1
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Losurdo P, de Manzini N, Palmisano S, Grassi M, Parisi S, Rizzolio F, Tierno D, Biasin A, Grassi C, Truong NH, Grassi G. Potential Application of Small Interfering RNA in Gastro-Intestinal Tumors. Pharmaceuticals (Basel) 2022; 15:1295. [PMID: 36297407 PMCID: PMC9612316 DOI: 10.3390/ph15101295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Pasquale Losurdo
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Nicolò de Manzini
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Silvia Palmisano
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, 34100 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
- Laboratory of Stem Cell Research and Application, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
3
|
Ando K, Shih YH, Ebarasi L, Grosse A, Portman D, Chiba A, Mattonet K, Gerri C, Stainier DYR, Mochizuki N, Fukuhara S, Betsholtz C, Lawson ND. Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Dev Biol 2021; 479:11-22. [PMID: 34310924 DOI: 10.1016/j.ydbio.2021.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan.
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus Flemingsberg, Neo, Blickagången 16, Hiss S, Plan 7, SE-141 57, Huddinge, Sweden
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States.
| |
Collapse
|
4
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
5
|
Li Y, Liu Z, Lu W, Zhao M, Xiao H, Hu T, Ma J, Zheng Z, Jia J, Wu H. A label-free electrochemical aptasensor based on the core-shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB. Analyst 2020; 146:979-988. [PMID: 33554228 DOI: 10.1039/d0an01885f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the significant serum cytokines, platelet-derived growth factor-BB (PDGF-BB) is a crucial protein biomarker overexpressed in human life-threatening tumors, the sensitive identification and quantification of which are urgently desired but challenging. Herein we report a novel core-shell nanoarchitecture consisting of Cu-based metal-organic frameworks (Cu-MOFs) and covalent organic frameworks (denoted as TpBD-COFs), which was used to prepare an aptasensor for the detection of platelet-derived growth factor-BB (PDGF-BB). The central Cu-MOFs function as signal labels with no need for extra redox media, whereas the porous TpBD serves as the shell to immobilize the PDGF-BB-targeted aptamer strands in abundance via strong interactions involving π-π stacking, electrostatic, and hydrogen bonding interactions. The proposed aptasensor based on Cu-MOF@TpBD can achieve a detection limit as low as 0.034 pg mL-1 within the dynamic detection range from 0.0001 to 60 ng mL-1. The hybridization of MOFs and COFs, together with the immobilization with the specific analyte targeted aptamer, provides a promising and propagable approach to prepare an aptasensor for the simple, sensitive, and selective detection of a specific biomarker in clinical diagnosis.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kikuchi A, Singh S, Poddar M, Nakao T, Schmidt HM, Gayden JD, Sato T, Arteel GE, Monga SP. Hepatic Stellate Cell-Specific Platelet-Derived Growth Factor Receptor-α Loss Reduces Fibrosis and Promotes Repair after Hepatocellular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2080-2094. [PMID: 32615075 PMCID: PMC7527859 DOI: 10.1016/j.ajpath.2020.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factor receptor (PDGFR)-α plays roles in cell survival, proliferation, and differentiation; however, its function in chronic liver injury sequelae, such as fibrosis, is unknown. Hepatic stellate cells (HSCs), the primary mediators of fibrosis, undergo activation, which entails differentiation to myofibroblasts, proliferation, migration, and collagen deposition, partially in response to PDGFs. To examine the role of PDGFR-α in HSCs, Lrat-Cre recombinase and Pdgfra-floxed mice were bred to generate Lrat-CrePdgfra-/- (knockout) animals, which were subjected to chronic liver injury through carbon tetrachloride treatment, bile duct ligation, and 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Although no major difference was observed after other types of liver injury, PDGFR-α loss in HSCs led to a significant albeit transient reduction in fibrosis after carbon tetrachloride injury, associated with increased HSC death and reduced migration. There was continued alleviation of hepatocellular injury in knockout mice despite ongoing carbon tetrachloride insult, associated with increased numbers of CD68 and F480 macrophages and increased clearance of damaged hepatocytes. Altogether our findings support a profibrotic role of PDGFR-α in HSCs during chronic liver injury in vivo via regulation of HSC survival and migration and affect the immune microenvironment, especially macrophages in clearing dying hepatocytes. Thus, our study provides a preclinical foundation for the future testing of therapeutic PDGFR-α inhibition in hepatic fibrosis, especially in combination with other therapies.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Toshimasa Nakao
- Department of Surgery, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Heidi Marie Schmidt
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jenesis D Gayden
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Toshifumi Sato
- Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Gavin E Arteel
- Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Mercedes R, Brown J, Minard C, Tsai CM, Devaraj S, Munden M, Leung D. A Liver Biopsy Validation Pilot Study of Shear Wave Elastography, APRI, FIB-4, and Novel Serum Biomarkers for Liver Fibrosis Staging in Children With Chronic Viral Hepatitis. Glob Pediatr Health 2020; 7:2333794X20938931. [PMID: 32821773 PMCID: PMC7412911 DOI: 10.1177/2333794x20938931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023] Open
Abstract
As liver biopsy in children poses inherent risks, noninvasive measures of liver fibrosis are needed. This was a cross-sectional, liver biopsy validation pilot study of 16 participants evaluating the ability of shear wave elastography, aspartate transaminase to platelet ratio index (APRI), fibrosis index based on the 4 factors, and novel serum biomarkers to stage liver fibrosis in children with chronic hepatitis B or C. There was very high intrasegmental shear wave speed variation in our participants and little correlation with fibrosis. APRI and monocyte chemoattractant protein (MCP-1) were higher in fibrosis stage F2-3 versus F0-1 (P = .02, P = .06, respectively). Soluble Fas (sFas) was lower in F2-3 versus F0-1 (P = .046). A logistic regression analysis calculated by (APRI × MCP-1)/sFas demonstrated an area under the receiver operating characteristic curve of 0.92 (P < .001), suggesting that this combination can differentiate fibrosis stage F0-1 from F2-3 in children with chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | | | - Cynthia M Tsai
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | | | - Marthe Munden
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Daniel Leung
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Díaz-Rivera A, Meza-Ríos A, Chagoya de Sánchez V, Velasco-Loyden G, García-Benavides L, Jave-Suarez LF, Monroy-Ramirez HC, Santos-García A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Hydrodynamics-based liver transfection achieves gene silencing of CB1 using short hairpin RNA plasmid in cirrhotic rats. PLoS One 2020; 15:e0228729. [PMID: 32053633 PMCID: PMC7018086 DOI: 10.1371/journal.pone.0228729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/22/2020] [Indexed: 12/04/2022] Open
Abstract
Background There is a correlation between the endocannabinoid system and hepatic fibrosis based on the activation of CB1 and CB2 receptors; where CB1 has profibrogenic effects. Gene therapy with a plasmid carrying a shRNA for CB1 delivered by hydrodynamic injection has the advantage of hepatic tropism, avoiding possible undesirable effects of CB1 pharmacological inhibition. Objective To evaluate hydrodynamics-based liver transfection in an experimental model of liver cirrhosis of a plasmid with the sequence of a shRNA for CB1 and its antifibrogenic effects Methods Three shRNA (21pb) were designed for blocking CB1 mRNA at positions 877, 1232 and 1501 (pshCB1-A, B, C). Sequences were cloned in the pENTR™/U6. Safety was evaluated monitoring CB1 expression in brain tissue. The silencing effect was determined in rat HSC primary culture and CCl4 cirrhosis model. Hydrodynamic injection in cirrhotic liver was through iliac vein and with a dose of 3mg/kg plasmid. Serum levels of liver enzymes, mRNA levels of TGF-β1, Col IA1 and α-SMA and the percentage of fibrotic tissue were analyzed. Results Hydrodynamic injection allows efficient CB1 silencing in cirrhotic livers and pshCB1-B (position 1232) demonstrated the main CB1-silencing. Using this plasmid, mRNA level of fibrogenic molecules and fibrotic tissue considerably decrease in cirrhotic animals. Brain expression of CB1 remained unaltered. Conclusion Hydrodynamics allows a hepatotropic and secure transfection in cirrhotic animals. The sequence of the shCB1-B carried in a plasmid or any other vector has the potential to be used as therapeutic strategy for liver fibrosis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Alanine Transaminase/blood
- Alanine Transaminase/metabolism
- Animals
- Aspartate Aminotransferases/blood
- Aspartate Aminotransferases/metabolism
- Brain/metabolism
- Cells, Cultured
- Disease Models, Animal
- Gene Silencing
- Hepatic Stellate Cells/cytology
- Hepatic Stellate Cells/metabolism
- Hydrodynamics
- Liver/metabolism
- Liver Cirrhosis/pathology
- Male
- Plasmids/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Transfection
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Adriana Díaz-Rivera
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | | - Leonel García-Benavides
- Biomedical Sciences Department, Centro Universitario de Tonala, Universidad de Guadalajara, Tonala, Mexico
| | - Luis F. Jave-Suarez
- Immunology Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social
| | - Hugo Christian Monroy-Ramirez
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Juan Armendáriz-Borunda
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Tecnologico de Monterrey, Campus Guadalajara, Guadalajara, Mexico
- * E-mail: (ASR); (JAB)
| | - Ana Sandoval-Rodríguez
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- * E-mail: (ASR); (JAB)
| |
Collapse
|
9
|
ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis. Int J Mol Sci 2019; 20:ijms20112700. [PMID: 31159366 PMCID: PMC6600376 DOI: 10.3390/ijms20112700] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Fibrogenic progression of chronic liver disease, whatever the etiology, is characterized by persistent chronic parenchymal injury, chronic activation of inflammatory response, and sustained activation of liver fibrogenesis, and of pathological wound healing response. A critical role in liver fibrogenesis is played by hepatic myofibroblasts (MFs), a heterogeneous population of α smooth-muscle actin—positive cells that originate from various precursor cells through a process of activation and transdifferentiation. In this review, we focus the attention on the role of extracellular signal-regulated kinase (ERK) signaling pathway as a critical one in modulating selected profibrogenic phenotypic responses operated by liver MFs. We will also analyze major therapeutic antifibrotic strategies developed in the last two decades in preclinical studies, some translated to clinical conditions, designed to interfere directly or indirectly with the Ras/Raf/MEK/ERK signaling pathway in activated hepatic MFs, but that also significantly increased our knowledge on the biology and pathobiology of these fascinating profibrogenic cells.
Collapse
|
10
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
11
|
Ding H, Wen Z. Overexpression of C‑sis inhibits H2O2‑induced Buffalo rat liver cell apoptosis in vitro and alleviates liver injury in a rat model of fulminant hepatic failure. Int J Mol Med 2018; 42:873-882. [PMID: 29786113 PMCID: PMC6034937 DOI: 10.3892/ijmm.2018.3684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/04/2018] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of the C‑sis gene in the apoptosis of hepatocytes in vitro and in the liver function of a rat model of fulminant hepatic failure (FHF). Buffalo rat liver (BRL) cells were treated with hydrogen peroxide (H2O2) to induce apoptosis and then transfected with a C‑sis overexpression vector. A rat model of FHF was established, and C‑sis was overexpressed. The mRNA and protein expression of C‑sis were examined using reverse transcription‑polymerase chain reaction and western blot analyses, respectively. Cell viability was assessed by CCK8, and a TUNEL assay was used to examine cell apoptosis. Flow cytometry was used for cell cycle detection. Hematoxylin and eosin staining was used for histological examination. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also examined in the rats. The results showed that C‑sis was successfully overexpressed in the cells and rat model. Compared with H2O2‑treated BRL cells, the overexpression of C‑sis significantly inhibited cell apoptosis, promoted cell viability, and decreased the expression of cleaved caspase-3. Similar results were observed in the FHF rats treated with the C‑sis overexpression plasmid, compared with those treated with empty plasmids. In addition, in the FHF rats overexpressing C‑sis, histological examination showed that liver injury was alleviated, the levels of ALT and AST were significantly decreased, and mortality rate was significantly decreased, compared with those observed in the rats treated with empty plasmids. In conclusion, the overexpression of C‑sis inhibited the H2O2‑induced apoptosis of BRL cells in vitro, and alleviated liver injury, improved liver function, and decreased mortality rates in rat models of FHF.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
13
|
Hasanzadeh M, Razmi N, Mokhtarzadeh A, Shadjou N, Mahboob S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int J Biol Macromol 2017; 108:69-80. [PMID: 29180051 DOI: 10.1016/j.ijbiomac.2017.11.149] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factor (PDGF), a protein biomarker, is directly involved in many cell transformation processes, such as tumor growth and progression. Elevation platelet-derived growth factor (PDGF-BB) concentration in plasma could indicate the accelerating growth of metastatic breast tumors and angiogenesis. The development of an apta-assay for detection of PDGF-BB in is presented in this work. A highly specific DNA-aptamer, selected to PDGF-BB was immobilized onto a gold nanoparticles supported α-cyclodextrin and electrochemical measurements were performed in a solution containing the phosphate buffer solution with physiological pH. Variety of shapes of gold nanostructures with different sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template (α-cyclodextrin)-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a gold surface which provided a high surface area to immobilize a high amount of the aptamer. The surface morphology of electrode was characterized by high-resolution field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDX). The prepared aptasensors represented different electrochemical activities toward the redox processes of PDGF-BB attributing to the size and shape of the gold nanoparticles. The aptasensor was employed for the detection of PDGF using square wave voltammetry (SWV) and Cyclic voltammetry (CV) techniques. Under optimized condition the calibration curve for PDGF-BB was linear in 0.52-1.52nM with low limit of quantification of 0.52nM. Also, under the optimized experimental conditions, the proposed aptasensor of GNPs-cubic-α-CD-Apt-Au electrode exhibited excellent analytical performance for MCF-7 cells determination, ranging from 328 TO 593 cells mL-1 with low limit of quantification of 328 cells mL-1. As a result, the electrochemical aptasensor was able to detect cancer-related targets in unprocessed human plasma samples.
Collapse
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center, TabrizUniversity of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Razmi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154, Iran; Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154, Iran
| | - Soltanali Mahboob
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
14
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
15
|
Taleb H, Maddocks SE, Morris RK, Kanekanian AD. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.). JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:457-468. [PMID: 27729284 DOI: 10.1016/j.jep.2016.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Date fruit, Phoenix dactylifera L. has traditionally been used as a medicine in many cultures for the treatment of a range of ailments such as stomach and intestinal disorders, fever, oedema, bronchitis and wound healing. AIM OF THE REVIEW The present review aims to summarise the traditional use and application of P. dactylifera date fruit in different ethnomedical systems, additionally the botany and phytochemistry are identified. Critical evaluation of in vitro and in vitro studies examining date fruit in relation to anti-inflammatory, anti-angiogenic and antimicrobial activities are outlined. KEY FINDINGS The ethnomedical use of P. dactylifera in the treatment of inflammatory disease has been previously identified and reported. Furthermore, date fruit and date fruit co-products such as date syrup are rich sources of polyphenols, anthocyanins, sterols and carotenoids. In vitro studies have demonstrated that date fruit exhibits antibacterial, anti-inflammatory and anti-angiogenic activity. The recent interest in the identification of the numerous health benefits of dates using in vitro and in vivo studies have confirmed that date fruit and date syrup have beneficial health effects that can be attributed to the presence of natural bioactive compounds. CONCLUSIONS Date fruit and date syrup have therapeutic properties, which have the potential to be beneficial to health. However, more investigations are needed to quantify and validate these effects.
Collapse
Affiliation(s)
- Hajer Taleb
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| | - Sarah E Maddocks
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK.
| | - R Keith Morris
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| | - Ara D Kanekanian
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| |
Collapse
|
16
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
17
|
Kim J, Jung Y. Thymosin Beta 4 Is a Potential Regulator of Hepatic Stellate Cells. VITAMINS AND HORMONES 2016; 102:121-149. [PMID: 27450733 DOI: 10.1016/bs.vh.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
Affiliation(s)
- J Kim
- Pusan National University, Pusan, Republic of Korea
| | - Y Jung
- Pusan National University, Pusan, Republic of Korea.
| |
Collapse
|
18
|
Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond) 2016; 130:1469-80. [PMID: 27226339 DOI: 10.1042/cs20160334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis.
Collapse
|
19
|
Wang X, Wu X, Zhang A, Wang S, Hu C, Chen W, Shen Y, Tan R, Sun Y, Xu Q. Targeting the PDGF-B/PDGFR-β Interface with Destruxin A5 to Selectively Block PDGF-BB/PDGFR-ββ Signaling and Attenuate Liver Fibrosis. EBioMedicine 2016; 7:146-56. [PMID: 27322468 PMCID: PMC4909612 DOI: 10.1016/j.ebiom.2016.03.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/12/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
PDGF-BB/PDGFR-ββ signaling plays very crucial roles in the process of many diseases such as liver fibrosis. However, drug candidates with selective affinities for PDGF-B/PDGFR-β remain deficient. Here, we identified a natural cyclopeptide termed destruxin A5 that effectively inhibits PDGF-BB-induced PDGFR-β signaling. Interestingly and importantly, the inhibitory mechanism is distinct from the mechanism of tyrosine kinase inhibitors because destruxin A5 does not have the ability to bind to the ATP-binding pocket of PDGFR-β. Using Biacore T200 technology, thermal shift technology, microscale thermophoresis technology and computational analysis, we confirmed that destruxin A5 selectively targets the PDGF-B/PDGFR-β interaction interface to block this signaling. Additionally, the inhibitory effect of destruxin A5 on PDGF-BB/PDGFR-ββ signaling was verified using in vitro, ex vivo and in vivo models, in which the extent of liver fibrosis was effectively alleviated by destruxin A5. In summary, destruxin A5 may represent an efficacious and more selective inhibitor of PDGF-BB/PDGFR-ββ signaling.
Collapse
Affiliation(s)
- Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Aihua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Shiyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Chunhui Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| |
Collapse
|
20
|
He L, Zhang S, Ji H, Wang M, Peng D, Yan F, Fang S, Zhang H, Jia C, Zhang Z. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens Bioelectron 2015; 79:553-60. [PMID: 26749096 DOI: 10.1016/j.bios.2015.12.095] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
We synthesized novel Co3(PO4)2-based nanocomposites with 3D porous architectures via self-assembly; here, bovine serum albumin (BSA) and aptamer were used as organic phases to produce Co3(PO4)2@BSA and Co3(PO4)2@Apt nanocomposites, respectively. The formation mechanism of Co3(PO4)2-based nanocomposites was described based on characterizations of their physio-chemical performance, and the developed nanocomposites were applied as scaffold materials to construct a novel electrochemical aptasensor and detect platelet-derived growth factor-BB (PDGF-BB). The PDGF-BB targeting aptamer must be immobilized onto the Co3(PO4)2@BSA-modified electrode to detect PDGF-BB, whereas Co3(PO4)2@Apt-based aptasensor may be directly used to determine the target protein. Electrochemical impedance spectroscopy results showed that the developed Co3(PO4)2@BSA- and Co3(PO4)2@Apt-based aptasensors present highly sensitive detection ability toward PDGF-BB. Due to the special nanoflower structure, the Co3(PO4)2@BSA-based aptasensor features a detection limit of 3.7 pg mL(-1); while the limit of detection of the Co3(PO4)2@Apt-based aptasensor is 61.5 pg mL(-1), which is the possible bioactivity loss of the aptamer in Co3(PO4)2@Apt nanocomposite. The two detection limits obtained are still much lower than or comparable with those of previously reported aptasensors. The Co3(PO4)2@BSA- and Co3(PO4)2@Apt-based aptasensors showed high selectivity, stability, and applicability for detecting the desired protein. This finding indicates that the Co3(PO4)2-based nanocomposites could be used as an electrochemical biosensor for various detection procedures in the biomedical field.
Collapse
Affiliation(s)
- Linghao He
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Shuai Zhang
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Hongfei Ji
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Minghua Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration,Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Donglai Peng
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Fufeng Yan
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Shaoming Fang
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration,Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration,Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Chunxiao Jia
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China; Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- State Laboratory of Surface and Interface Science of Henan Province, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration,Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
21
|
Borkham-Kamphorst E, Weiskirchen R. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev 2015; 28:53-61. [PMID: 26547628 DOI: 10.1016/j.cytogfr.2015.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Platelet derived growth factor (PDGF) signaling plays an important role in activated hepatic stellate cells and portal fibroblast proliferation, chemotaxis, migration and cell survival. PDGF receptors and ligands are upregulated in experimental liver fibrotic models as well as in human liver fibrotic diseases. Blocking of PDGF signaling ameliorates experimental liver fibrogenesis. The plurality of molecular and cellular activities of PDGF and its involvement in initiation, progression and resolution of hepatic fibrogenesis offers an infinite number of therapeutic possibilities. These include the application of therapeutic antibodies (e.g. AbyD3263, MOR8457) which specifically sequester individual PDGF isoforms or the inhibition of PDGF isoforms by synthetic aptamers. In particular, the isolation of innovative slow off-rate modified aptamers (e.g., SOMAmer SL1 and SL5) that carry functional groups absent in natural nucleic acids by the Systematic Evolution of Ligands by EXponential (SELEX) enrichment technique offers the possibility to design high affinity aptamers that target PDGF isoforms for clinical purposes. Dominant-negative soluble PDGF receptors are also effective in attenuation of hepatic stellate cell proliferation and hepatic fibrogenesis. Moreover, some multikinase inhibitors targeting PDGF signaling have been intensively tested during the last decade and are on the way into advanced preclinical studies and clinical trials. This narrative review aims to gauge the recent progression of research into PDGF systems and liver fibrosis.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
22
|
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted Therapies in Liver Fibrosis: Combining the Best Parts of Platelet-Derived Growth Factor BB and Interferon Gamma. Front Med (Lausanne) 2015; 2:72. [PMID: 26501061 PMCID: PMC4594310 DOI: 10.3389/fmed.2015.00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022] Open
Abstract
Cytokines, growth factors, and other locally produced mediators play key roles in the regulation of disease progression. During liver fibrosis, these mediators orchestrate the balance between pro- and antifibrotic activities as exerted by the hepatic cells. Two important players in this respect are the profibrotic mediator platelet-derived growth factor BB (PDGF-BB) and the antifibrotic cytokine interferon gamma (IFNγ). PDGF-BB, produced by many resident and infiltrating cells, causes extensive proliferation, migration, and contraction of hepatic stellate cells (HSCs) and myofibroblasts. These cells are the extracellular matrix-producing hepatic cells and they highly express the PDGFβ receptor. On the other hand, IFNγ is produced by natural killer cells in fibrotic livers and is endowed with proinflammatory, antiviral, and antifibrotic activities. This cytokine attracted much attention as a possible therapeutic compound in fibrosis. However, clinical trials yielded disappointing results because of low efficacy and adverse effects, most likely related to the dual role of IFNγ in fibrosis. In our studies, we targeted the antifibrotic IFNγ to the liver myofibroblasts. For that, we altered the cell binding properties of IFNγ, by delivery of the IFNγ-nuclear localization sequence to the highly expressed PDGFβ receptor using a PDGFβ receptor recognizing peptide, thereby creating a construct referred to as “Fibroferon” (i.e., fibroblast-targeted interferon γ). In recent years, we demonstrated that HSC-specific delivery of IFNγ increased its antifibrotic potency and improved its general safety profile in vivo, making Fibroferon highly suitable for the treatment of (fibrotic) diseases associated with elevated PDGFβ receptor expression. The present review summarizes the knowledge on these two key mediators, PDGF-BB and IFNγ, and outlines how we used this knowledge to create the cell-specific antifibrotic compound Fibroferon containing parts of both of these mediators.
Collapse
Affiliation(s)
- Fransien van Dijk
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| |
Collapse
|
23
|
Kim J, Jung Y. Potential role of thymosin Beta 4 in liver fibrosis. Int J Mol Sci 2015; 16:10624-10635. [PMID: 26006229 PMCID: PMC4463665 DOI: 10.3390/ijms160510624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis, the main characteristic of chronic liver diseases, is strongly associated with the activation of hepatic stellate cells (HSCs), which are responsible for extracellular matrix production. As such, investigating the effective regulators controlling HSC activation provides important clues for developing therapeutics to inhibit liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is known to be involved in various cellular responses. A growing body of evidence suggests that Tβ4 has a potential role in the pathogenesis of liver fibrosis and that it is especially associated with the activation of HSCs. However, it remains unclear whether Tβ4 promotes or suppresses the activation of HSCs. Herein, we review the potential role of Tβ4 in liver fibrosis by describing the effects of exogenous and endogenous Tβ4, and we discuss the possible signaling pathway regulated by Tβ4. Exogenous Tβ4 reduces liver fibrosis by inhibiting the proliferation and migration of HSCs. Tβ4 is expressed endogenously in the activated HSCs, but this endogenous Tβ4 displays opposite effects in HSC activation, either as an activator or an inhibitor. Although the role of Tβ4 has not been established, it is apparent that Tβ4 influences HSC activation, suggesting that Tβ4 is a potential therapeutic target for treating liver diseases.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Integrated Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 609-735, Korea.
| | - Youngmi Jung
- Department of Integrated Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 609-735, Korea.
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 609-735, Korea.
| |
Collapse
|
24
|
Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor- β 1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:247357. [PMID: 25945106 PMCID: PMC4402562 DOI: 10.1155/2015/247357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/18/2023]
Abstract
Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects.
Collapse
|
25
|
Quillin RC, Wilson GC, Nojima H, Freeman CH, Wang J, Schuster RM, Blanchard JA, Edwards MJ, Gandhi CR, Gulbins E, Lentsch AB. Inhibition of acidic sphingomyelinase reduces established hepatic fibrosis in mice. Hepatol Res 2015; 45:305-314. [PMID: 24796378 PMCID: PMC4219935 DOI: 10.1111/hepr.12352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
AIM Liver fibrosis occurs as a result of several chronic liver diseases and leads to portal hypertension, cirrhosis and liver failure, often requiring liver transplantation. Activated hepatic stellate cells (HSC) are known to contribute to liver fibrosis, but currently there are no effective therapies for the treatment of established liver fibrosis. Activation of the acidic sphingomyelinase (ASM) has been shown to be involved in HSC activation. In the present study we investigated whether treatment with the ASM inhibitor, amitriptyline (TCA), could prevent and/or reverse fibrosis induced in mice by carbon tetrachloride (CCl4 ). METHODS Mice were treated with CCl4 for 8 weeks to induce fibrosis. Concurrently, mice received drinking water with or without 180 mg/L TCA. RESULTS Mice receiving TCA in the water had decreased hepatic collagen deposition and reduced liver mRNA expression of the fibrogenic mediators, transforming growth factor (TGF)-β1, tissue inhibitor of matrix metalloproteinase-1, collagen and tumor necrosis factor-α. TCA treatment also reduced HSC activation determined by α-smooth muscle actin staining. In a separate set of experiments, mice were treated with CCl4 for 5 weeks prior to treatment with TCA, to test whether TCA had any effect on established fibrosis. Remarkably, in mice with established fibrosis, treatment with TCA significantly reduced collagen deposition, HSC activation, and prevented portal hypertension and improved hepatic architecture. Treatment of isolated HSC in vitro with TCA completely inhibited TGF-β1-induced collagen expression and platelet-derived growth factor-β-β-induced proliferation. CONCLUSION The data suggest that ASM is a critical signaling component in HSC for the development of liver fibrosis and represents an important therapeutic target.
Collapse
Affiliation(s)
- Ralph C Quillin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Hiroyuki Nojima
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Christopher H Freeman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Rebecca M Schuster
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - John A Blanchard
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Chandrashekhar R Gandhi
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229-3039, USA and Veterans Administration, Cincinnati, Ohio, USA
| | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Alex B Lentsch
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
26
|
Kim KH, Park KK. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are? World J Gastroenterol 2014; 20:14696-14705. [PMID: 25356032 PMCID: PMC4209535 DOI: 10.3748/wjg.v20.i40.14696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/03/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases with different aetiologies rely on the chronic activation of liver injuries which result in a fibrogenesis progression to the end stage of cirrhosis and liver failure. Based on the underlying cellular and molecular mechanisms of a liver fibrosis, there has been proposed several kinds of approaches for the treatment of liver fibrosis. Recently, liver gene therapy has been developed as an alternative way to liver transplantation, which is the only effective therapy for chronic liver diseases. The activation of hepatic stellate cells, a subsequent release of inflammatory cytokines and an accumulation of extracellular matrix during the liver fibrogenesis are the major obstacles to the treatment of liver fibrosis. Several targeted strategies have been developed, such as antisense oligodeoxynucleotides, RNA interference and decoy oligodeoxynucleotides to overcome this barriers. With this report an overview will be provided of targeted strategies for the treatment of liver cirrhosis, and particularly, of the targeted gene therapy using short RNA and DNA segments.
Collapse
|
27
|
Quadri S, Siragy HM. Regulation of (pro)renin receptor expression in mIMCD via the GSK-3β-NFAT5-SIRT-1 signaling pathway. Am J Physiol Renal Physiol 2014; 307:F593-600. [PMID: 24990896 DOI: 10.1152/ajprenal.00245.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The localization and regulation of (pro)renin receptor (PRR) expression in kidney collecting duct cells are not well established. We hypothesized that low salt (LS) contributes to the regulation of PRR expression in these cells via the GSK-3β-NFAT5-sirtuin1 (SIRT-1) signaling pathway. Mouse inner medullary collecting duct (mIMCD) cells were treated with NaCl at 130 (normal salt; NS), 63 (LS), or 209 mM (high salt; HS) alone or in combination with NFAT5 scrambled small interfering (si) RNA, NFAT5 siRNA, or the SIRT-1 inhibitor EX-527. Compared with NS, LS increased the mRNA and protein expression of PRR by 71% and 69% (P < 0.05), and reduced phosphorylation of GSK-3β by 62% (P < 0.01), mRNA and protein expressions of NFAT5 by 65% and 45% (P < 0.05), and SIRT-1 by 44% and 50% (P < 0.01), respectively. LS also enhanced p65 NF-κB by 102% (P < 0.01). Treatment with HS significantly reduced the mRNA and protein expression of PRR by 32% and 23% (P < 0.05), and increased the mRNA and protein expression of NFAT5 by 39% and 45% (P < 0.05) and SIRT-1 by 51% and 56% (P < 0.05), respectively. HS+NFAT5 siRNA reduced the mRNA and protein expression of NFAT5 by 51% and 35% (P < 0.01) and increased the mRNA and protein expression of PRR by 148% and 70% (P < 0.01), respectively. HS+EX-527 significantly increased the mRNA and protein expression of PRR by 96% and 58% (P < 0.05), respectively. We conclude that expression of PRR in mIMCD cells is regulated by the GSK-3β-NFAT5- SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
28
|
GE WENSONG, WANG YAOJUN, WU JIANXIN, FAN JIANGAO, CHEN YINGWEI, ZHU LIANG. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep 2014; 9:2145-2151. [PMID: 24691643 PMCID: PMC4055486 DOI: 10.3892/mmr.2014.2099] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/03/2014] [Indexed: 02/06/2023] Open
Abstract
β-catenin, a core component of Wnt/β-catenin signaling, has been shown to be an important regulator of cellular proliferation and differentiation. Abnormal activation of Wnt/β-catenin signaling promotes tissue fibrogenesis. In the present study, the role of β-catenin during liver fibrogenesis was analyzed and the functional effects of β-catenin gene silencing in hepatic stellate cells (HSCs) using small interfering (si)RNA were investigated. The expression of β-catenin in human hepatic fibrosis tissues of different grades and normal human hepatic tissues was examined using immunohistochemistry. To inhibit the Wnt/β-catenin signaling pathway, siRNA for β-catenin was developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000. β-catenin expression was evaluated by quantitative polymerase chain reaction (qPCR) and western blot analysis. The expression of collagen types Ⅰ and Ⅲ was evaluated by qPCR and immunofluorescent staining. Cellular proliferation and the cell cycle were analyzed using a methyl thiazolyl tetrazolium assay. Apoptosis was assessed by Annexin V staining. A higher expression level of β-catenin was identified in the patients with high-grade hepatic fibrosis in comparison with that of the normal controls. Additionally, β-catenin siRNA molecules were successfully transfected into HSCs and induced inhibition of β-catenin expression in a time-dependent manner. β-catenin siRNA treatment also inhibited synthesis of collagen types Ⅰ and Ⅲ in transfected HSCs. Furthermore, compared with those of the control group, siRNA-mediated knockdown of β-catenin in HSC-T6 cells inhibited cell proliferation and resulted in cell apoptosis. This study suggests a significant functional role for β-catenin in the development of liver fibrosis and demonstrates that downregulation of the Wnt/β-catenin signaling pathway inhibits HSC activation. Thus, this study provides a novel strategy for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- WEN-SONG GE
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
- Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - YAO-JUN WANG
- Department of Gastroenterology, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - JIAN-XIN WU
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
- Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - JIAN-GAO FAN
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
- Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - YING-WEI CHEN
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
- Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - LIANG ZHU
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
29
|
Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med 2014; 17:1099-108. [PMID: 24151977 PMCID: PMC4118169 DOI: 10.1111/jcmm.12134] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/09/2013] [Indexed: 12/25/2022] Open
Abstract
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34-positive/c-kit-negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c-kit-positive/CD34-negative/platelet-derived growth factor receptor α (PDGFRα)-negative interstitial cells of Cajal (ICC) and the PDGFRα-positive/c-kit-negative fibroblast-like cells (FLC). As TC display the same features and locations of the PDGFRα-positive cells, we investigated whether TC and PDGFRα-positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c-kit and CD34/c-kit double immunolabelling was performed in full-thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34-positive. TC formed a three-dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c-kit-positive and CD34/PDGFRα-negative. In conclusion, in the human GI tract the TC are PDGFRα-positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region-specific roles.
Collapse
Affiliation(s)
- Maria-Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
30
|
Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW, Zhu L. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep 2014. [PMID: 24691643 DOI: 10.3892/mmr.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-catenin, a core component of Wnt/β-catenin signaling, has been shown to be an important regulator of cellular proliferation and differentiation. Abnormal activation of Wnt/β-catenin signaling promotes tissue fibrogenesis. In the present study, the role of β-catenin during liver fibrogenesis was analyzed and the functional effects of β-catenin gene silencing in hepatic stellate cells (HSCs) using small interfering (si)RNA were investigated. The expression of β-catenin in human hepatic fibrosis tissues of different grades and normal human hepatic tissues was examined using immunohistochemistry. To inhibit the Wnt/β-catenin signaling pathway, siRNA for β-catenin was developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000. β-catenin expression was evaluated by quantitative polymerase chain reaction (qPCR) and western blot analysis. The expression of collagen types Ⅰ and Ⅲ was evaluated by qPCR and immunofluorescent staining. Cellular proliferation and the cell cycle were analyzed using a methyl thiazolyl tetrazolium assay. Apoptosis was assessed by Annexin V staining. A higher expression level of β-catenin was identified in the patients with high-grade hepatic fibrosis in comparison with that of the normal controls. Additionally, β-catenin siRNA molecules were successfully transfected into HSCs and induced inhibition of β-catenin expression in a time-dependent manner. β-catenin siRNA treatment also inhibited synthesis of collagen types Ⅰ and Ⅲ in transfected HSCs. Furthermore, compared with those of the control group, siRNA-mediated knockdown of β-catenin in HSC-T6 cells inhibited cell proliferation and resulted in cell apoptosis. This study suggests a significant functional role for β-catenin in the development of liver fibrosis and demonstrates that downregulation of the Wnt/β-catenin signaling pathway inhibits HSC activation. Thus, this study provides a novel strategy for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Wen-Song Ge
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yao-Jun Wang
- Department of Gastroenterology, General Hospital of Jinan Military Command, Jinan, Shandong 250031, P.R. China
| | - Jian-Xin Wu
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Wei Chen
- Department of Gastroenterology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Liang Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
31
|
Huang Y, Feng H, Kan T, Huang B, Zhang M, Li Y, Shi C, Wu M, Luo Y, Yang J, Xu F. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One 2013; 8:e73492. [PMID: 24023685 PMCID: PMC3758295 DOI: 10.1371/journal.pone.0073492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 07/30/2013] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is a fundamental part of the response to tissue injury, which is involved in the development of hepatic fibrosis. Vascular endothelial growth factor plays an important role in angiogenesis. The expression of VEGF is increased during hepatic fibrogenesis and correlates with the micro-vessel density. In this study, we investigated the effects of bevacizumab, an anti-angiogenetic drug, on the formation of hepatic fibrosis. We found that bevacizumab could attenuate the development of hepatic fibrosis and contribute to the protection of liver function. Bevacizumab was also found to downregulate the expression α-SMA and TGF-β1, which have been reported to be profibrogenic genes in vivo. We also observed that the expression of VEGF increased significantly during the development of hepatic fibrosis and CCl4 was found to induce hepatocytes to secrete VEGF, which led to the activation and proliferation of HSCs. Bevacizumab was also found to block the effects of the hepatocytes on the activation and proliferation of HSCs. Our results suggest that bevacizumab might alleviate liver fibrosis by blocking the effect of VEGF on HSCs. Bevacizumab might be suitable as a potential agent for hepatic fibrosis therapy.
Collapse
Affiliation(s)
- Yangqing Huang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Department of Hepatobiliary Surgery, Shuguang Hospital, Shanghai, China
| | - Helin Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tong Kan
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bin Huang
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Minfeng Zhang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yesheng Li
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Changying Shi
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yunquan Luo
- Department of Hepatobiliary Surgery, Shuguang Hospital, Shanghai, China
| | - Jiamei Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FX); (JY)
| | - Feng Xu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FX); (JY)
| |
Collapse
|
32
|
Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 2013; 304:G823-34. [PMID: 23429582 PMCID: PMC3652001 DOI: 10.1152/ajpgi.00001.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently platelet-derived growth factor-α-positive cells (PDGFRα(+) cells), previously called "fibroblast-like" cells, have been described in the muscle layers of the gastrointestinal tract. These cells form networks and are involved in purinergic motor neurotransduction. Examination of colon from mice with enhanced green fluorescent protein (eGFP) driven from the endogenous Pdgfra (PDGFRα-eGFP mice) revealed a unique population of PDGFRα(+) cells in the mucosal layer of colon. We investigated the phenotype and potential role of these cells, which have not been characterized previously. Expression of PDGFRα and several additional proteins was surveyed in human and murine colonic mucosae by immunolabeling; PDGFRα(+) cells in colonic mucosa were isolated from PDGFRα-eGFP mice, and the gene expression profile was analyzed by quantitative polymerase chain reaction. We found for the first time that PDGFRα was expressed in subepithelial cells (subepithelial PDGFRα(+) cells) forming a pericryptal sheath from the base to the tip of crypts. These cells were in close proximity to the basolateral surface of epithelial cells and distinct from subepithelial myofibroblasts, which were identified by expression of α-smooth muscle actin and smooth muscle myosin. PDGFRα(+) cells also lay in close proximity to varicose processes of nerve fibers. Mouse subepithelial PDGFRα(+) cells expressed Toll-like receptor genes, purinergic receptor genes, 5-hydroxytryptamine (5-HT) 4 receptor gene, and hedgehog signaling genes. Subepithelial PDGFRα(+) cells occupy an important niche in the lamina propria and may function in transduction of sensory and immune signals and in the maintenance of mucosal homeostasis.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jared B. Townsend
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
33
|
Chen Y, Zheng S, Qi D, Zheng S, Guo J, Zhang S, Weng Z. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 2012; 7:e46512. [PMID: 23056328 PMCID: PMC3463607 DOI: 10.1371/journal.pone.0046512] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is essential to the regulation of cell differentiation, and aberrant activation of this pathway is implicated in human fibrotic diseases, such as pulmonary, renal, and peritoneal fibrosis. However, the role of Notch signaling in hepatic fibrosis has not been fully investigated. In the present study, we show Notch signaling to be highly activated in a rat model of liver fibrosis induced by carbon tetrachloride (CCl4), as indicated by increased expression of Jagged1, Notch3, and Hes1. Blocking Notch signaling activation by a γ-secretase inhibitor, DAPT, significantly attenuated liver fibrosis and decreased the expression of snail, vimentin, and TGF-β1 in association with the enhanced expression of E-cadherin. The study in vitro revealed that DAPT treatment could suppress the EMT process of rat hepatic stellate cell line (HSC-T6). Interestingly, DAPT treatment was found not to affect hepatocyte proliferation in vivo. In contrast, DAPT can inhibit hepatocyte apoptosis to some degree. Our study provides the first evidence that Notch signaling is implicated in hepatic fibrogenesis and DAPT treatment has a protective effect on hepatocytes and ameliorates liver fibrosis. These findings suggest that the inhibition of Notch signaling might present a novel therapeutic approach for hepatic fibrosis.
Collapse
Affiliation(s)
- Yixiong Chen
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Shaoping Zheng
- Department of Ultrasonography, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Dan Qi
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Shaojiang Zheng
- Department of Pathology and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, People’s Republic of China
| | - Junli Guo
- Department of Pathology and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, People’s Republic of China
| | - Shuling Zhang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhihong Weng
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang HP, Li HH. Vaccination with platelet-derived growth factor B kinoids inhibits CCl₄-induced hepatic fibrosis in mice. J Pharmacol Exp Ther 2012; 342:835-42. [PMID: 22711911 DOI: 10.1124/jpet.112.194357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-derived growth factor B (PDGF-B) plays an essential role in hepatic fibrosis. Inhibition of the PDGF-B signaling in chronically injured livers might represent a potential therapeutic measure for hepatic fibrosis. In this study, we assessed the effects of vaccination against PDGF-B on CCl₄-induced liver fibrosis in BALB/c mice. The PDGF-B kinoid immunogens were prepared by cross-linking two PDGF-B-derived B-cell epitope peptides [PDGF-B¹⁶-(23-38) and PDGF-B¹⁶-(72-83)] to ovalbumin and keyhole limpet hemocyanin, respectively. Enzyme-linked immunosorbent assay, Western blotting, and NIH3T3 cell proliferation assay verified that immunization with the PDGF-B kinoids elicited the production of high levels of neutralizing anti-PDGF-B autoantibodies. The vaccination markedly alleviated CCl₄-induced hepatic fibrosis, as indicated by the lessened morphological alternations and reduced hydroxyproline contents in the mouse livers. Moreover, immunohistochemical staining for proliferating cell nuclear antigen, α-smooth muscle actin, and desmin demonstrated that neutralization of PDGF-B inhibited both the proliferation and the activation of hepatic stellate cells in the fibrotic mouse livers. Taken together, this study demonstrated that vaccination with PDGF-B kinoids significantly suppressed CCl₄-induced hepatic fibrosis in mice. Our results suggest that vaccination against PDGF-B might be developed into an effective, convenient, and safe therapeutic measure for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhi-Ming Hao
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yantaxilu, Xi'an 710061, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Li Q, Yan Z, Li F, Lu W, Wang J, Guo C. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells. NANOTECHNOLOGY 2012; 23:265101. [PMID: 22700686 DOI: 10.1088/0957-4484/23/26/265101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor- (PDGFR- ), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR- to deliver interferon (IFN)- to HSCs. The pPB-SSL-IFN- showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN- mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN- showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN- were less than those treated with SSL-IFN- , IFN- and the control group. In vitro pPB-SSL-IFN- was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN- might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Kassel KM, Sullivan BP, Luyendyk JP. Lipopolysaccharide enhances transforming growth factor β1-induced platelet-derived growth factor-B expression in bile duct epithelial cells. J Gastroenterol Hepatol 2012; 27:714-21. [PMID: 22004089 PMCID: PMC3262076 DOI: 10.1111/j.1440-1746.2011.06941.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Platelet-derived growth factor (PDGF)-B is a potent profibrogenic mediator expressed by bile duct epithelial cells (BDECs) that contributes to liver fibrosis after bile duct ligation. However, the mechanism of PDGF-B induction in BDECs during cholestasis is not known. Transforming growth factor β (TGFβ) and lipopolysaccharide (LPS) also contribute to the profibrogenic response after bile duct ligation. We tested the hypothesis that LPS and TGFβ1 synergistically induce PDGF-B expression in BDECs. METHODS Transformed human BDECs (MMNK-1 cells) and primary rat BDECs were stimulated with LPS and/or TGFβ1, and signaling pathways through which LPS potentiates TGFβ1-induced PDGF-B mRNA expression were investigated. RESULTS Stimulation of MMNK-1 cells with LPS alone did not significantly induce PDGF-B mRNA expression. However, LPS co-treatment enhanced TGFβ1 induction of PDGF-B mRNA in MMNK-1 cells and also in primary rat BDECs. Importantly, co-treatment of MMNK-1 cells with LPS and TGFβ1 also significantly increased PDGF-BB protein expression. Interestingly, LPS did not affect TGFβ1 activation of a SMAD-dependent reporter construct. Rather, stimulation of MMNK-1 cells with LPS, but not TGFβ1, increased JNK1/2 phosphorylation. Expression of dominant negative JNK2, but not dominant negative JNK1, inhibited the LPS potentiation of TGFβ1-induced PDGF-B mRNA expression in MMNK-1 cells. In addition, LPS treatment caused IκBα degradation and activation of a nuclear factor κB (NFκB)-dependent reporter construct. Expression of an IκBα super repressor inhibited activation of NFκB and attenuated LPS potentiation of TGFβ1-induced PDGF-B mRNA. CONCLUSIONS The results indicate that LPS activation of NFκB and JNK2 enhances TGFβ1-induced PDGF-B expression in BDECs.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
37
|
Wiedon A, Tölle M, Bastine J, Schuchardt M, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M. Uridine adenosine tetraphosphate (Up4A) is a strong inductor of smooth muscle cell migration via activation of the P2Y2 receptor and cross-communication to the PDGF receptor. Biochem Biophys Res Commun 2011; 417:1035-40. [PMID: 22214933 DOI: 10.1016/j.bbrc.2011.12.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
The recently discovered dinucleotide uridine adenosine tetraphosphate (Up(4)A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up(4)A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions our aim was to investigate the migration stimulating potential of Up(4)A. Indeed, we found a strong chemoattractant effect of Up(4)A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up(4)A mediates it's migratory signal mainly via the P2Y(2). The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-β we found a strongly reduced migration signal after Up(4)A stimulation in the PDGFR-β knockdown cells compared to control cells. In this study, we present substantiate data that Up(4)A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein OPN. We further suggest that the initiation of the migration process occurs predominant through direct activation of the P2Y(2) by Up(4)A and via transactivation of the PDGFR.
Collapse
Affiliation(s)
- Annette Wiedon
- Charité - Universitätsmedizin Berlin, CharitéCentrum, Department of Nephrology, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ge WS, Wu JX, Fan JG, Wang YJ, Chen YW. Inhibition of high-mobility group box 1 expression by siRNA in rat hepatic stellate cells. World J Gastroenterol 2011; 17:4090-4098. [PMID: 22039322 PMCID: PMC3203359 DOI: 10.3748/wjg.v17.i36.4090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of high-mobility group box 1 (HMGB1) protein during liver fibrogenesis and investigate the functional effects of HMGB1 gene silencing in hepatic stellate cells (HSCs) using siRNA. METHODS Hepatic fibrosis in rats was induced throu-gh serial subcutaneous injections of dimethylnitrosamine, and expression of HMGB1 was detected by immunohistochemistry. HMGB1 siRNAs were developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000. HMGB1 expression was evaluated by real-time polymerase chain reaction (PCR) and Western blotting analysis. Expression of α-smooth muscle actin (α-SMA) and collagen types I and III was evaluated by real-time PCR. Cell proliferation and the cell cycle were determined using the methyl thiazolyl tetrazolium method. Finally, collagen content in HSC supernatant was evaluated by an enzyme-linked immunosorbent assay. RESULTS The results showed that HMGB1 was upregulated during liver fibrosis and that its expression was closely correlated with the deposition of collagen. siRNA molecules were successfully transfected into HSCs and induced inhibition of HMGB1 expression in a time-dependent manner. Moreover, HMGB1 siRNA treatment inhibited synthesis of α-SMA and collagen types I and III in transfected HSCs. CONCLUSION This study suggests a significant fun-ctional role for HMGB1 in the development of liver fibrosis. It also demonstrates that downregulation of HMGB1 expression might be a potential strategy to treat liver fibrosis.
Collapse
Affiliation(s)
- Wen-Song Ge
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
39
|
Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1 to treat liver fibrosis. Pharm Res 2011; 28:752-61. [PMID: 21347569 DOI: 10.1007/s11095-011-0384-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
PURPOSE The objective was to determine the role of promoters and miRNA backbone in shRNA-based hepatic stellate cell (HSC)-specific transforming growth factor (TGF)-β1 gene silencing. This is expected to avoid the side effect of non-specific TGF-β1 gene silencing. METHODS Two most potent shRNAs targeting 769 and 1033 start sites of rat TGF-β1 mRNA were cloned into pSilencer 1.0 vector for enhanced TGF-β1 gene silencing. We then constructed HSC-specific pri-miRNA mimic and pri-miRNA cluster mimic expression plasmids in which shRNA expression was driven by a glial fibrillary acidic protein (GFAP) promoter to achieve HSC-specific TGF-β1 gene silencing to avoid nonspecific inhibition of TGF-β1 expression in other cells and organs. RESULTS These TGF-β1 pri-miRNA-producing plasmids showed the inhibition of proliferation and induced apoptosis of activated HSC-T6 cells. TGF-β1 pri-miRNA cluster mimic plasmids decreased TGF-β1 and collagen gene expression at both mRNA and protein levels. CONCLUSIONS GFAP promoter driven TGF-β1 pri-miRNA producing plasmids have the potential to be used for site-specific gene therapeutics to treat liver fibrosis.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 South Manassas, Memphis, Tennessee 38103-3308, USA
| | | |
Collapse
|
40
|
Abstract
Hepatic fibrosis is a common consequence in patients with chronic liver damage. To date, no agent has been approved for the treatment of hepatic fibrosis. RNA interference (RNAi) is known to be a powerful tool for post-transcriptional gene silencing and has opened new avenues in gene therapy. The problems of lack of cell specificity in vivo and subsequently the occurrence of side effects has hampered the development of hepatic fibrosis treatment. To overcome these shortcomings, several targeted strategies have been developed, such as hydrodynamics-based approaches, local administration, cell-type-selective ligands and cell-type-specific promoters or enhancers, etc. Here, we provide an overview of targeted strategies for the treatment of hepatic fibrosis, and particularly, targeted RNAi for hepatic fibrosis.
Collapse
Affiliation(s)
- Ping-Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
| | | |
Collapse
|
41
|
Zhong W, Shen WF, Ning BF, Hu PF, Lin Y, Yue HY, Yin C, Hou JL, Chen YX, Zhang JP, Zhang X, Xie WF. Inhibition of extracellular signal-regulated kinase 1 by adenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatology 2009; 50:1524-36. [PMID: 19787807 DOI: 10.1002/hep.23189] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Extracellular signal-regulated kinase 1 (ERK1) is a critical part of the mitogen-activated protein kinase signal transduction pathway, which is involved in hepatic fibrosis. However, the effect of down-regulation of ERK1 on hepatic fibrosis has not been reported. Here, we induced hepatic fibrosis in rats with dimethylnitrosamine administration or bile duct ligation. An adenovirus carrying small interfering RNA targeting ERK1 (AdshERK1) was constructed to determine its effect on hepatic fibrosis, as evaluated by histological and immunohistochemical examination. Our results demonstrated that AdshERK1 significantly reduced the expression of ERK1 and suppressed proliferation and levels of fibrosis-related genes in hepatic stellate cells in vitro. More importantly, selective inhibition of ERK1 remarkably attenuated the deposition of the extracellular matrix in fibrotic liver in both fibrosis models. In addition, both hepatocytes and biliary epithelial cells were proven to exert the ability to generate the myofibroblasts depending on the insults of the liver, which were remarkably reduced by AdshERK1. Furthermore, up-regulation of ERK1 paralleled the increased expression of transforming growth factor beta1 (TGF-beta1), vimentin, snail, platelet-derived growth factor-BB (PDGF-BB), bone morphogenetic protein 4 (BMP4), and small mothers against decapentaplegic-1 (p-Smad1), and was in reverse correlation with E-cadherin in the fibrotic liver. Nevertheless, inhibition of ERK1 resulted in the increased level of E-cadherin in parallel with suppression of TGF-beta1, vimentin, snail, PDGF-BB, BMP4, and p-Smad1. Interestingly, AdshERK1 treatment promoted hepatocellular proliferation. CONCLUSION Our study provides the first evidence for AdshERK1 suppression of hepatic fibrosis through the reversal of epithelial-mesenchymal transition of both hepatocytes and biliary epithelial cells without interference of hepatocellular proliferation. This suggests that ERK1 is implicated in hepatic fibrogenesis and selective inhibition of ERK1 by small interfering RNA may present a novel option for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 2009; 61:760-6. [PMID: 19386274 DOI: 10.1016/j.addr.2009.04.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/05/2009] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a potent and specific gene silencing event in which small interfering RNA (siRNA) degrades target mRNA. Therefore, RNAi is of potential use as a therapeutic approach for the treatment of a variety of diseases in which aberrant expression of mRNA causes a problem. RNAi can be achieved by delivering siRNA or vectors that transcribe siRNA or short-hairpin RNA (shRNA). The aim of this review is to examine the potential of nonviral vector-mediated RNAi technology in treating diseases. The characteristics of plasmid DNA expressing shRNA were compared with those of siRNA, focusing on the duration of gene silencing, delivery to target cells and target specificity. Recent progresses in prolonging the RNAi effect, improving the delivery to target cells and increasing the specificity of RNAi in vivo are also reviewed.
Collapse
|