1
|
Chen Y, Chen X, Zhang Y, Wang M, Yang M, Wang R, Yan X, Shao S, Xin H, Hu Q, Wei W, Ping Y. Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice. Sci Transl Med 2025; 17:eadl5800. [PMID: 39813319 DOI: 10.1126/scitranslmed.adl5800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo. We identified a four-arm branched PBAE with 1-(2-aminoethyl)-4-methylpiperazine end-capping (PBAE29) that enables highly efficient macrophage transfection. PBAE29-mediated transfection of cultured macrophages stimulated less inflammatory cytokine production and inflammasome activation compared with traditional lipofectamine or electroporation-mediated plasmid delivery. Transfection efficiency was further improved by delivering CasRx by minicircle plasmid. The MAGE system incorporated a layer of carboxylated-mannan coating to target macrophage mannose receptors and a macrophage-specific promoter for enhanced selectivity. The delivery of CasRx with guide RNA targeting the transcripts for sialic acid-binding immunoglobulin similar to lectin 10 and signal regulatory protein alpha expression resulted in effective protein knockdown, improving macrophage phagocytosis. The MAGE system also showed efficacy in targeting macrophages in vivo, stimulating antitumor immune responses and reducing tumor volume in murine tumor models, including patient-derived pancreatic adenocarcinoma xenografts in humanized mice. In sum, the MAGE system presents a promising platform for in vivo macrophage-specific delivery of RNA editing tools that can be applied as a cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Chen
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Xiaohong Chen
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yao Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Minqi Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiji Wang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shiyi Shao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huhu Xin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qida Hu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
2
|
Pan Z, Lv J, Zhao L, Xing K, Ye R, Zhang Y, Chen S, Yang P, Yu H, Lin Y, Li R, Wang D, Fang J, Dong Y, Sheng J, Wang X, Shan G, Zhang S, Cheng H, Xu Q, Guo X. CircARCN1 aggravates atherosclerosis by regulating HuR-mediated USP31 mRNA in macrophages. Cardiovasc Res 2024; 120:1531-1549. [PMID: 39028686 DOI: 10.1093/cvr/cvae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/08/2024] [Accepted: 05/05/2024] [Indexed: 07/21/2024] Open
Abstract
AIMS Circular RNAs (circRNAs) are considered important regulators of biological processes, but their impact on atherosclerosis development, a key factor in coronary artery disease (CAD), has not been fully elucidated. We aimed to investigate their potential use in patients with CAD and the pathogenesis of atherosclerosis. METHODS AND RESULTS Patients with stable angina (SA) or acute coronary syndrome (ACS) and controls were selected for transcriptomic screening and quantification of circRNAs in blood cells. We stained carotid plaque samples for circRNAs and performed gain- and loss-of-function studies in vitro. Western blots, protein interaction analysis, and molecular approaches were used to perform the mechanistic study. ApoE-/- mouse models were employed in functional studies with adeno-associated virus-mediated genetic intervention. We demonstrated elevated circARCN1 expression in peripheral blood mononuclear cells from patients with SA or ACS, especially in those with ACS. Furthermore, higher circARCN1 levels were associated with a higher risk of developing SA and ACS. We also observed elevated expression of circARCN1 in carotid artery plaques. Further analysis indicated that circARCN1 was mainly expressed in monocytes and macrophages, which was also confirmed in atherosclerotic plaques. Our in vitro studies provided evidence that circARCN1 affected the interaction between HuR and ubiquitin-specific peptidase 31 (USP31) mRNA, resulting in attenuated USP31-mediated NF-κB activation. Interestingly, macrophage accumulation and inflammation in atherosclerotic plaques were markedly decreased when circARCN1 was knocked down with adeno-associated virus in macrophages of ApoE-/- mice, while circARCN1 overexpression in the model exacerbated atherosclerotic lesions. CONCLUSIONS Our findings provide solid evidence macrophagic-expressed circARCN1 plays a role in atherosclerosis development by regulating HuR-mediated USP31 mRNA stability and NF-κB activation, suggesting that circARCN1 may serve as a factor for atherosclerotic lesion formation.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Acute Coronary Syndrome/genetics
- Acute Coronary Syndrome/pathology
- Acute Coronary Syndrome/metabolism
- Angina, Stable/genetics
- Angina, Stable/metabolism
- Angina, Stable/pathology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/pathology
- Case-Control Studies
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Coronary Artery Disease/metabolism
- Disease Models, Animal
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- NF-kappa B/metabolism
- Plaque, Atherosclerotic
- RAW 264.7 Cells
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Signal Transduction
- THP-1 Cells
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/metabolism
Collapse
Affiliation(s)
- Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaidi Xing
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runze Ye
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuesheng Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangkai Lin
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruobing Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Dong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianpeng Sheng
- Zhejiang Province Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, China
| | - Shan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Xu J, Gao C, He Y, Fang X, Sun D, Peng Z, Xiao H, Sun M, Zhang P, Zhou T, Yang X, Yu Y, Li R, Zou X, Shu H, Qiu Y, Zhou X, Yuan S, Yao S, Shang Y. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Mol Ther 2023; 31:154-173. [PMID: 36068919 PMCID: PMC9840117 DOI: 10.1016/j.ymthe.2022.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023] Open
Abstract
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhekang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hairong Xiao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaomiao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210016, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Zhang Q, Yu FX, Wu YL, Yang CY, Liu NC, Zhu X, Zhao PM, Wang ZY, Lin J. Novel gene therapy for rheumatoid arthritis with single local injection: adeno-associated virus-mediated delivery of A20/TNFAIP3. Mil Med Res 2022; 9:34. [PMID: 35729676 PMCID: PMC9210758 DOI: 10.1186/s40779-022-00393-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Qin Zhang
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001 Jiangsu China
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| | - Fang-Xing Yu
- Department of Gene Therapy, CureGenetics Co., Ltd., Suzhou, 215021 Jiangsu China
| | - Yang-Lin Wu
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001 Jiangsu China
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| | - Cheng-Yuan Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| | - Nai-Cheng Liu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| | - Xu Zhu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| | - Pi-Ming Zhao
- Department of Gene Therapy, CureGenetics Co., Ltd., Suzhou, 215021 Jiangsu China
| | - Zhong-Ya Wang
- Department of Gene Therapy, CureGenetics Co., Ltd., Suzhou, 215021 Jiangsu China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001 Jiangsu China
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006 Jiangsu China
| |
Collapse
|
5
|
Johnson AO, Fowler SB, Webster CI, Brown AJ, James DC. Bioinformatic Design of Dendritic Cell-Specific Synthetic Promoters. ACS Synth Biol 2022; 11:1613-1626. [PMID: 35389220 PMCID: PMC9016764 DOI: 10.1021/acssynbio.2c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Next-generation DNA vectors for cancer
immunotherapies and vaccine
development require promoters eliciting predefined transcriptional
activities specific to target cell types, such as dendritic cells
(DCs), which underpin immune response. In this study, we describe
the de novo design of DC-specific synthetic promoters via in silico assembly of cis-transcription
factor response elements (TFREs) that harness the DC transcriptional
landscape. Using computational genome mining approaches, candidate
TFREs were identified within promoter sequences of highly expressed
DC-specific genes or those exhibiting an upregulated expression during
DC maturation. Individual TFREs were then screened in vitro in a target DC line and off-target cell lines derived from skeletal
muscle, fibroblast, epithelial, and endothelial cells using homotypic
(TFRE repeats in series) reporter constructs. Based on these data,
a library of heterotypic promoter assemblies varying in the TFRE composition,
copy number, and sequential arrangement was constructed and tested in vitro to identify DC-specific promoters. Analysis of
the transcriptional activity and specificity of these promoters unraveled
underlying design rules, primarily TFRE composition, which govern
the DC-specific synthetic promoter activity. Using these design rules,
a second library of exclusively DC-specific promoters exhibiting varied
transcriptional activities was generated. All DC-specific synthetic
promoter assemblies exhibited >5-fold activity in the target DC
line
relative to off-target cell lines, with transcriptional activities
ranging from 8 to 67% of the nonspecific human cytomegalovirus (hCMV-IE1)
promoter. We show that bioinformatic analysis of a mammalian cell
transcriptional landscape is an effective strategy for de
novo design of cell-type-specific synthetic promoters with
precisely controllable transcriptional activities.
Collapse
Affiliation(s)
- Abayomi O. Johnson
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - Susan B. Fowler
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Carl I. Webster
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Adam J. Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| |
Collapse
|
6
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Wang P, Ni M, Tian Y, Wang H, Qiu J, You W, Wei S, Shi Y, Zhou J, Cheng F, Rao J, Lu L. Myeloid Nrf2 deficiency aggravates non-alcoholic steatohepatitis progression by regulating YAP-mediated NLRP3 inflammasome signaling. iScience 2021; 24:102427. [PMID: 34041450 PMCID: PMC8141901 DOI: 10.1016/j.isci.2021.102427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nuclear-erythroid-2-related factor 2 (Nrf2) is involved in the pathogenesis of different liver diseases. Herein, we first demonstrated that Nrf2 expression was diminished in nonalcoholic steatohepatitis (NASH) liver macrophages. In myeloid Nrf2-deficiency mice, aggravated liver steatosis and inflammation in high-fat-diet (HFD)-fed mice were observed compared with the chow-diet group. Moreover, the increasing inflammatory cytokines influenced the lipid metabolism in hepatocytes in vivo and in vitro. Further study showed Nrf2 regulated reactive-oxygen-species-mediated Hippo-yes-associated protein (YAP) signaling, which in turn modulated the NLRP3 inflammasome activation. Administration of YAP activator also significantly ablated the lipid accumulation and inhibited the NLRP3 activation in the Nrf2 deletion condition both in vitro and vivo. Overexpression Nrf2 in liver macrophages effectively alleviated steatohepatitis in wild-type mice fed with an HFD . Our data support that by modulating YAP-mediated NLRP3 inflammasome activity, macrophage Nrf2 slows down NASH progression.
Collapse
Affiliation(s)
- Peng Wang
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Ming Ni
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Yizhu Tian
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Hao Wang
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Wenhua You
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Song Wei
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Yong Shi
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Jianhua Rao
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center of The First Affiliated Hospital and The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), School of Biomedical Engineering and Informatics, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 300 Guang Zhou Road, Nanjing, China
| |
Collapse
|
8
|
Zhang H, Xu A, Sun X, Yang Y, Zhang L, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Wu W, Yang D, Zhang Y, Xu Y, Chen Q. Self-Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced Cardiomyopathy Through the SR-A1-c-Myc Axis. Circ Res 2020; 127:610-627. [PMID: 32466726 DOI: 10.1161/circresaha.119.316428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Doxorubicin-induced cardiomyopathy (DiCM) is a primary cause of heart failure and mortality in cancer patients, in which macrophage-orchestrated inflammation serves as an essential pathological mechanism. However, the specific roles of tissue-resident and monocyte-derived macrophages in DiCM remain poorly understood. OBJECTIVE Uncovering the origins, phenotypes, and functions of proliferative cardiac resident macrophages and mechanistic insights into the self-maintenance of cardiac macrophage during DiCM progression. METHODS AND RESULTS Mice were administrated with doxorubicin to induce cardiomyopathy. Dynamic changes of resident and monocyte-derived macrophages were examined by lineage tracing, parabiosis, and bone marrow transplantation. We found that the monocyte-derived macrophages primarily exhibited a proinflammatory phenotype that dominated the whole DiCM pathological process and impaired cardiac function. In contrast, cardiac resident macrophages were vulnerable to doxorubicin insult. The survived resident macrophages exhibited enhanced proliferation and conferred a reparative role. Global or myeloid specifically ablation of SR-A1 (class A1 scavenger receptor) inhibited proliferation of cardiac resident reparative macrophages and, therefore, exacerbated cardiomyopathy in DiCM mice. Importantly, the detrimental effect of macrophage SR-A1 deficiency was confirmed by transplantation of bone marrow. At the mechanistic level, we show that c-Myc (Avian myelocytomatosis virus oncogene cellular homolog), a key transcriptional factor for the SR-A1-P38-SIRT1 (Sirtuin 1) pathway, mediated the effect of SR-A1 in reparative macrophage proliferation in DiCM. CONCLUSIONS The SR-A1-c-Myc axis may represent a promising target to treat DiCM through augmentation of cardiac resident reparative macrophage proliferation.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Cardiomyopathy, Dilated/chemically induced
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Proliferation
- Cell Self Renewal
- Cells, Cultured
- Disease Models, Animal
- Doxorubicin
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/enzymology
- Myocardium/pathology
- Phenotype
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Scavenger Receptors, Class A/deficiency
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Signal Transduction
- Ventricular Remodeling
Collapse
Affiliation(s)
- Hanwen Zhang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Andi Xu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xuan Sun
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Department of Cardiology, Nanjing Drum Tower Hospital, China (X.S.)
| | - Yaqing Yang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Lai Zhang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Hui Bai
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Jingjing Ben
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xudong Zhu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xiaoyu Li
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Qing Yang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Zidun Wang
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, China (Z.W., D.Y.)
| | - Wei Wu
- Bioinformatics (W.W.), Nanjing Medical University, China
| | - Di Yang
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, China (Z.W., D.Y.)
| | | | - Yong Xu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Qi Chen
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| |
Collapse
|
9
|
Bai J, Wang X, Wu H, Ling F, Zhao Y, Lin Y, Wang R. Comprehensive construction strategy of bidirectional green tissue-specific synthetic promoters. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:668-678. [PMID: 31393049 PMCID: PMC7004895 DOI: 10.1111/pbi.13231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Bidirectional green tissue-specific promoters have important application prospects in genetic engineering and crop genetic improvement. However, there is no report on the application of them, mainly due to undiscovered natural bidirectional green tissue-specific promoters and the lack of a comprehensive approach for the synthesis of these promoters. In order to compensate for this vacancy, the present study reports a novel strategy for the expression regulatory sequence selection and the bidirectional green tissue-specific synthetic promoter construction. Based on this strategy, seven promoters were synthesized and introduced into rice by agrobacterium-mediated transformation. The functional identification of these synthetic promoters was performed by the expression pattern of GFP and GUS reporter genes in two reverse directions in transgenic rice. The results indicated that all the synthetic promoters possessed bidirectional expression activities in transgenic rice, and four synthetic promoters (BiGSSP2, BiGSSP3, BiGSSP6, BiGSSP7) showed highly bidirectional expression efficiencies specifically in green tissues (leaf, sheath, panicle, stem), which could be widely applied to agricultural biotechnology. Our study provided a feasible strategy for the construction of synthetic promoters, and we successfully created four bidirectional green tissue-specific synthetic promoters. It is the first report on bidirectional green tissue-specific promoters that could be efficiently applied in genetic engineering.
Collapse
Affiliation(s)
- Jiuyuan Bai
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Xin Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Fei Ling
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Yun Zhao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| |
Collapse
|
10
|
Tang J, Sun M, Shi G, Xu Y, Han Y, Li X, Dong W, Zhan L, Qin C. Toll-Like Receptor 8 Agonist Strengthens the Protective Efficacy of ESAT-6 Immunization to Mycobacterium tuberculosis Infection. Front Immunol 2018; 8:1972. [PMID: 29416532 PMCID: PMC5787779 DOI: 10.3389/fimmu.2017.01972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests important functions for human Toll-like receptor 8 in vivo in tuberculosis and autoimmune diseases. However, these studies are limited by the lack of specific agonists and by the fact that the homology of TLR8 in human and mice is not sufficient to rely on mouse models. In this study, we examined the role of human TLR8 in the disease progression of experimental Mycobacterium tuberculosis (Mtb) infection, as well as the benefits provided by a TLR8 agonist against Mtb challenge in a human TLR8 transgenic mouse. We found that the expression of human TLR8 in C57BL/6 mice permits higher bacilli load in tissues. A vaccine formulated with ESAT-6, aluminum hydroxide, and TLR8 agonist provided protection against Mtb challenge, with a high percentage of CD44hiCD62Lhi TCM. Using ovalbumin as a model antigen, we demonstrated that the activation of TLR8 enhanced the innate and adaptive immune response, and provided a sustained TCM formation and Th1 type humoral response, which were mainly mediated by type I IFN signaling. Further research is required to optimize the vaccine formulation and seek optimal combinations of different TLR agonists, such as TLR4, for better adjuvanticity in this animal model.
Collapse
Affiliation(s)
- Jun Tang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Mengmeng Sun
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Yunlin Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Xiang Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Wei Dong
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| |
Collapse
|
11
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
12
|
Kong D, Shen Y, Liu G, Zuo S, Ji Y, Lu A, Nakamura M, Lazarus M, Stratakis CA, Breyer RM, Yu Y. PKA regulatory IIα subunit is essential for PGD2-mediated resolution of inflammation. J Exp Med 2016; 213:2209-26. [PMID: 27621415 PMCID: PMC5030806 DOI: 10.1084/jem.20160459] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/12/2016] [Indexed: 12/28/2022] Open
Abstract
The kinetic participation of macrophages is critical for inflammatory resolution and recovery from myocardial infarction (MI), particularly with respect to the transition from the M1 to the M2 phenotype; however, the underlying mechanisms are poorly understood. In this study, we found that the deletion of prostaglandin (PG) D2 receptor subtype 1 (DP1) in macrophages retarded M2 polarization, antiinflammatory cytokine production, and resolution in different inflammatory models, including the MI model. DP1 deletion up-regulated proinflammatory genes expression via JAK2/STAT1 signaling in macrophages, whereas its activation facilitated binding of the separated PKA regulatory IIα subunit (PRKAR2A) to the transmembrane domain of IFN-γ receptor, suppressed JAK2-STAT1 axis-mediated M1 polarization, and promoted resolution. PRKAR2A deficiency attenuated DP1 activation-mediated M2 polarization and resolution of inflammation. Collectively, PGD2-DP1 axis-induced M2 polarization facilitates resolution of inflammation through the PRKAR2A-mediated suppression of JAK2/STAT1 signaling. These observations indicate that macrophage DP1 activation represents a promising strategy in the management of inflammation-associated diseases, including post-MI healing.
Collapse
Affiliation(s)
- Deping Kong
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujun Shen
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guizhu Liu
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengkai Zuo
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Ji
- The Key Laboratory of Cardiovascular Disease and Molecular Intervention, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ankang Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki 305-8575, Japan
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37212 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ying Yu
- Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
13
|
MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun 2016; 7:10492. [PMID: 26832969 PMCID: PMC4740400 DOI: 10.1038/ncomms10492] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. Vascular calcification (VC) increases morbidity and mortality in cardiovascular and metabolic diseases. Here, Kwon et al. show that calcification stimuli induce MDM2- mediated ubiquitination and proteasomal degradation of HDAC1, suggesting a possible therapeutic strategy for treatment of VC patients.
Collapse
|
14
|
Wang R, Zhu M, Ye R, Liu Z, Zhou F, Chen H, Lin Y. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice. Sci Rep 2015; 5:18256. [PMID: 26655679 PMCID: PMC4676006 DOI: 10.1038/srep18256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 02/02/2023] Open
Abstract
As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.
Collapse
Affiliation(s)
- Rui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Menglin Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Rongjian Ye
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zuoxiong Liu
- College of Foreign Language, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Dang W, Tang H, Cao H, Wang L, Zhang X, Tian W, Pang X, Li K, Chen T. Strategy of STAT3β cell-specific expression in macrophages exhibits antitumor effects on mouse breast cancer. Gene Ther 2015; 22:977-83. [PMID: 26181625 DOI: 10.1038/gt.2015.70] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/27/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
Recent studies underscore the importance of crosstalk between tumor-associated macrophages (TAMs) and tumor cells in cancer progression and metastasis. In our study, AdCD68STAT3β, a recombinant adenovirus containing a STAT3β gene driven by CD68 macrophage-specific promoter, was used to suppress STAT3 and the downstream signaling pathways in TAMs. The results showed that STAT3β gene under the control of CD68 macrophage-specific promoter was only expressed in macrophages, which significantly inhibited the motility and invasion of breast cancer cells when co-cultured with 4T1 cells. Moreover, cell-specific STAT3β expression in TAMs extended survival of tumor-bearing mice and suppressed breast tumor growth, angiogenesis and metastasis, by regulating the crosstalk between tumor cells and TAMs. Therefore, our study provided a novel strategy for the antitumor effects of STAT3β.
Collapse
Affiliation(s)
- W Dang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - H Tang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - H Cao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - L Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - X Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - W Tian
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - X Pang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - K Li
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - T Chen
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
The prevention and treatment of hypoadiponectinemia-associated human diseases by up-regulation of plasma adiponectin. Life Sci 2015; 135:55-67. [DOI: 10.1016/j.lfs.2015.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
|
17
|
Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice. Gene Ther 2015; 22:645-52. [PMID: 25871825 DOI: 10.1038/gt.2015.33] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.
Collapse
|
18
|
Li J, Zhang P, Li T, Liu Y, Zhu Q, Chen T, Liu T, Huang C, Zhang J, Zhang Y, Guo Y. CTRP9 enhances carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. Biochem Biophys Res Commun 2015; 458:890-5. [DOI: 10.1016/j.bbrc.2015.02.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
|