics, Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
31
|
Qin G, Dai J, Chien S, Martins TJ, Loera B, Nguyen QH, Oakes ML, Tercan B, Aguilar B, Hagen L, McCune J, Gelinas R, Monnat RJ, Shmulevich I, Becker PS. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2659-2671. [PMID: 38619278 PMCID: PMC11176916 DOI: 10.1158/1078-0432.ccr-23-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 12/08/2023] [Indexed: 04/16/2024]
Abstract
PURPOSE The inherent genetic heterogeneity of acute myeloid leukemia (AML) has challenged the development of precise and effective therapies. The objective of this study was to elucidate the genomic basis of drug resistance or sensitivity, identify signatures for drug response prediction, and provide resources to the research community. EXPERIMENTAL DESIGN We performed targeted sequencing, high-throughput drug screening, and single-cell genomic profiling on leukemia cell samples derived from patients with AML. Statistical approaches and machine learning models were applied to identify signatures for drug response prediction. We also integrated large public datasets to understand the co-occurring mutation patterns and further investigated the mutation profiles in the single cells. The features revealed in the co-occurring or mutual exclusivity pattern were further subjected to machine learning models. RESULTS We detected genetic signatures associated with sensitivity or resistance to specific agents, and identified five co-occurring mutation groups. The application of single-cell genomic sequencing unveiled the co-occurrence of variants at the individual cell level, highlighting the presence of distinct subclones within patients with AML. Using the mutation pattern for drug response prediction demonstrates high accuracy in predicting sensitivity to some drug classes, such as MEK inhibitors for RAS-mutated leukemia. CONCLUSIONS Our study highlights the importance of considering the gene mutation patterns for the prediction of drug response in AML. It provides a framework for categorizing patients with AML by mutations that enable drug sensitivity prediction.
Collapse
Affiliation(s)
| | - Jin Dai
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Sylvia Chien
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Timothy J. Martins
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Brenda Loera
- City of Hope National Medical Center, Duarte, California
| | - Quy H. Nguyen
- University of California, Irvine, Irvine, California
| | | | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | | | - Lauren Hagen
- Institute for Systems Biology, Seattle, Washington
| | | | | | - Raymond J. Monnat
- Lab Medicine|Pathology and Genome Sciences, University of Washington, Seattle, Washington
| | | | - Pamela S. Becker
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- City of Hope National Medical Center, Duarte, California
| |
Collapse
|
32
|
Bueno Marinas M, Cason M, Bariani R, Celeghin R, De Gaspari M, Pinci S, Cipriani A, Rigato I, Zorzi A, Rizzo S, Thiene G, Perazzolo Marra M, Corrado D, Basso C, Bauce B, Pilichou K. A Comprehensive Analysis of Non-Desmosomal Rare Genetic Variants in Arrhythmogenic Cardiomyopathy: Integrating in Padua Cohort Literature-Derived Data. Int J Mol Sci 2024; 25:6267. [PMID: 38892455 PMCID: PMC11173278 DOI: 10.3390/ijms25116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.B.M.); (M.C.); (R.B.); (R.C.); (M.D.G.); (S.P.); (A.C.); (I.R.); (A.Z.); (S.R.); (G.T.); (M.P.M.); (D.C.); (B.B.); (K.P.)
| | | | | |
Collapse
|
33
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Gwack J, Kim N, Park J. Improving the Yield of Genetic Diagnosis through Additional Genetic Panel Testing in Hereditary Ophthalmic Diseases. Curr Issues Mol Biol 2024; 46:5010-5022. [PMID: 38785568 PMCID: PMC11119902 DOI: 10.3390/cimb46050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.
Collapse
Affiliation(s)
- Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
| | - Namsu Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea
| |
Collapse
|
35
|
Amendola LM, Coffey AJ, Lowry J, Avecilla J, Malhotra A, Chawla A, Thacker S, Taylor JP, Rajkumar R, Brown CM, Golden-Grant K, Hejja R, Lee JA, Medrano P, Milewski B, Mullen F, Walker A, Huertez-Vasquez A, Longoni M, Perry DL, Hostin D, Ajay SS, Kesari A, Strom SP, Margulies E, Belmont J, Lanfear DE, Taft RJ. Development of a comprehensive cardiovascular disease genetic risk assessment test. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306379. [PMID: 38766118 PMCID: PMC11100944 DOI: 10.1101/2024.05.06.24306379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. Methods We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary findings genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. Results The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance using samples from the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, ~1% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. Conclusions A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stetson Thacker
- Illumina Inc., San Diego, CA 92122
- GenomOncology, Cleveland, OH 44113
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aschner A, Keller A, Williams A, Whitney R, Cunningham K, Hamilton RM, Pollanen M, Donner E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front Neurol 2024; 15:1386730. [PMID: 38756210 PMCID: PMC11097959 DOI: 10.3389/fneur.2024.1386730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Sudden Unexpected Death in Epilepsy (SUDEP) is the leading epilepsy-related cause of death, affecting approximately 1 per 1,000 individuals with epilepsy per year. Genetic variants that affect autonomic function, such as genes associated with cardiac arrhythmias, may predispose people with epilepsy to greater risk of both sudden cardiac death and SUDEP. Advances in next generation sequencing allow for the exploration of gene variants as potential biomarkers. Methods Genetic testing for the presence of cardiac arrhythmia and epilepsy gene variants was performed via genetic panels in 39 cases of SUDEP identified via autopsy by the Ontario Forensic Pathology Service. Variants were summarized by in-silico evidence for pathogenicity from 4 algorithms (SIFT, PolyPhen-2, PROVEAN, Mutation Taster) and allele frequencies in the general population (GnomAD). A maximum credible population allele frequency of 0.00004 was calculated based on epilepsy prevalence and SUDEP incidence to assess whether a variant was compatible with a pathogenic interpretation. Results Median age at the time of death was 33.3 years (range: 2, 60). Fifty-nine percent (n=23) were male. Gene panels detected 62 unique variants in 45 genes: 19 on the arrhythmia panel and 26 on the epilepsy panel. At least one variant was identified in 28 (72%) of decedents. Missense mutations comprised 57 (92%) of the observed variants. At least three in silico models predicted 12 (46%) cardiac arrhythmia panel missense variants and 20 (65%) epilepsy panel missense variants were pathogenic. Population allele frequencies were <0.00004 for 11 (42%) of the cardiac variants and 10 (32%) of the epilepsy variants. Together, these metrics identified 13 SUDEP variants of interest. Discussion Nearly three-quarters of decedents in this SUDEP cohort carried variants in comprehensive epilepsy or cardiac arrhythmia gene panels, with more than a third having variants in both panels. The proportion of decedents with cardiac variants aligns with recent studies of the disproportionate cardiac burden the epilepsy community faces compared to the general population and suggests a possible cardiac contribution to epilepsy mortality. These results identified 13 priority targets for future functional studies of these genes potential role in sudden death and demonstrates the necessity for further exploration of potential genetic contributions to SUDEP.
Collapse
Affiliation(s)
- Amir Aschner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Keller
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrew Williams
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robyn Whitney
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - Kris Cunningham
- Department of Pathology and Molecular Medicine, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert M. Hamilton
- Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Pollanen
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Goldstein J, Thomas-Wilson A, Groopman E, Aggarwal V, Bianconi S, Fernandez R, Hart K, Longo N, Liang N, Reich D, Wallis H, Weaver M, Young S, Mercimek-Andrews S. ClinGen variant curation expert panel recommendations for classification of variants in GAMT, GATM and SLC6A8 for cerebral creatine deficiency syndromes. Mol Genet Metab 2024; 142:108362. [PMID: 38452609 PMCID: PMC11874059 DOI: 10.1016/j.ymgme.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.
Collapse
Affiliation(s)
- Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Emily Groopman
- Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, USA
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Simona Bianconi
- Kaiser Permanente, Southern California Permanente Group, CA, USA
| | - Raquel Fernandez
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Kim Hart
- Newborn Screening Program, Utah Public Health Laboratory, Department of Health and Human Services, Salt Lake City, UT, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | - Daniel Reich
- Newborn Screening Program, Utah Public Health Laboratory, Department of Health and Human Services, Salt Lake City, UT, USA
| | - Heidi Wallis
- Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Sarah Young
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
38
|
Fernandez-Falgueras A, Coll M, Iglesias A, Tiron C, Campuzano O, Brugada R. The importance of variant reinterpretation in inherited cardiovascular diseases: Establishing the optimal timeframe. PLoS One 2024; 19:e0297914. [PMID: 38691546 PMCID: PMC11062523 DOI: 10.1371/journal.pone.0297914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 05/03/2024] Open
Abstract
Inherited cardiovascular diseases are rare diseases that are difficult to diagnose by non-expert professionals. Genetic analyses play a key role in the diagnosis of these diseases, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses. Using the genetic variants identified in an inherited cardiovascular diseases unit during a 10-year period, the objectives of this study were: 1) to evaluate the impact of genetic variant reinterpretation, 2) to compare the reclassification rates between different cohorts of cardiac channelopathies and cardiomyopathies, and 3) to establish the most appropriate periodicity for genetic variant reinterpretation. All the evaluated cohorts (full cohort of inherited cardiovascular diseases, cardiomyopathies, cardiac channelopathies, hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic cardiomyopathy, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia) showed reclassification rates above 25%, showing even higher reclassification rates when there is definitive evidence of the association between the gene and the disease in the cardiac channelopathies. Evaluation of genetic variant reclassification rates based on the year of the initial classification showed that the most appropriate frequency for the reinterpretation would be 2 years, with the possibility of a more frequent reinterpretation if deemed convenient. To keep genetic variant classifications up to date, genetic counsellors play a critical role in the reinterpretation process, providing clinical evidence that genetic diagnostic laboratories often do not have at their disposal and communicating changes in classification and the potential implications of these reclassifications to patients and relatives.
Collapse
Affiliation(s)
- Anna Fernandez-Falgueras
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Monica Coll
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Anna Iglesias
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Coloma Tiron
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Ramon Brugada
- Department of Cardiology, Hospital Trueta, Girona, Spain
- Molecular Diagnostics and Personalized Medicine Unit, Clinical Laboratory, Hospital Trueta, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
39
|
Thomson KL, Jiang C, Richardson E, Westphal DS, Burkard T, Wolf CM, Vatta M, Harrison SM, Ingles J, Bezzina CR, Kroncke BM, Vandenberg JI, Ng CA. Clinical interpretation of KCNH2 variants using a robust PS3/BS3 functional patch-clamp assay. HGG ADVANCES 2024; 5:100270. [PMID: 38219013 PMCID: PMC10840334 DOI: 10.1016/j.xhgg.2024.100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Long QT syndrome (LQTS), caused by the dysfunction of cardiac ion channels, increases the risk of sudden death in otherwise healthy young people. For many variants in LQTS genes, there is insufficient evidence to make a definitive genetic diagnosis. We have established a robust functional patch-clamp assay to facilitate classification of missense variants in KCNH2, one of the key LQTS genes. A curated set of 30 benign and 30 pathogenic missense variants were used to establish the range of normal and abnormal function. The extent to which variants reduced protein function was quantified using Z scores, the number of standard deviations from the mean of the normalized current density of the set of benign variant controls. A Z score of -2 defined the threshold for abnormal loss of function, which corresponds to 55% wild-type function. More extreme Z scores were observed for variants with a greater loss-of-function effect. We propose that the Z score for each variant can be used to inform the application and weighting of abnormal and normal functional evidence criteria (PS3 and BS3) within the American College of Medical Genetics and Genomics variant classification framework. The validity of this approach was demonstrated using a series of 18 KCNH2 missense variants detected in a childhood onset LQTS cohort, where the level of function assessed using our assay correlated to the Schwartz score (a scoring system used to quantify the probability of a clinical diagnosis of LQTS) and the length of the corrected QT (QTc) interval.
Collapse
Affiliation(s)
- Kate L Thomson
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Connie Jiang
- Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia; Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Ebony Richardson
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Department of Internal Medicine I, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Tobias Burkard
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Cordula M Wolf
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart; Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | | | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Connie R Bezzina
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart; Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
40
|
Fortuno C, Michailidou K, Parsons M, Dolinsky JS, Pesaran T, Yussuf A, Mester JL, Hruska KS, Hiraki S, O'Connor R, Chan RC, Kim S, Tavtigian SV, Goldgar D, James PA, Spurdle AB. Challenges and approaches to calibrating patient phenotype as evidence for cancer gene variant classification under ACMG/AMP guidelines. Hum Mol Genet 2024; 33:724-732. [PMID: 38271184 PMCID: PMC11000651 DOI: 10.1093/hmg/ddae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Michael Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Tina Pesaran
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, CA 92656, United States
| | | | | | | | | | - Raymond C Chan
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Serra Kim
- Color Genomics, Inc., Burlingame, CA 94010, United States
| | - Sean V Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - David Goldgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
41
|
Amor-Salamanca A, Santana Rodríguez A, Rasoul H, Rodríguez-Palomares JF, Moldovan O, Hey TM, Delgado MG, Cuenca DL, de Castro Campos D, Basurte-Elorz MT, Macías-Ruiz R, Fuentes Cañamero ME, Galvin J, Bilbao Quesada R, de la Higuera Romero L, Trujillo-Quintero JP, García-Cruz LM, Cárdenas-Reyes I, Jiménez-Jáimez J, García-Hernández S, Valverde-Gómez M, Gómez-Díaz I, Limeres Freire J, García-Pinilla JM, Gimeno-Blanes JR, Savattis K, García-Pavía P, Ochoa JP. Role of TBX20 Truncating Variants in Dilated Cardiomyopathy and Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004404. [PMID: 38353104 PMCID: PMC11019988 DOI: 10.1161/circgen.123.004404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/07/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Less than 40% of patients with dilated cardiomyopathy (DCM) have a pathogenic/likely pathogenic genetic variant identified. TBX20 has been linked to congenital heart defects; although an association with left ventricular noncompaction (LVNC) and DCM has been proposed, it is still considered a gene with limited evidence for these phenotypes. This study sought to investigate the association between the TBX20 truncating variant (TBX20tv) and DCM/LVNC. METHODS TBX20 was sequenced by next-generation sequencing in 7463 unrelated probands with a diagnosis of DCM or LVNC, 22 773 probands of an internal comparison group (hypertrophic cardiomyopathy, channelopathies, or aortic diseases), and 124 098 external controls (individuals from the gnomAD database). Enrichment of TBX20tv in DCM/LVNC was calculated, cosegregation was determined in selected families, and clinical characteristics and outcomes were analyzed in carriers. RESULTS TBX20tv was enriched in DCM/LVNC (24/7463; 0.32%) compared with internal (1/22 773; 0.004%) and external comparison groups (4/124 098; 0.003%), with odds ratios of 73.23 (95% CI, 9.90-541.45; P<0.0001) and 99.76 (95% CI, 34.60-287.62; P<0.0001), respectively. TBX20tv was cosegregated with DCM/LVNC phenotype in 21 families for a combined logarythm of the odds score of 4.53 (strong linkage). Among 57 individuals with TBX20tv (49.1% men; mean age, 35.9±20.8 years), 41 (71.9%) exhibited DCM/LVNC, of whom 14 (34.1%) had also congenital heart defects. After a median follow-up of 6.9 (95% CI, 25-75:3.6-14.5) years, 9.7% of patients with DCM/LVNC had end-stage heart failure events and 4.8% experienced malignant ventricular arrhythmias. CONCLUSIONS TBX20tv is associated with DCM/LVNC; congenital heart defect is also present in around one-third of cases. TBX20tv-associated DCM/LVNC is characterized by a nonaggressive phenotype, with a low incidence of major cardiovascular events. TBX20 should be considered a definitive gene for DCM and LVNC and routinely included in genetic testing panels for these phenotypes.
Collapse
Affiliation(s)
- Almudena Amor-Salamanca
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Alfredo Santana Rodríguez
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Hazhee Rasoul
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
| | - José F. Rodríguez-Palomares
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- Vall d′Hebron Rsrch Unit, Barcelona, Spain (J.F.R.-P.)
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - Oana Moldovan
- Serviço de Genética Médica, Department de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Portugal (O.M.)
| | - Thomas Morris Hey
- Department of Cardiology, The Clinic of Inherited Cardiovascular Diseases, Odense University Hospital, Denmark (T.M.H.)
| | - María Gallego Delgado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Cardiology Department, Hospital Universitario de Salamanca, Spain (M.G.D.)
- Biomedical Research Institute of Salamanca, Gerencia Regional de Salud de Castilla y León, Spain (M.G.D.)
| | - David López Cuenca
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Daniel de Castro Campos
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
| | | | - Rosa Macías-Ruiz
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | | | - Joseph Galvin
- Department of Cardiology, University College Dublin School of Medicine, Mater Misericordiae University Hospital, Ireland (J.G.)
| | | | - Luis de la Higuera Romero
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Pablo Trujillo-Quintero
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Sabadell, Spain (J.P.T.-Q.)
- Institut d’Investigació i Innovació Parc Taulí, Sabadell, Spain (J.P.T.-Q.)
| | - Loida María García-Cruz
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Ivonne Cárdenas-Reyes
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Jiménez-Jáimez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | - Soledad García-Hernández
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Inherited Cardiac Diseases Unit, Hospital Universitario San Cecilio, Granada, Spain (S.G.-H.)
| | - María Valverde-Gómez
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (M.V.-G.)
| | - Iria Gómez-Díaz
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Javier Limeres Freire
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - José M. García-Pinilla
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain (J.M.G.-P.)
- Department of Medicine and Dermatology, Universidad de Málaga, Spain (J.M.G.-P.)
| | - Juan R. Gimeno-Blanes
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Konstantinos Savattis
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
- Institute for Cardiovascular Science, University College London, United Kingdom (K.S.)
- Biomedical Research Center, National Institute for Health and Care Research (NIHR) University College London Hospitals, United Kingdom (K.S.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.S.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain (P.G.-P.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| | - Juan Pablo Ochoa
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| |
Collapse
|
42
|
To-Mai XH, Nguyen HT, Nguyen-Thi TT, Nguyen TV, Nguyen-Thi MN, Thai KQ, Lai MT, Nguyen TA. Prevalence of common autosomal recessive mutation carriers in women in the Southern Vietnam following the application of expanded carrier screening. Sci Rep 2024; 14:7461. [PMID: 38553482 PMCID: PMC10980709 DOI: 10.1038/s41598-024-57513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
The common autosomal recessive (AR) mutation carrier is still unknown in Vietnam. This study aims to identify the most common AR gene mutation carriers in women of reproductive age to build a Vietnamese-specific carrier screening panel for AR and X-linked disorders in the preconception and prenatal healthcare program. A cross-sectional study was conducted at University Medical Center-Branch 2 in Ho Chi Minh City from December 1st, 2020, to June 30th, 2023. 338 women have consented to take a 5 mL blood test to identify 540 recessive genes. The carrier screening panel was designed based on the American College of Medical Genetics and Genomics (ACMG)-recommended genes and suggestions from 104 clinical experts in Vietnam. Obstetricians and genetic experts counseled all positive testing results to discuss the possibility of recessive diseases in their offspring. The most common recessive disorders were defined at a prevalence of 1 in 60 or greater, and those were added to a Vietnamese-specific carrier screening panel. 338 non-pregnant and pregnant women underwent the expanded carrier screening (ECS). The carrier frequency was 63.6%, in which 215 women carried at least one AR gene mutation. GJB2 hearing impairment was identified as the most common chronic condition (1 in 5). The second most common AR disorder was beta-thalassemia (1 in 16), followed by cystic fibrosis (1 in 23), G6PD deficiency (1 in 28), Wilson's disease (1 in 31), Usher's syndrome (1 in 31), and glycogen storage disease (1 in 56). Seven common recessive genes were added in ethnic-based carrier screening. Women in the South of Vietnam have been carried for many recessive conditions at high frequency, such as hearing impairment, genetic anemia, and cystic fibrosis. It is necessary to implement a preconception and prenatal screening program by using seven widely popular AR genes in a Vietnamese-specific carrier screening panel to reduce the burden related to AR and X-linked disorders.
Collapse
Affiliation(s)
- Xuan-Hong To-Mai
- University of Alberta, Edmonton, Canada
- University of Nam Can Tho, Can Tho, Vietnam
| | - Huu-Trung Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- University Medical Center-Branch 2, Ho Chi Minh City, Vietnam
| | | | - Thuy-Vy Nguyen
- University of Science, Vietnam National University Ho Chi Minh, Ho Chi Minh City, Vietnam
- Ktest Company, Ho Chi Minh City, Vietnam
| | - My-Nuong Nguyen-Thi
- University of Science, Vietnam National University Ho Chi Minh, Ho Chi Minh City, Vietnam
- Ktest Company, Ho Chi Minh City, Vietnam
| | | | | | - Tuan-Anh Nguyen
- University Medical Center-Branch 2, Ho Chi Minh City, Vietnam.
- Molecular Biomedical Center, University Medical Center, Ho Chí Minh City, Vietnam.
| |
Collapse
|
43
|
Eising E, Vino A, Mabie HL, Campbell TF, Shriberg LD, Fisher SE. Genome Sequencing of Idiopathic Speech Delay. Hum Mutat 2024; 2024:9692863. [PMID: 40225914 PMCID: PMC11918988 DOI: 10.1155/2024/9692863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 04/15/2025]
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.
Collapse
Affiliation(s)
- Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
| | - Heather L. Mabie
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas F. Campbell
- School of Behavioral and Brain Sciences, Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, USA
| | | | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
44
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304535. [PMID: 38585796 PMCID: PMC10996755 DOI: 10.1101/2024.03.25.24304535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Rutgers New Jersey School of Medicine, 185 S Orange Ave Newark NJ 07103 USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children’s Hospital, APHM, Marseille, France
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Biogen, Boston MA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Research Center for Genetic Medicine, Children’s National Research Institute, Children’s National Medical Center, Washington DC 20010
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St. Cambridge MA 02142
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Boumajdi N, Bendani H, Kartti S, Alouane T, Belyamani L, Ibrahimi A. A Comprehensive Analysis of 3 Moroccan Genomes Revealed Contributions From Both African and European Ancestries. Evol Bioinform Online 2024; 20:11769343241229278. [PMID: 38327511 PMCID: PMC10848790 DOI: 10.1177/11769343241229278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Genetic variations in the human genome represent the differences in DNA sequence within individuals. This highlights the important role of whole human genome sequencing which has become the keystone for precision medicine and disease prediction. Morocco is an important hub for studying human population migration and mixing history. This study presents the analysis of 3 Moroccan genomes; the variant analysis revealed 6 379 606 single nucleotide variants (SNVs) and 1 050 577 small InDels. Of those identified SNVs, 219 152 were novel, with 1233 occurring in coding regions, and 5580 non-synonymous single nucleotide variants (nsSNP) variants were predicted to affect protein functions. The InDels produced 1055 coding variants and 454 non-3n length variants, and their size ranged from -49 and 49 bp. We further analysed the gene pathways of 8 novel coding variants found in the 3 genomes and revealed 5 genes involved in various diseases and biological pathways. We found that the Moroccan genomes share 92.78% of African ancestry, and 92.86% of Non-Finnish European ancestry, according to the gnomAD database. Then, population structure inference, by admixture analysis and network-based approach, revealed that the studied genomes form a mixed population structure, highlighting the increased genetic diversity in Morocco.
Collapse
Affiliation(s)
- Nasma Boumajdi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Houda Bendani
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Souad Kartti
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
| | - Tarek Alouane
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
46
|
Spier I, Yin X, Richardson M, Pineda M, Laner A, Ritter D, Boyle J, Mur P, Hansen TVO, Shi X, Mahmood K, Plazzer JP, Ognedal E, Nordling M, Farrington SM, Yamamoto G, Baert-Desurmont S, Martins A, Borras E, Tops C, Webb E, Beshay V, Genuardi M, Pesaran T, Capellá G, Tavtigian SV, Latchford A, Frayling IM, Plon SE, Greenblatt M, Macrae FA, Aretz S. Gene-specific ACMG/AMP classification criteria for germline APC variants: Recommendations from the ClinGen InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel. Genet Med 2024; 26:100992. [PMID: 37800450 PMCID: PMC10922469 DOI: 10.1016/j.gim.2023.100992] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.
Collapse
Affiliation(s)
- Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| | - Xiaoyu Yin
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia.
| | | | - Marta Pineda
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | | | - Deborah Ritter
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Julie Boyle
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, Australia; Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia
| | | | - Margareta Nordling
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, the University of Edinburgh, Edinburgh, United Kingdom
| | - Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | | | | | | | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, and Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Gabriel Capellá
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sean V Tavtigian
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Andrew Latchford
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Ian M Frayling
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University, United Kingdom
| | - Sharon E Plon
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Marc Greenblatt
- Larner College of Medicine, University of Vermont, Burlington, VT
| | - Finlay A Macrae
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| |
Collapse
|
47
|
Zhao H, Du H, Zhao S, Chen Z, Li Y, Xu K, Liu B, Cheng X, Wen W, Li G, Chen G, Zhao Z, Qiu G, Liu P, Zhang TJ, Wu Z, Wu N. SIGMA leverages protein structural information to predict the pathogenicity of missense variants. CELL REPORTS METHODS 2024; 4:100687. [PMID: 38211594 PMCID: PMC10831939 DOI: 10.1016/j.crmeth.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure-informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top-tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we pre-computed SIGMA scores for over 48 million possible missense variants across 3,454 disease-associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure-based approach to evaluating the pathogenicity of missense variants.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yaqi Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Bowen Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Xi Cheng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Wen Wen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Guilin Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Zhihong Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China; Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
48
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300468. [PMID: 38234731 PMCID: PMC10793524 DOI: 10.1101/2023.12.22.23300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S. Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lauren J. Ayers
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Wai-Man Chan
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Lydia N. Fozo
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Collins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Matthew F. Rose
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alan P. Tenney
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cassia Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard College, Cambridge, MA
| | - Kristen M. Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Victoria R. Bradford
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JO, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon P, Costa M, Davidson AE, Dawson SJ, Elhassan E, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison H, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong AC, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300294. [PMID: 38196618 PMCID: PMC10775325 DOI: 10.1101/2023.12.20.23300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.
Collapse
|
50
|
Allouba M, Walsh R, Afify A, Hosny M, Halawa S, Galal A, Fathy M, Theotokis PI, Boraey A, Ellithy A, Buchan R, Govind R, Whiffin N, Anwer S, ElGuindy A, Ware JS, Barton PJR, Yacoub M, Aguib Y. Ethnicity, consanguinity, and genetic architecture of hypertrophic cardiomyopathy. Eur Heart J 2023; 44:5146-5158. [PMID: 37431535 PMCID: PMC10733735 DOI: 10.1093/eurheartj/ehad372] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.
Collapse
Affiliation(s)
- Mona Allouba
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Roddy Walsh
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Alaa Afify
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mohammed Hosny
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Sarah Halawa
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Aya Galal
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mariam Fathy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Ahmed Boraey
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Amany Ellithy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Rachel Buchan
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
| | - Risha Govind
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
- Present affiliation: National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Nicola Whiffin
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | - Shehab Anwer
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Ahmed ElGuindy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Harefield Heart Science Centre, Hill End Rd, Harefield, Uxbridge UB9 6JH, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|