1
|
Bullock G, Johnson GS, Pattridge SG, Mhlanga-Mutangadura T, Guo J, Cook J, Campbell RS, Vite CH, Katz ML. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes (Basel) 2023; 14:1746. [PMID: 37761886 PMCID: PMC10531151 DOI: 10.3390/genes14091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A 7-month-old Doberman Pinscher dog presented with progressive neurological signs and brain atrophy suggestive of a hereditary neurodegenerative disorder. The dog was euthanized due to the progression of disease signs. Microscopic examination of tissues collected at the time of euthanasia revealed massive accumulations of vacuolar inclusions in cells throughout the central nervous system, suggestive of a lysosomal storage disorder. A whole genome sequence generated with DNA from the affected dog contained a likely causal, homozygous missense variant in MAN2B1 that predicted an Asp104Gly amino acid substitution that was unique among whole genome sequences from over 4000 dogs. A lack of detectable α-mannosidase enzyme activity confirmed a diagnosis of a-mannosidosis. In addition to the vacuolar inclusions characteristic of α-mannosidosis, the dog exhibited accumulations of autofluorescent intracellular inclusions in some of the same tissues. The autofluorescence was similar to that which occurs in a group of lysosomal storage disorders called neuronal ceroid lipofuscinoses (NCLs). As in many of the NCLs, some of the storage bodies immunostained strongly for mitochondrial ATP synthase subunit c protein. This protein is not a substrate for α-mannosidase, so its accumulation and the development of storage body autofluorescence were likely due to a generalized impairment of lysosomal function secondary to the accumulation of α-mannosidase substrates. Thus, it appears that storage body autofluorescence and subunit c accumulation are not unique to the NCLs. Consistent with generalized lysosomal impairment, the affected dog exhibited accumulations of intracellular inclusions with varied and complex ultrastructural features characteristic of autophagolysosomes. Impaired autophagic flux may be a general feature of this class of disorders that contributes to disease pathology and could be a target for therapeutic intervention. In addition to storage body accumulation, glial activation indicative of neuroinflammation was observed in the brain and spinal cord of the proband.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA;
| | - Rebecca S. Campbell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Mitchell NL, Murray SJ, Wellby MP, Barrell GK, Russell KN, Deane AR, Wynyard JR, Palmer MJ, Pulickan A, Prendergast PM, Casy W, Gray SJ, Palmer DN. Long-term safety and dose escalation of intracerebroventricular CLN5 gene therapy in sheep supports clinical translation for CLN5 Batten disease. Front Genet 2023; 14:1212228. [PMID: 37614821 PMCID: PMC10442658 DOI: 10.3389/fgene.2023.1212228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
CLN5 neuronal ceroid lipofuscinosis (NCL, Batten disease) is a rare, inherited fatal neurodegenerative disorder caused by mutations in the CLN5 gene. The disease is characterised by progressive neuronal loss, blindness, and premature death. There is no cure. This study evaluated the efficacy of intracerebroventricular (ICV) delivery of an adeno-associated viral vector encoding ovine CLN5 (scAAV9/oCLN5) in a naturally occurring sheep model of CLN5 disease. CLN5 affected (CLN5-/-) sheep received low, moderate, or high doses of scAAV9/oCLN5 at three disease stages. The treatment delayed disease progression, extended survival and slowed stereotypical brain atrophy in most animals. Of note, one high dose treated animal only developed mild disease symptomology and survived to 60.1 months of age, triple the natural life expectancy of an untreated CLN5-/- sheep. Eyesight was not preserved at any administration age or dosage. Histopathologic examination revealed that greater transduction efficiency was achieved through higher ICV doses, and this resulted in greater amelioration of disease pathology. Together with other pre-clinical data from CLN5-/- sheep, the safety and efficacy data from these investigational new drug (IND)-enabling studies supported the initiation of the first in-human CLN5 gene therapy clinical study using the ICV delivery route for the treatment of CLN5 NCL. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05228145.
Collapse
Affiliation(s)
- Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P. Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K. Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N. Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Ashley R. Deane
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - John R. Wynyard
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Madeleine J. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Anila Pulickan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | - Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
3
|
Knoernschild K, Johnson HJ, Schroeder KE, Swier VJ, White KA, Sato TS, Rogers CS, Weimer JM, Sieren JC. Magnetic resonance brain volumetry biomarkers of CLN2 Batten disease identified with miniswine model. Sci Rep 2023; 13:5146. [PMID: 36991106 PMCID: PMC10060411 DOI: 10.1038/s41598-023-32071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease (Batten disease) is a rare pediatric disease, with symptom development leading to clinical diagnosis. Early diagnosis and effective tracking of disease progression are required for treatment. We hypothesize that brain volumetry is valuable in identifying CLN2 disease at an early stage and tracking disease progression in a genetically modified miniswine model. CLN2R208X/R208X miniswine and wild type controls were evaluated at 12- and 17-months of age, correlating to early and late stages of disease progression. Magnetic resonance imaging (MRI) T1- and T2-weighted data were acquired. Total intercranial, gray matter, cerebrospinal fluid, white matter, caudate, putamen, and ventricle volumes were calculated and expressed as proportions of the intracranial volume. The brain regions were compared between timepoints and cohorts using Gardner-Altman plots, mean differences, and confidence intervals. At an early stage of disease, the total intracranial volume (- 9.06 cm3), gray matter (- 4.37% 95 CI - 7.41; - 1.83), caudate (- 0.16%, 95 CI - 0.24; - 0.08) and putamen (- 0.11% 95 CI - 0.23; - 0.02) were all notably smaller in CLN2R208X/R208X miniswines versus WT, while cerebrospinal fluid was larger (+ 3.42%, 95 CI 2.54; 6.18). As the disease progressed to a later stage, the difference between the gray matter (- 8.27%, 95 CI - 10.1; - 5.56) and cerebrospinal fluid (+ 6.88%, 95 CI 4.31; 8.51) continued to become more pronounced, while others remained stable. MRI brain volumetry in this miniswine model of CLN2 disease is sensitive to early disease detection and longitudinal change monitoring, providing a valuable tool for pre-clinical treatment development and evaluation.
Collapse
Affiliation(s)
- Kevin Knoernschild
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kimberly E Schroeder
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | - Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Takashi S Sato
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | | | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
5
|
Swier VJ, White KA, Johnson TB, Sieren JC, Johnson HJ, Knoernschild K, Wang X, Rohret FA, Rogers CS, Pearce DA, Brudvig JJ, Weimer JM. A Novel Porcine Model of CLN2 Batten Disease that Recapitulates Patient Phenotypes. Neurotherapeutics 2022; 19:1905-1919. [PMID: 36100791 PMCID: PMC9723024 DOI: 10.1007/s13311-022-01296-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Collapse
Affiliation(s)
- Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kevin Knoernschild
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | | | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
6
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
7
|
Kaminiów K, Kozak S, Paprocka J. Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:5729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Justyna Paprocka
- Pediatric Neurology Department, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
9
|
Ługowska A, Purzycka-Olewiecka JK, Płoski R, Truszkowska G, Pronicki M, Felczak P, Śpiewak M, Podlecka-Piętowska A, Sitek M, Bilińska ZT, Leszek P, Bednarska-Makaruk M. Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy. Life (Basel) 2021; 12:life12010003. [PMID: 35054396 PMCID: PMC8779458 DOI: 10.3390/life12010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/23/2022] Open
Abstract
We report on a 36-year-old man with cerebellar-extrapyramidal syndrome and severe heart failure because of dilated cardiomyopathy of unknown origin. Dysarthria and cardiac arrhythmia began at early childhood (4 years of age). Brain MRI (28 years of age) demonstrated severe cerebellar atrophy. At the age 32, he presented with dysarthria, ataxia, dystonia, and tremor of the right hand, bilateral slowed neural conduction in the visual pathways, and decreased mental acuity. At the age of 33 years, the patient underwent cardiac transplantation because of severe dilated cardiomyopathy. In the TPP1 gene, biallelic variants were identified: previously reported p.(Leu13Pro) and novel p.(Tyr508Cys) variant. Additionally, hemizygous novel missense variant in the ABCD1 gene was inherited from the mother p.(Arg17His). Normal very-long-chain fatty acids (VLCFA) levels both in patient and his mother excluded ABCD1 mutation as the pathogenic one. Tripeptidyl peptidase 1 (TPP1) activity was reduced (8,8 U/mg protein/h; reference range: 47.4 ± 10.7). In light microscopy the biopsy specimens obtained from explanted heart showed severe myocyte hypertrophy with perinuclear vacuolization with inclusions. Electron microscopy revealed absence of lipofuscin accumulation, no ultrastructural curvilinear profiles, fingerprint bodies, or granular osmiophilic deposits (GRODs) in lysosomes. As described here, the patient presents clinical symptoms observed in benign forms of ceroid lipofuscinosis type 2 (CLN2) and simultaneously some features of autosomal recessive spinocerebellar ataxia type 7 (SCAR7), which is also caused by mutations in the TPP1 gene.
Collapse
Affiliation(s)
- Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland; (J.K.P.-O.); (M.B.-M.)
- Correspondence:
| | - Joanna K. Purzycka-Olewiecka
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland; (J.K.P.-O.); (M.B.-M.)
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. A. Pawińskiego 3c, 02-106 Warsaw, Poland;
| | - Grażyna Truszkowska
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Paulina Felczak
- Department of Neuropathology, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland;
| | - Mateusz Śpiewak
- Magnetic Resonance Unit, Department of Radiology, National Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw, Poland;
| | | | - Martyna Sitek
- Department of Neurology, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland; (A.P.-P.); (M.S.)
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw, Poland;
| | - Przemysław Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, ul. Alpejska 42, 04-628 Warsaw, Poland;
| | - Małgorzata Bednarska-Makaruk
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland; (J.K.P.-O.); (M.B.-M.)
| |
Collapse
|
10
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
11
|
On the cusp of cures: Breakthroughs in Batten disease research. Curr Opin Neurobiol 2021; 72:48-54. [PMID: 34571324 DOI: 10.1016/j.conb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Batten disease is a family of rare, lysosomal disorders caused by mutations in one of at least 13 genes, which encode a diverse set of lysosomal and extralysosomal proteins. Despite decades of research, the development of effective therapies has remained intractable. But now, the field is experiencing rapid, unprecedented progress on multiple fronts. New tools are providing insights into previously unsolvable problems, with molecular functions now known for nine Batten disease proteins. Protein interactome data are uncovering potential functional overlap between several Batten disease proteins, providing long-sought links between seemingly disparate proteins. Understanding of cellular etiology is elucidating contributions from and interactions between various CNS cell types. Collectively, this explosion in insight is hastening an unparalleled period of therapeutic breakthroughs, with multiple therapies showing great promise in preclinical and clinical studies. The coming years will provide a continuation of this rapid progress, with the promise of effective treatments giving patients hope.
Collapse
|
12
|
Iwan K, Clayton R, Mills P, Csanyi B, Gissen P, Mole SE, Palmer DN, Mills K, Heywood WE. Urine proteomics analysis of patients with neuronal ceroid lipofuscinoses. iScience 2021; 24:102020. [PMID: 33532713 PMCID: PMC7822952 DOI: 10.1016/j.isci.2020.102020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCL) are a group of 13 rare neurodegenerative disorders characterized by accumulation of cellular storage bodies. There are few therapeutic options, and existing tests do not monitor disease progression and treatment response. However, urine biomarkers could address this need. Proteomic analysis of CLN2 patient urine revealed activation of immune response pathways and pathways associated with the unfolded protein response. Analysis of CLN5 and CLN6 sheep model urine showed subtle changes. To confirm and investigate the relevance of candidate biomarkers a targeted LC-MS/MS proteomic assay was created. We applied this assay to additional CLN2 samples as well as other patients with NCL (CLN1, CLN3, CLN5, CLN6, and CLN7) and demonstrated that hexosaminidase-A, aspartate aminotransferase-1, and LAMP1 are increased in NCL samples and betaine-homocysteine S-methyltransferase-1 was specifically increased in patients with CLN2. These proteins could be used to monitor the effectiveness of future therapies aimed at treating systemic NCL disease. The urine proteome is altered in humans and animals with NCL Hexosaminidase A and LAMP1 are increased in patients with NCL Betaine-homocysteine S-methyltransferase 1 is elevated in CLN2 patients Proteins altered in CLN5 and CLN6 sheep models are not affected in humans
Collapse
Affiliation(s)
- Katharina Iwan
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert Clayton
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philippa Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | | | - Paul Gissen
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital for Children, London, UK
| | - Sara E Mole
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - David N Palmer
- Department of Molecular Biosciences, Agriculture and Life Sciences Faculty, University Lincoln 7647, Canterbury, New Zealand
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Wendy E Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
13
|
Aylward SC, Pindrik J, Abreu NJ, Cherny WB, O’Neal M, de Los Reyes E. Cerliponase alfa for CLN2 disease, a promising therapy. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1856654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shawn C. Aylward
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| | - Jonathan Pindrik
- Division of Pediatric Neurosurgery, Nationwide Children‘s Hospital, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Nicolas J. Abreu
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| | - W. Bruce Cherny
- Department of Pediatric Neurosurgery, St. Luke‘s Children‘s Hospital, Boise, ID, USA
| | - Matthew O’Neal
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Emily de Los Reyes
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| |
Collapse
|
14
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
15
|
Masten MC, Mink JW, Augustine EF. Batten disease: an expert update on agents in preclinical and clinical trials. Expert Opin Investig Drugs 2020; 29:1317-1322. [PMID: 33135495 DOI: 10.1080/13543784.2020.1837110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Margaux C Masten
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| | - Jonathan W Mink
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| | - Erika F Augustine
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| |
Collapse
|
16
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
17
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
18
|
Riva A, Guglielmo A, Balagura G, Marchese F, Amadori E, Iacomino M, Minassian BA, Zara F, Striano P. Emerging treatments for progressive myoclonus epilepsies. Expert Rev Neurother 2020; 20:341-350. [PMID: 32153206 DOI: 10.1080/14737175.2020.1741350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Progressive myoclonus epilepsies (PMEs) are a group of neurodegenerative diseases, invariably leading to severe disability or fatal outcome in a few years or decades. Nowadays, PMEs treatment remains challenging with a significant burden of disability for patients. Pharmacotherapy is primarily used to treat seizures, which impact patients' quality of life. However, new approaches have emerged in the last few years, which try to curb the neurological deterioration of PMEs through a better knowledge of the pathogenetic process. This is a review on the newest therapeutic options for the treatment of PMEs.Areas covered: Experimental and clinical results on novel therapeutic approaches for the different forms of PME are reviewed and discussed. Special attention is primarily focused on the efficacy and tolerability outcomes, trying to infer the role novel approaches may have in the future.Expert opinion: The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a single approach to treat PMEs. Understanding of pathophysiologic processes is leading the way to targeted therapies, which, through enzyme replacement or underlying gene defect correction have already proved to potentially strike on neurodegeneration.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Alberto Guglielmo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Marchese
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Berge Arakel Minassian
- Pediatric Neurology, University of Texas Southwestern and Dallas Children's Medical Center, Dallas, TX, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
20
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
21
|
Cardiac pathology in neuronal ceroid lipofuscinoses (NCL): More than a mere co-morbidity. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165643. [PMID: 31863828 DOI: 10.1016/j.bbadis.2019.165643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are mostly seen as diseases affecting the central nervous system, but there is accumulating evidence that they have co-morbidities outside the brain. One of these co-morbidities is a decline in cardiac function. This is becoming increasingly recognised in teenagers and adolescents with juvenile CLN3, but it may also occur in individuals with other NCLs. The purpose of this review is to summarise the current knowledge of the structural and functional changes found in the hearts of animal models and people diagnosed with NCL. In addition, we present evidence of structural changes that were observed in a systematic comparison of the cardiomyocytes from CLN3Δex7/8 mice.
Collapse
|
22
|
Ru Y, Corado C, Soon RK, Melton AC, Harris A, Yu GK, Pryer N, Sinclair JR, Katz ML, Ajayi T, Jacoby D, Russell CB, Chandriani S. Neurofilament light is a treatment-responsive biomarker in CLN2 disease. Ann Clin Transl Neurol 2019; 6:2437-2447. [PMID: 31814335 PMCID: PMC6917340 DOI: 10.1002/acn3.50942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare, progressive, fatal neurodegenerative pediatric disorder resulting from deficiencies of the lysosomal enzyme tripeptidyl peptidase 1 that are caused by mutations in TPP1. Identifying biomarkers of CLN2 disease progression will be important in assessing the efficacy of therapeutic interventions for this disorder. Neurofilament light is an intrinsic component of healthy neurons; elevated circulating extracellular neurofilament light is a biomarker of neuropathology in several adult-onset neurological diseases. Our objective was to assess whether circulating neurofilament light is a biomarker that is responsive to enzyme replacement therapy (ERT) in CLN2 disease. METHODS Using an ultrasensitive immunoassay, we assessed plasma neurofilament light changes during disease progression in a canine model of CLN2 disease and in ERT clinical trial CLN2 disease patients. RESULTS In tripeptidyl peptidase 1 (TPP1)-null dogs (N = 11), but not in control dogs [N = 6 (TPP1+/- ) and N = 27 (WT)], neurofilament light levels increased more than tenfold above initial low baseline levels during disease progression. Before treatment in 21 human subjects with CLN2 disease (age range: 1.72-6.85 years), neurofilament light levels were 48-fold higher (P < 0.001) than in 7 pediatric controls (age range: 8-11 years). Pretreatment neurofilament light did not significantly correlate with disease severity or age. In CLN2 disease subjects receiving ERT, neurofilament light levels decreased by 50% each year over more than 3 years of treatment. INTERPRETATION Our data indicate that circulating neurofilament light is a treatment-responsive biomarker in CLN2 disease and could contribute to understanding of the pathophysiology of this devastating pediatric disorder.
Collapse
Affiliation(s)
- Yuanbin Ru
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Carley Corado
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Russell K Soon
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Andrew C Melton
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Adam Harris
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Guoying K Yu
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Nancy Pryer
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - John R Sinclair
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Martin L Katz
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, 65212
| | - Temitayo Ajayi
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - David Jacoby
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Chris B Russell
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | | |
Collapse
|
23
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
24
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
25
|
Guo J, Johnson GS, Cook J, Harris OK, Mhlanga-Mutangadura T, Schnabel RD, Jensen CA, Katz ML. Neuronal ceroid lipofuscinosis in a German Shorthaired Pointer associated with a previously reported CLN8 nonsense variant. Mol Genet Metab Rep 2019; 21:100521. [PMID: 31687336 PMCID: PMC6819867 DOI: 10.1016/j.ymgmr.2019.100521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Two littermate German Shorthaired Pointers, a male and a female, were adopted as puppies from an animal shelter. Both puppies developed normally until approximately 11 months of age when the male began to exhibit neurological signs including ataxia, vision loss, and behavioral changes indicative of cognitive decline. These signs increased in severity over time. The female remained neurologically normal and healthy. The affected dog was euthanized at approximately 21 months of age. Autofluorescent cytoplasmic storage bodies were detected in neurons in unstained tissue sections from the cerebellum, the cerebrum, and the retina. Electron micrographs of these storage bodies showed that they were membrane bound and that most contained tightly packed aggregates of membranous whorls along with a variety of other ultrastructural features. This ultrastructure, along with the autofluorescence and the clinical signs supported a diagnosis of neuronal ceroid lipofuscinosis (NCL). Unlike earlier investigated forms of canine NCL with causal alleles in ATP13A2, TPP1, MFSD8 and CLN5 that had autofluorescent cytoplasmic storage bodies in cardiac muscle, no autofluorescence was detected in cardiac muscle from the affected German Shorthaired Pointer. A 39-fold average coverage whole genome sequence indicated that the affected German Shorthaired Pointer was homozygous for the A allele of a G > A transversion at position 30,895,648 chromosome 37. This 37:30895648G > A mutation created a CLN8 termination codon that had been previously reported to cause NCL in a mixed breed dog with Australian Shepherd and Australian Cattle Dog ancestry. This nonsense allele was heterozygous in the clinically normal female sibling, while archived DNA samples from 512 other German Shorthaired Pointers were all homozygous for the reference allele. The affected German Shorthaired Pointer and the previously diagnosed mixed breed dog with the same nonsense mutation shaired an identical homozygous haplotype that extended for 4.41 Mb at the telomeric end of chromosome 37, indicating the both dogs inherited the nonsense mutation from a common ancestor.
Collapse
Affiliation(s)
- Juyuan Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL, USA
| | - Olivia K. Harris
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Robert D. Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Corresponding author at: Mason Eye Institute, Room EC-203, University of Missouri School of Medicine, Columbia, MO 65121, USA.
| |
Collapse
|
26
|
Gardner E, Bailey M, Schulz A, Aristorena M, Miller N, Mole SE. Mutation update: Review of TPP1 gene variants associated with neuronal ceroid lipofuscinosis CLN2 disease. Hum Mutat 2019; 40:1924-1938. [PMID: 31283065 PMCID: PMC6851559 DOI: 10.1002/humu.23860] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive condition caused by variants in the TPP1 gene, leading to deficient activity of the lysosomal enzyme tripeptidyl peptidase I (TPP1). We update on the spectrum of TPP1 variants associated with CLN2 disease, comprising 131 unique variants from 389 individuals (717 alleles) collected from the literature review, public databases, and laboratory communications. Previously unrecorded individuals were added to the UCL TPP1‐specific database. Two known pathogenic variants, c.509–1 G>C and c.622 C>T (p.(Arg208*)), collectively occur in 60% of affected individuals in the sample, and account for 50% of disease‐associated alleles. At least 86 variants (66%) are private to single families. Homozygosity occurs in 45% of individuals where both alleles are known (87% of reported individuals). Atypical CLN2 disease, TPP1 enzyme deficiency with disease onset and/or progression distinct from classic late‐infantile CLN2, represents 13% of individuals recorded with associated phenotype. NCBI ClinVar currently holds records for 37% of variants collected here. Effective CLN2 disease management requires early diagnosis; however, irreversible neurodegeneration occurs before a diagnosis is typically reached at age 5. Timely classification and public reporting of TPP1 variants is essential as molecular testing increases in use as a first‐line diagnostic test for pediatric‐onset neurological disease.
Collapse
Affiliation(s)
- Emily Gardner
- UCL MRC Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mitch Bailey
- Global Scientific Affairs, BioMarin Pharmaceutical Inc, Novato, California
| | - Angela Schulz
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Aristorena
- UCL MRC Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nicole Miller
- Global Scientific Affairs, BioMarin Pharmaceutical Inc, Novato, California
| | - Sara E Mole
- UCL MRC Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
27
|
Nagree MS, Scalia S, McKillop WM, Medin JA. An update on gene therapy for lysosomal storage disorders. Expert Opin Biol Ther 2019; 19:655-670. [DOI: 10.1080/14712598.2019.1607837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Murtaza S. Nagree
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | - Simone Scalia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | | | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee,
WI, USA
| |
Collapse
|
28
|
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs 2019; 33:315-325. [PMID: 30877620 PMCID: PMC6440934 DOI: 10.1007/s40263-019-00620-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Angela Schulz
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Udo Bartsch
- 0000 0001 2180 3484grid.13648.38Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan Storch
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, Section Biochemistry, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
29
|
Chen ZR, Liu DT, Meng H, Liu L, Bian WJ, Liu XR, Zhu WW, He Y, Wang J, Tang B, Su T, Yi YH. Homozygous missense TPP1 mutation associated with mild late infantile neuronal ceroid lipofuscinosis and the genotype-phenotype correlation. Seizure 2018; 69:180-185. [PMID: 31059981 DOI: 10.1016/j.seizure.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
PURPOSE TPP1 mutations have been identified in patients with variable phenotypes such as late infantile neuronal ceroid lipofuscinosis (LINCL), juvenile neuronal ceroid lipofuscinosis (JNCL), and spinocerebellar ataxia 7. However, the mechanism underlying phenotype variation is unknown. We screened TPP1 mutations in patients with epilepsies and analyzed the genotype-phenotype correlation to explain the phenotypic variations. METHODS We performed targeted next-generation sequencing in a cohort of 330 patients with epilepsies. All previously reported TPP1 mutations were systematically retrieved from the PubMed and NCL Mutation Database. RESULTS The homozygous missense TPP1 mutation c.646 G > A/ p.Val216Met was identified in a family with two affected siblings. The proband presented with seizures from three years of age, while no ataxia, cognitive regression, or visual abnormalities were observed. Further analysis of all reported TPP1 mutations revealed that the LINCL group had a significantly higher frequency of truncating and invariant splice-site mutations than the JNCL group. In contrast, the JNCL group had a higher frequency of variant splice-site mutations than LINCL. There was a significant correlation between phenotype severity and the frequency of destructive mutation. CONCLUSION This study suggested that the phenotype of mainly epilepsy can be included in the phenotypic spectrum of TPP1 mutations, which are candidate targets for genetic screening in patients with epilepsy. With the development of therapy techniques, early genetic diagnosis may enable the improvement of etiology-targeted treatments. The relationship between phenotype severity and the genotype of TPP1 mutations may help explain the phenotypic variations.
Collapse
Affiliation(s)
- Zi-Rong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China; Department of Neurology of the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - De-Tian Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Heng Meng
- Department of Neurology of the First Affiliated Hospital of Jinan University and Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong, China
| | - Liu Liu
- Department of Neurology, Xiaoshan First People's Hospital, Hangzhou, Zhejiang, China
| | - Wen-Jun Bian
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Wei-Wen Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Yong He
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Jie Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther 2018; 18:755-764. [PMID: 29936867 DOI: 10.1080/14712598.2018.1492544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs) are a subset of lysosomal storage diseases (LSDs) that cause myoclonic epilepsy, loss of cognitive and motor function, degeneration of the retina leading to blindness, and early death. Most are caused by loss-of-function mutations in either lysosomal proteins or transmembrane proteins. Current therapies are supportive in nature. NCLs involving lysosomal enzymes are amenable to therapies that provide an exogenous source of protein, as has been used for other LSDs. Those that involve transmembrane proteins, however, require new approaches. AREAS COVERED This review will discuss potential gene and cell therapy approaches that have been, are, or may be in development for these disorders and those that have entered clinical trials. EXPERT OPINION In animal models, gene therapy approaches have produced remarkable improvements in neurological function and lifespan. However, a complete cure has not been reached for any NCL, and a better understanding of the limits of the current crop of vectors is needed to more fully address these diseases. The prospects for gene therapy, particularly those that can be delivered systemically and treat both the brain and peripheral tissue, are high. The future is beginning to look bright for NCL patients and their families.
Collapse
Affiliation(s)
- Anthony Donsante
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Nicholas M Boulis
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
31
|
Itagaki R, Endo M, Yanagisawa H, Hossain MA, Akiyama K, Yaginuma K, Miyajima T, Wu C, Iwamoto T, Igarashi J, Kobayashi Y, Tohyama J, Iwama K, Matsumoto N, Shintaku H, Eto Y. Characteristics of PPT1 and TPP1 enzymes in neuronal ceroid lipofuscinosis (NCL) 1 and 2 by dried blood spots (DBS) and leukocytes and their application to newborn screening. Mol Genet Metab 2018; 124:64-70. [PMID: 29599076 DOI: 10.1016/j.ymgme.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
We first characterized PPT1 and TPP1 enzymes in dried blood spots (DBS), plasma/serum, and leukocytes/lymphocytes using neuronal ceroid lipofuscinosis (NCL) 1 and 2 patients and control subjects. PPT1 enzyme had only one acid form in control DBS, plasma/serum, and leukocytes/lymphocytes and showed deficient activities in these samples from NCL 1 patients. Conversely, TPP1 enzymes in control DBS and leukocytes/lymphocytes consisted of two forms, an acidic form and a neutral form, whereas serum TPP1 enzyme had only a neutral form. In control subjects, the optimal pH of PPT1 enzyme in DBS, plasma/serum, and leukocytes/lymphocytes was 4.5 to 5.0 in the acidic form, whereas TPP1 enzyme in control DBS and leukocytes/lymphocytes was pH 4.5 and 6.5, respectively. In NCL 1 and 2, both PPT1 and TPP1 enzyme activities in DBS, plasma, and leukocytes/lymphocytes were markedly reduced in acidic pH, whereas heterozygotes of NCL 1 and 2 in the acidic form showed intermediate activities between patients and control subjects. In neutral conditions, pH 6.0, the PPT1 enzyme activities in NCL 1 patients showed rather higher residual activities and intermediate activities in heterozygotes in NCL 1, which was probably caused by mutated proteins in three cases with NCL 1 patients. TPP1 enzyme activities at neutral pH 6.5 to 7.0 in DBS and leukocytes/lymphocytes showed higher enzyme activities in NCL 2 patients and heterozygotes. The reason for the increases of neutral TPP1 enzyme activities at pH 6.5 to 7.0 in NCL 2 DBS and leukocytes/lymphocytes, is obscure, but possibly caused by secondary activation of neutral TPP1 enzyme due to the absence of the acidic form. Interestingly, TPP1 activity in serum only consisted of a neutral form, no acidic form, and was not deficient in any NCL 2 patient. Therefore, we can diagnose NCL 1 patients by plasma/serum enzyme assay of PPT1, but not diagnose NCL 2 by serum TPP1 enzyme assay. A pilot study of newborn screening of NCL 1 and 2 has been established by more than 1000 newborn DBS assays. Using this assay system, we will be able to perform newborn screening of NCL 1 and 2 by DBS.
Collapse
Affiliation(s)
- Rina Itagaki
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Masahiro Endo
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Hiroko Yanagisawa
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Mohammad Arif Hossain
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Keiko Akiyama
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Keiko Yaginuma
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan
| | - Takashi Miyajima
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Institute of Rare disease, AnGes Co., Tokyo, Japan
| | - Chen Wu
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Institute of Rare disease, AnGes Co., Tokyo, Japan
| | - Takeo Iwamoto
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Core Laboratory, Institute of Medical Science, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | | | - Yu Kobayashi
- Department of Child Neurology, Epilepsy Center, Nishi-Niigata, Chuo National Hospital, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, Epilepsy Center, Nishi-Niigata, Chuo National Hospital, Niigata, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute of Neurological Disorder, Kanagawa, Japan; Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Leinonen H, Keksa-Goldsteine V, Ragauskas S, Kohlmann P, Singh Y, Savchenko E, Puranen J, Malm T, Kalesnykas G, Koistinaho J, Tanila H, Kanninen KM. Retinal Degeneration In A Mouse Model Of CLN5 Disease Is Associated With Compromised Autophagy. Sci Rep 2017; 7:1597. [PMID: 28487519 PMCID: PMC5431647 DOI: 10.1038/s41598-017-01716-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
The Finnish variant of late infantile neuronal ceroid lipofuscinosis (CLN5 disease) belongs to a family of neuronal ceroid lipofuscinosis (NCLs) diseases. Vision loss is among the first clinical signs in childhood forms of NCLs. Mutations in CLN5 underlie CLN5 disease. The aim of this study was to characterize how the lack of normal functionality of the CLN5 protein affects the mouse retina. Scotopic electroretinography (ERG) showed a diminished c-wave amplitude in the CLN5 deficient mice already at 1 month of age, indicative of pathological events in the retinal pigmented epithelium. A- and b-waves showed progressive impairment later from 2 and 3 months of age onwards, respectively. Structural and immunohistochemical (IHC) analyses showed preferential damage of photoreceptors, accumulation of autofluorescent storage material, apoptosis of photoreceptors, and strong inflammation in the CLN5 deficient mice retinas. Increased levels of autophagy-associated proteins Beclin-1 and P62, and increased LC3b-II/LC3b-I ratio, were detected by Western blotting from whole retinal extracts. Photopic ERG, visual evoked potentials, IHC and cell counting indicated relatively long surviving cone photoreceptors compared to rods. In conclusion, CLN5 deficient mice develop early vision loss that reflects the condition reported in clinical childhood forms of NCLs. The vision loss in CLN5 deficient mice is primarily caused by photoreceptor degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Philip Kohlmann
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Giedrius Kalesnykas
- Experimentica Ltd., Kuopio, Finland
- Research and Development Centre for Ophthalmic Innovations (SILK), Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|