1
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Jiang QL, Xu JY, Yao QP, Jiang R, Xu Q, Zhang BT, Li T, Jiang J. Transfer RNA-derived small RNA tRF-Glu-CTC attenuates neointimal formation via inhibition of fibromodulin. Cell Mol Biol Lett 2024; 29:2. [PMID: 38172726 PMCID: PMC10763295 DOI: 10.1186/s11658-023-00523-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-β1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.
Collapse
Affiliation(s)
- Qi-Lan Jiang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Ying Xu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Qing-Ping Yao
- Institute of Mechanobiology and Medical Engineering, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qin Xu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
3
|
Guo Q, Huang F, Qing Y, Feng S, Xiao X, Wang Y, Liang M, Wang T, Mitch WE, Cheng J. Decreased Jagged1 expression in vascular smooth muscle cells delays endothelial regeneration in arteriovenous graft. Cardiovasc Res 2020; 116:2142-2155. [PMID: 31913453 DOI: 10.1093/cvr/cvz333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS It is well-established that endothelial dysfunction promotes activation of vascular smooth muscle cell (VSMC). Whether decreased accumulation of VSMCs affects endothelial regeneration and functions in arteriovenous graft (AVG) remodelling has not been studied. We sought to identify mechanisms by which the Notch ligand, Jagged1, in VSMCs regulates endothelial cell (EC) functions in AVGs. METHODS AND RESULTS AVGs were created in transgenic mice bearing VSMC-specific knockout (KO) or overexpression of Jagged1. VSMC migration, EC regeneration, and its barrier functions as well as AVG remodelling were evaluated. Jagged1 expression was induced in VSMCs of neointima in the AVGs. Jagged1 KO in VSMCs inhibited the accumulation of extracellular matrix as well as VSMC migration. Fewer α-SMA-positive VSMCs were found in AVGs created in VSMC-specific Jagged1 KO mice (VSMCJagged1 KO mice) vs. in WT mice. Decreased VSMCs in AVGs were associated with deterioration of EC functions. In AVGs created in transgenic mice bearing Jagged1 KO in VSMCs exhibited delayed EC regeneration and impaired EC barrier function. Barrier dysfunction of ECs increased inflammatory cell infiltration and dysregulation of AVG remodelling and arterialization. The increased expression of IL-1β in macrophages was associated with expression of adhesion markers in ECs in AVGs created in VSMCJagged1 KO mice. In contrast, AVGs created in mice with overexpression of Jagged1 in VSMCs exhibited improved EC regeneration plus decreased macrophage infiltration. This led to AVG remodelling and arterialization. In co-cultures of ECs and VSMCs, Jagged1 deficiency in VSMCs suppressed N-cadherin and integrin β3 expression in ECs. Inhibition of integrin β3 activation delayed EC spreading and migration. Notably, Jagged1 overexpression in VSMCs or treatment with recombinant Jagged1 stimulated the expression of N-cadherin and integrin β3 in ECs. Jagged1-induced responses were blocked by inhibition of Notch signalling. CONCLUSIONS Jagged1 expression in VSMCs maintains EC barrier functions and blocks infiltration of macrophages. These responses promote remodelling and arterialization of AVGs.
Collapse
Affiliation(s)
- Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fengzhang Huang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ying Qing
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shaozhen Feng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiaoguang Xiao
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yun Wang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ming Liang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tao Wang
- Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E Mitch
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
4
|
Steger CM, Hartmann A, Rieker RJ. Molecular differences between arterial and venous grafts in the first year after coronary artery bypass grafting. Histochem Cell Biol 2020; 154:405-419. [PMID: 32705339 DOI: 10.1007/s00418-020-01896-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Despite commonly used for coronary artery bypass surgery, saphenous vein (SV) grafts have significantly lower patency rates in comparison to internal thoracic artery (ITA) grafts, which might be due to the structural characteristics of the vessel wall but also due to differences in oxidative stress adaptation and molecular signaling and regulation. This human post mortem study included a total of 150 human bypass grafts (75 SV grafts and 75 ITA grafts) obtained from 60 patients divided into five groups due to the time period of implantation: group 1: baseline group without grafting; group 2: 1 day; group 3: > 1 day-1 week; group 4: > 1 week-1 month; group 5: > 1 month-1 year. Pieces of 3 mm length were fixed with formaldehyde, dehydrated, wax embedded, cut into sections of 3 µm thickness, and histologically and immunohistochemically examined. Over the whole time period, we observed a lower neointima formation and a better preserved media in ITA grafts with a higher percentage of TNF-α, PDGFR-α, and VEGF-A in nearly all vessel wall layers, a higher amount of MMP-7, MMP-9, EGFR, and bFGF positive cells in SV grafts and a timely different peak not only between ITA and SV grafts but also within the various vessel wall layers of both graft types. Since most of the examined growth factors, growth factor receptors and cytokines are regulated by MAPKs, our results suggest an activation of different pathways in both vessel graft types immediately after bypass grafting.
Collapse
Affiliation(s)
- Christina Maria Steger
- Department of Pathology, Academic Teaching Hospital Feldkirch, Affiliation of the Innsbruck Medical University, Carinagasse 47, 6800, Feldkirch, Austria.
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Ralf Joachim Rieker
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| |
Collapse
|
5
|
Walimbe T, Panitch A. Proteoglycans in Biomedicine: Resurgence of an Underexploited Class of ECM Molecules. Front Pharmacol 2020; 10:1661. [PMID: 32082161 PMCID: PMC7000921 DOI: 10.3389/fphar.2019.01661] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Proteoglycans have emerged as biomacromolecules with important roles in matrix remodeling, homeostasis, and signaling in the past two decades. Due to their negatively charged glycosaminoglycan chains as well as distinct core protein structures, they interact with a variety of molecules, including matrix proteins, growth factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of glycan therapies in the 20th century, but this research was quickly overshadowed by readily available DNA and protein-based therapies. The recent development of recombinant technology and advances in our understanding of proteoglycan function have led to a resurgence of these molecules as potential therapeutics. This review focuses on the recent preclinical efforts that are bringing proteoglycan research and therapies back to the forefront. Examples of studies using proteoglycan cores and mimetics have also been included to give the readers a perspective on the wide-ranging and extensive applications of these versatile molecules. Collectively, these advances are opening new avenues for targeting diseases at a molecular level, and providing avenues for the development of new and exciting treatments in regenerative medicine.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Alyssa Panitch
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei HR, Salarinia R, Mirzaei H. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int 2019; 19:157. [PMID: 31198406 PMCID: PMC6558739 DOI: 10.1186/s12935-019-0870-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Fibromodulin (FMOD) is known as one of very important extracellular matrix small leucine-rich proteoglycans. This small leucine-rich proteoglycan has critical roles in the extracellular matrix organization and necessary for repairing of tissue in many organs. Given that the major task of FMOD is the modulation of collagen fibrillogenesis. However, recently observed that FMOD plays very important roles in the modulation of a variety of pivotal biological processes including angiogenesis, regulation of TGF-β activity, and differentiation of human fibroblasts into pluripotent cells, inflammatory mechanisms, apoptosis and metastatic related phenotypes. Besides these roles, FMOD has been considered as a new tumor-related antigen in some malignancies such as lymphoma, leukemia, and leiomyoma. Taken together, these findings proposed that FMOD could be introduced as diagnostic and therapeutic biomarkers in treatment of various cancers. Herein, for first time, we highlighted the various roles of FMOD in the cancerous conditions. Moreover, we summarized the diagnostic and therapeutic applications of FMOD in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Mohammadi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Somaye Noruzi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyede Atefe Hosseini
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- 3Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- 4Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Milad Hashemzehi
- Iranshahr University of Medical Sciences, Iranshahr, Iran.,6Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- 7Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
9
|
Yang Y, Wu QH, Li Y, Gao PJ. Association of SLRPs with carotid artery atherosclerosis in essential hypertensive patients. J Hum Hypertens 2018; 32:564-571. [DOI: 10.1038/s41371-018-0077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/26/2023]
|
10
|
Ruiter MS, Pesce M. Mechanotransduction in Coronary Vein Graft Disease. Front Cardiovasc Med 2018; 5:20. [PMID: 29594150 PMCID: PMC5861212 DOI: 10.3389/fcvm.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Autologous saphenous veins are the most commonly used conduits in revascularization of the ischemic heart by coronary artery bypass graft surgery, but are subject to vein graft failure. The current mini review aims to provide an overview of the role of mechanotransduction signalling underlying vein graft failure to further our understanding of the disease progression and to improve future clinical treatment. Firstly, limitation of damage during vein harvest and engraftment can improve outcome. In addition, cell cycle inhibition, stimulation of Nur77 and external grafting could form interesting therapeutic options. Moreover, the Hippo pathway, with the YAP/TAZ complex as the main effector, is emerging as an important node controlling conversion of mechanical signals into cellular responses. This includes endothelial cell inflammation, smooth muscle cell proliferation/migration, and monocyte attachment/infiltration. The combined effects of expression levels and nuclear/cytoplasmic translocation make YAP/TAZ interesting novel targets in the prevention and treatment of vein graft disease. Pharmacological, molecular and/or mechanical conditioning of saphenous vein segments between harvest and grafting may potentiate targeted and specific treatment to improve long-term outcome.
Collapse
Affiliation(s)
- Matthijs Steven Ruiter
- Cardiovascular Tissue Engineering Unit, Centro Cardiologico Monzino (IRCCS), Milan, Italy
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit, Centro Cardiologico Monzino (IRCCS), Milan, Italy
| |
Collapse
|
11
|
Dawoody Nejad L, Biglari A, Annese T, Ribatti D. Recombinant fibromodulin and decorin effects on NF-κB and TGFβ1 in the 4T1 breast cancer cell line. Oncol Lett 2017; 13:4475-4480. [PMID: 28599447 DOI: 10.3892/ol.2017.5960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/03/2017] [Indexed: 01/11/2023] Open
Abstract
Constitutive activation of nuclear factor-κB (NF-κB) stimulates cell proliferation and metastasis, and inhibits apoptosis in breast cancer. Transforming growth factor-β (TGF-β) signaling pathway is deregulated in breast cancer progression and metastasis. The aim of the present study was to investigate the inhibitory effects of the two small leucine rich proteoglycans fibromodulin (Fmod) and decorin (Dcn), overexpressed using adenovirus gene transfer, on NF-κB-activity and TGF-β1-expression in the highly metastatic 4T1 breast cancer cell line. The results demonstrate that Fmod and Dcn overexpression is associated with NF-κB and TGF-β1 downregulation, and that Fmod promotes this effect more effectively compared with Dcn.
Collapse
Affiliation(s)
- Ladan Dawoody Nejad
- Department of Molecular Medicine and Biochemistry Institute, University of Bern, 3012 Bern, Switzerland.,Department of Molecular Medicine and Genetics, Zanjan University of Medical Sciences, 45154 Zanjan, Iran
| | - Alireza Biglari
- Department of Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45154 Zanjan, Iran
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, I-70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, I-70124 Bari, Italy.,National Cancer Institute Giovanni Paolo II, I-70126 Bari, Italy
| |
Collapse
|
12
|
Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int 2015; 88:490-502. [PMID: 25786100 PMCID: PMC4677993 DOI: 10.1038/ki.2015.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/31/2023]
Abstract
A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. Since fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene (PTFE) grafts from patients with ESRD or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or PTFE grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1, suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow up.
Collapse
|
13
|
Appleby CE, Ranjzad P, Williams PD, Kakar SJ, Driessen A, Tijsma E, Fernandes B, Heagerty AM, Kingston PA. Periluminal expression of a secreted transforming growth factor-β type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer. Hum Gene Ther 2014; 25:443-51. [PMID: 24483849 DOI: 10.1089/hum.2013.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) has been shown unequivocally to enhance neointima formation in carotid and ileo-femoral arteries. In our previous studies, however, TGF-β1 expression in coronary arteries actually reduced neointima formation without affecting luminal loss postangioplasty, while expression of a TGF-β1 antagonist (RIIs) in balloon-injured coronary arteries reduced luminal loss without affecting neointima formation. These observed effects may be a consequence of the mode of coronary artery gene transfer employed, but they may also represent differences in the modes of healing of coronary, carotid, and ileo-femoral arteries after endoluminal injury. To help clarify whether a gene therapy strategy to antagonize TGF-β might have application within the coronary vasculature, we have investigated the effect of high-level periluminal expression of RIIs using stent-based adenovirus-mediated intracoronary gene transfer. Porcine coronary arteries were randomized to receive a custom-made CoverStent preloaded with saline only, or with 1×10(9) infectious units of adenovirus expressing RIIs or β-galactosidase (lacZ). Vessels were analyzed 28 days poststenting, at which time angiographic in-stent diameter was significantly greater in RIIs-treated arteries, and in-stent luminal loss significantly reduced. Computerized morphometric minimum in-stent lumen area was ~300% greater in RIIs-exposed vessels than in lacZ or saline-only groups. This was because of significantly reduced neointima formation in the RIIs group. RIIs had no demonstrable effect on cellular proliferation or apoptosis, but greater normalized neointimal/medial collagen content was observed in RIIs-exposed arteries. These data highlight the qualitatively similar effect of TGF-β antagonism on neointima formation in injured coronary and noncoronary arteries, and suggest that since cellular proliferation is unaffected, TGF-β1 antagonism might prevent in-stent restenosis without the delayed healing that is associated with drug-eluting stents in current clinical use.
Collapse
Affiliation(s)
- Clare E Appleby
- 1 Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester , Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng Z, Lee KS, Zhang X, Nguyen C, Hsu C, Wang JZ, Rackohn TM, Enjamuri DR, Murphy M, Ting K, Soo C. Fibromodulin-deficiency alters temporospatial expression patterns of transforming growth factor-β ligands and receptors during adult mouse skin wound healing. PLoS One 2014; 9:e90817. [PMID: 24603701 PMCID: PMC3948369 DOI: 10.1371/journal.pone.0090817] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022] Open
Abstract
Fibromodulin (FMOD) is a small leucine-rich proteoglycan required for scarless fetal cutaneous wound repair. Interestingly, increased FMOD levels have been correlated with decreased transforming growth factor (TGF)-β1 expression in multiple fetal and adult rodent models. Our previous studies demonstrated that FMOD-deficiency in adult animals results in delayed wound closure and increased scar size accompanied by loose package collagen fiber networks with increased fibril diameter. In addition, we found that FMOD modulates in vitro expression and activities of TGF-β ligands in an isoform-specific manner. In this study, temporospatial expression profiles of TGF-β ligands and receptors in FMOD-null and wild-type (WT) mice were compared by immunohistochemical staining and quantitative reverse transcriptase-polymerase chain reaction using a full-thickness, primary intention wound closure model. During the inflammatory stage, elevated inflammatory infiltration accompanied by increased type I TGF-β receptor levels in individual inflammatory cells was observed in FMOD-null wounds. This increased inflammation was correlated with accelerated epithelial migration during the proliferative stage. On the other hand, significantly more robust expression of TGF-β3 and TGF-β receptors in FMOD-null wounds during the proliferative stage was associated with delayed dermal cell migration and proliferation, which led to postponed granulation tissue formation and wound closure and increased scar size. Compared with WT controls, expression of TGF-β ligands and receptors by FMOD-null dermal cells was markedly reduced during the remodeling stage, which may have contributed to the declined collagen synthesis capability and unordinary collagen architecture. Taken together, this study demonstrates that a single missing gene, FMOD, leads to conspicuous alternations in TGF-β ligand and receptor expression at all stages of wound repair in various cell types. Therefore, FMOD critically coordinates temporospatial distribution of TGF-β ligands and receptors in vivo, suggesting that FMOD modulates TGF-β bioactivity in a complex way beyond simple physical binding to promote proper wound healing.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kevin S. Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Calvin Nguyen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chingyun Hsu
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joyce Z. Wang
- Department of Emergency Medicine, State University of New York Downstate/Kings Country Hospital Center, New York, New York, United States of America
| | - Todd Matthew Rackohn
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dwarak Reddy Enjamuri
- Department of Psychobiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maxwell Murphy
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Kobayashi N, Suzuki JI, Ogawa M, Aoyama N, Komuro I, Izumi Y, Isobe M. Porphyromonas gingivalis promotes neointimal formation after arterial injury through toll-like receptor 2 signaling. Heart Vessels 2013; 29:542-9. [PMID: 24002697 DOI: 10.1007/s00380-013-0405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023]
Abstract
We previously demonstrated that Porphyromonas gingivalis infection induces neointimal hyperplasia with an increase in monocyte chemoattractant protein (MCP)-1 after arterial injury in wild-type mice. Toll-like receptor (TLR) 2 is a key receptor for the virulence factors of P. gingivalis. The aim of this study was to assess whether TLR2 plays a role in periodontopathic bacteria-induced neointimal formation after an arterial injury. Wild-type and TLR2-deficient mice were used in this study. The femoral arteries were injured, and P. gingivalis or vehicle was injected subcutaneously once per week. Fourteen days after arterial injury, the murine femoral arteries were obtained for histopathologic and immunohistochemical analyses. The immunoglobulin-G levels of the P. gingivalis-infected groups were significantly increased in comparison with the level in the corresponding noninfected groups in both wild-type and TLR2-deficient mice. TLR2 deficiency negated the P. gingivalis-induced neointimal formation in comparison with the wild-type mice, and reduced the number of positive monocyte chemoattractant protein-1 cells in the neointimal area. These findings demonstrate that P. gingivalis infection can promote neointimal formation after an arterial injury through TLR2 signaling.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Morris GM, D'Souza A, Dobrzynski H, Lei M, Choudhury M, Billeter R, Kryukova Y, Robinson RB, Kingston PA, Boyett MR. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression. Cardiovasc Res 2013; 100:160-9. [DOI: 10.1093/cvr/cvt164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E–Null Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Cai Y, Knight WE, Guo S, Li JD, Knight PA, Yan C. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration. J Pharmacol Exp Ther 2012; 343:479-88. [PMID: 22915768 PMCID: PMC3477207 DOI: 10.1124/jpet.112.195446] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/16/2012] [Indexed: 12/11/2022] Open
Abstract
Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.
Collapse
Affiliation(s)
- Yujun Cai
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Many drugs that target transforming growth factor-β (TGFβ) signalling have been developed, some of which have reached Phase III clinical trials for a number of disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome. Here, we consider why the TGFβ signalling pathway is a drug target, the potential clinical applications of TGFβ inhibition, the issues arising with anti-TGFβ therapy and how these might be tackled using personalized approaches to dosing, monitoring of biomarkers as well as brief and/or localized drug-dosing regimens.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA.
| | | |
Collapse
|
20
|
Abstract
Autologous saphenous vein is commonly used as a conduit to bypass atherosclerotic lesions in coronary and femoral arteries. Despite the wide use of arterial conduits, which are less susceptible to complications and failure, as alternative conduits, the saphenous vein will continue to be used in coronary artery bypass grafting until acceptable alternative approaches are evaluated. Hence, preservation of vein graft patency is essential for the long-term success. Gene therapy is attractive in this setting as an ex-vivo technology to genetically manipulate the conduit before grafting. The use of safe and efficient vectors for delivery is a necessity as well as a strategy to improve patency in the long term. Here, we review the current clinical practice, the pathogenesis of bypass graft failure and adenovirus-mediated gene therapy strategies designed to improve late vein graft failure by modulation of smooth muscle cells in the vein wall.
Collapse
|
21
|
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality in the Western world. Despite tremendous strides in understandings its pathogenesis, it still remains a challenge because of gaps in our understanding of its initiation, progression and complications leading to the clinical syndromes of angina, acute coronary syndrome, cerebrovascular disease and peripheral vascular disease. Recent studies have provided impetus on the shift from models of atherosclerosis based on cellular interactions to models where the important role of extracellular matrix is recognized. Proteoglycans, especially those belonging to the small leucine-rich proteoglycan family of which decorin is a representative example, have come under close scrutiny for their role in atherogenesis. There is evidence from in vitro and in vivo animal models as well as humans to suggest an important role of decorin in attenuating progression of atherosclerosis. Decorin distribution in different blood vessels has been shown to inversely correlate with the tendency to develop atherosclerosis. Decorin seems to interact closely with different cellular components of the plaque milieu, thereby suggesting its role in influencing atherogenesis at different steps. Here we review the current understanding of the role of decorin in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Singla
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
22
|
Osherov AB, Gotha L, Cheema AN, Qiang B, Strauss BH. Proteins mediating collagen biosynthesis and accumulation in arterial repair: novel targets for anti-restenosis therapy. Cardiovasc Res 2011; 91:16-26. [PMID: 21245059 DOI: 10.1093/cvr/cvr012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Events contributing to restenosis after coronary interventions include platelet aggregation, inflammatory cell infiltration, growth factor release, and accumulation of smooth muscle cells (SMCs) and extracellular matrix (ECM). The ECM is composed of various collagen subtypes and proteoglycans and over time constitutes the major component of the mature restenotic plaque. The pathophysiology of collagen accumulation in the ECM during arterial restenosis is reviewed. Factors regulating collagen synthesis and degradation, including various cytokines and growth factors involved in the process, may be targets for therapies aimed at prevention of in-stent restenosis.
Collapse
Affiliation(s)
- Azriel B Osherov
- Schulich Heart Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room A-253, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | |
Collapse
|
23
|
Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J 2010; 74:1501-12. [PMID: 20606326 PMCID: PMC3662001 DOI: 10.1253/circj.cj-10-0495] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Vein grafts adapt to the arterial environment, and the limited formation of intimal hyperplasia in the vein graft wall is thought to be an important component of successful vein graft adaptation. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia, and ultimately vein graft failure and clinical complications. Therefore, understanding the venous-specific pathophysiological and molecular mechanisms of vein graft adaptation are important for clinical vein graft management. Of particular importance, it is currently unknown whether there exist several specific distinct molecular differences in the venous mechanisms of adaptation that are distinct from arterial post-injury responses; in particular, the participation of the venous determinant Eph-B4 and the vascular protective molecule Nogo-B may be involved in mechanisms of vessel remodeling specific to the vein. This review describes (1) venous biology from embryonic development to the mature quiescent state, (2) sequential pathologies of vein graft neointima formation, and (3) novel candidates for strategies of vein graft management. Scientific inquiry into venous-specific adaptation mechanisms will ultimately provide improvements in vein graft clinical outcomes.
Collapse
Affiliation(s)
- Akihito Muto
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Lynn Model
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Kenneth Ziegler
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Sammy D.D. Eghbalieh
- Interdepartmental Program in Vascular Biology and Therapeutics
- St. Mary's Hospital, Waterbury, CT
| | - Alan Dardik
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
- the VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|