1
|
Lee EJ, Kim M, Park S, Shim JH, Cho HJ, Park JA, Park K, Lee D, Kim JH, Jeong H, Matsuzaki F, Kim SY, Kim J, Yang H, Lee JS, Kim JW. Restoration of retinal regenerative potential of Müller glia by disrupting intercellular Prox1 transfer. Nat Commun 2025; 16:2928. [PMID: 40133314 PMCID: PMC11937340 DOI: 10.1038/s41467-025-58290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Individuals with retinal degenerative diseases struggle to restore vision due to the inability to regenerate retinal cells. Unlike cold-blooded vertebrates, mammals lack Müller glia (MG)-mediated retinal regeneration, indicating the limited regenerative capacity of mammalian MG. Here, we identify prospero-related homeobox 1 (Prox1) as a key factor restricting this process. Prox1 accumulates in MG of degenerating human and mouse retinas but not in regenerating zebrafish. In mice, Prox1 in MG originates from neighboring retinal neurons via intercellular transfer. Blocking this transfer enables MG reprogramming into retinal progenitor cells in injured mouse retinas. Moreover, adeno-associated viral delivery of an anti-Prox1 antibody, which sequesters extracellular Prox1, promotes retinal neuron regeneration and delays vision loss in a retinitis pigmentosa model. These findings establish Prox1 as a barrier to MG-mediated regeneration and highlight anti-Prox1 therapy as a promising strategy for restoring retinal regeneration in mammals.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | | | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | | | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dongeun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haeun Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Celliaz Ltd., Daejeon, South Korea.
| |
Collapse
|
2
|
Rodgers J, Hughes S, Ebrahimi AS, Allen AE, Storchi R, Lindner M, Peirson SN, Badea TC, Hankins MW, Lucas RJ. Enhanced restoration of visual code after targeting ON bipolar cells compared with retinal ganglion cells with optogenetic therapy. Mol Ther 2025; 33:1264-1281. [PMID: 39825567 PMCID: PMC11897768 DOI: 10.1016/j.ymthe.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Optogenetic therapy is a promising vision restoration method where light-sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like preclinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent. We address this deficit by comparing stimulus-response characteristics at single-unit resolution in the retina and dorsal lateral geniculate nucleus of retinally degenerate mice genetically engineered to express the opsin ReaChR in Grm6- or Brn3c-expressing cells (ON BC vs. RGCs, respectively). For both targeting strategies, we find ReaChR-evoked responses have equivalent sensitivity and can encode contrast across different background irradiances. Compared with ON BCs, targeting RGCs decreased response reproducibility and resulted in more stereotyped responses with reduced diversity in response polarity, contrast sensitivity, and temporal frequency tuning. Recording ReaChR-driven responses in visually intact retinas confirmed that RGC-targeted ReaChR expression disrupts visual feature selectivity of individual RGCs. Our data show that, while both approaches restore visual responses with impressive fidelity, ON BC targeting produces a richer visual code closer to that of wild-type mice.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037 Marburg, Germany; Department of Ophthalmology, University Hospitals of Giessen and Marburg, 35043 Marburg, Germany
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Tudor C Badea
- Neurogenetics Laboratory/ICDT, Transilvania University of Brasov, 500484 Brasov, Romania; National Brain Research Centre/ICIA, Romanian Academy, 050711 Bucharest, Romania
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
3
|
Suzuki R, Katada Y, Fujii M, Serizawa N, Negishi K, Kurihara T. Tropism of the AAV6.2 Vector in the Murine Retina. Int J Mol Sci 2025; 26:1580. [PMID: 40004046 PMCID: PMC11855373 DOI: 10.3390/ijms26041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy (IRD) that primarily affects rod photoreceptor cells, leading to the degeneration of photoreceptors and the gradual loss of vision. While RP is one of the most studied IRDs, other neurodegenerative diseases affecting the retina and optic nerve, such as glaucoma, also involve common mechanisms of cellular stress and degeneration. Current therapeutic approaches under investigation include gene therapy, retina prosthesis, and neuroprotection. Among these approaches, gene therapy has shown promise, though challenges related to viral vector tropism and transduction efficiency persist. The adeno-associated virus (AAV) vector is commonly employed for gene delivery, but novel serotypes and engineered variants are being explored to improve specificity and efficacy. This study evaluates the gene transfer efficiency of the AAV6.2 vector following intravitreal injection into the murine retina. Male C57BL/6 mice (9 weeks old) were intravitreally injected with 1 µL of AAV2-CMV-EGFP, AAV6-CMV-EGFP, or AAV6.2-CMV-EGFP at a titer of 3.2 × 1012 vg/mL per eye. Retinal transduction was assessed using in vivo fluorescence imaging, flat-mount imaging, and immunohistochemistry. EGFP expression in retinal ganglion cells, Müller cells, amacrine cells, and bipolar cells was quantitatively analyzed. All three AAV serotypes effectively transduced retinal ganglion cells, but AAV6.2 exhibited enhanced transduction in Müller cells and other neuronal retinal cells, including bipolar and amacrine cells. AAV6.2 demonstrated more localized expression around retinal blood vessels compared to the diffuse expression observed with AAV2. Immunohistochemical analysis revealed that AAV6.2 had significantly higher transduction efficiency in Müller cells (p < 0.001) compared to AAV2 and AAV6. AAV6.2 shows superior transduction efficiency in Müller cells, positioning it as a promising vector for gene therapies targeting retinal degenerative diseases such as RP. Its ability to effectively transduce Müller cells suggests potential applications in neuroprotection and gene replacement therapies.
Collapse
Affiliation(s)
- Ryo Suzuki
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan; (R.S.); (Y.K.); (M.F.); (N.S.)
| | - Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan; (R.S.); (Y.K.); (M.F.); (N.S.)
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Momo Fujii
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan; (R.S.); (Y.K.); (M.F.); (N.S.)
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan; (R.S.); (Y.K.); (M.F.); (N.S.)
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan; (R.S.); (Y.K.); (M.F.); (N.S.)
| |
Collapse
|
4
|
Siontas O, Ahn S. Challenges in AAV-Based Retinal Gene Therapies and the Role of Magnetic Nanoparticle Platforms. J Clin Med 2024; 13:7385. [PMID: 39685843 DOI: 10.3390/jcm13237385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal diseases, leading to various visual impairments and blindness, are on the rise. However, the advancement of retinal gene therapies offers new hope for treatment of such diseases. Among different vector systems for conferring therapeutic genetic load to retinal cells, adeno-associated viruses (AAVs) have been most intensively explored and have already successfully gained multiple clinical approvals. AAV-based retinal gene therapies have shown great promise in treating retinal disorders, but usually rely on the heavily disruptive administration methods such as subretinal injection. This is because the clinically well-established, minimally invasive alternative of intravitreal injection (IVI) necessitates AAVs to traverse the retinal inner limiting membrane (ILM), which is hard to penetrate in higher eye models, like human or porcine eyes. Additionally, AAVs' natural transduction preference, known as tropism, is commonly not specific to cells of only one target retinal layer, which is another ongoing challenge in retinal gene therapy. This review examines strategies to overcome these obstacles with a focus on the potential of magnetic nanoparticles (MNPs) for improved retinal AAV delivery.
Collapse
Affiliation(s)
- Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
| | - Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
5
|
Ahn S, Siontas O, Koester J, Krol J, Fauser S, Müller DJ. Magnetically Guided Adeno-Associated Virus Delivery for the Spatially Targeted Transduction of Retina in Eyes. Adv Healthc Mater 2024; 13:e2401577. [PMID: 38848510 DOI: 10.1002/adhm.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Adeno-associated viruses (AAVs) are intensively explored for gene therapies in general and have found promising applications for treating retina diseases. However, controlling the specificity (tropism) and delivery of AAVs to selected layers, cell types, and areas of the retina is a major challenge to further develop retinal gene therapies. Magnetic nanoparticles (MNPs) provide effective delivery platforms to magnetically guide therapeutics to target cells. Yet, how MNPs can deliver AAVs to transfect particular retina layers and cells remains elusive. Here, it is demonstrated that MNPs can be used to transport different AAVs through the retina and to modulate the selective transduction of specific retinal layers or photoreceptor cells in ex vivo porcine explants and whole eyes. Thereby, transduction is triggered by bringing the viruses in close proximity to the target cell layer and by controlling their interaction time. It is shown that this magnetically guided approach to transport AAVs to selected areas and layers of the retina does not require the cell-specific optimization of the AAV tropism. It is anticipated that the new approach to control the delivery of AAVs and to selectively transduce cellular systems can be applied to many other tissues or organs to selectively deliver genes of interest.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Janis Koester
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Jacek Krol
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| |
Collapse
|
6
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
7
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
8
|
Busskamp V, Roska B, Sahel JA. Optogenetic Vision Restoration. Cold Spring Harb Perspect Med 2024; 14:a041660. [PMID: 37734866 PMCID: PMC11293536 DOI: 10.1101/cshperspect.a041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Optogenetics has emerged over the past 20 years as a powerful tool to investigate the various circuits underlying numerous functions, especially in neuroscience. The ability to control by light the activity of neurons has enabled the development of therapeutic strategies aimed at restoring some level of vision in blinding retinal conditions. Promising preclinical and initial clinical data support such expectations. Numerous challenges remain to be tackled (e.g., confirmation of safety, cell and circuit specificity, patterns, intensity and mode of stimulation, rehabilitation programs) on the path toward useful vision restoration.
Collapse
Affiliation(s)
- Volker Busskamp
- Degenerative Retinal Diseases, University Hospital Bonn, 53127 Bonn, Germany
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4001 Basel, Switzerland
| | - Jose-Alain Sahel
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
- Institut Hospitalo-Universitaire FOReSIGHT, Sorbonne Universite, Inserm, Quinze-Vingts Hopital de la Vision, 75012 Paris, France
| |
Collapse
|
9
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
10
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. Sci Rep 2024; 14:6958. [PMID: 38521856 PMCID: PMC10960846 DOI: 10.1038/s41598-024-57286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Balasankara Reddy Kaipa
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Sujata Ranshing
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Yogapriya Sundaresan
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Bhavani Nagarajan
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Ankur Jain
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Charles C Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Abbot F Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA.
| |
Collapse
|
11
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. RESEARCH SQUARE 2023:rs.3.rs-3740880. [PMID: 38196579 PMCID: PMC10775399 DOI: 10.21203/rs.3.rs-3740880/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- University of North Texas Health Science Center at Fort Worth
| | | | - Sujata Ranshing
- University of North Texas Health Science Center at Fort Worth
| | | | | | | | | | | | | | | | | | - Abbot F Clark
- University of North Texas Health Science Center at Fort Worth
| | | | | |
Collapse
|
12
|
Huang XM, Liu Q, Xu ZY, Yang XH, Xiao F, Ouyang PW, Yi WZ, Zhao N, Meng J, Cui YH, Pan HW. Down-regulation of HuR inhibits pathological angiogenesis in oxygen-induced retinopathy. Exp Eye Res 2023; 227:109378. [PMID: 36603796 DOI: 10.1016/j.exer.2022.109378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
HuR (also known as ELAV1), a ubiquitous RNA-binding protein, is implicated in the pathogenesis of diverse diseases via the mechanism of post-transcriptional regulation. Whether it is involved in pathological angiogenesis in oxygen-induced retinopathy is not clear. In this study, we detected HuR expression was increased in the retina of mouse model of oxygen-induced retinopathy (OIR) as well as in vascular endothelial cells exposed to hypoxia. With gain-of-function and loss-of-function studies using adenovirus infection, we found HuR over-expression promoted while HuR knockdown inhibited the migration, proliferation and tube formation of vascular endothelial cells. Moreover, HuR regulated the expression of VEGFA in vascular endothelial cells. We also found the retinal pathological angiogenesis in mouse OIR model was greatly reduced with HuR knockdown using recombinant AAV expressing HuR specific shRNA which was administered by intravitreal injection. The results of this study suggest HuR is involved in pathological angiogenesis via regulating angiogenic behaviors of endothelial cells, providing a potential target for the treatment of retinopathy of prematurity.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fan Xiao
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Na Zhao
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
14
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
15
|
Wu WH, Tso A, Breazzano MP, Jenny LA, Levi SR, Tsang SH, Quinn PMJ. Culture of Human Retinal Explants for Ex Vivo Assessment of AAV Gene Delivery. Methods Mol Biol 2022; 2560:303-311. [PMID: 36481906 DOI: 10.1007/978-1-0716-2651-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the clinically established safety and efficacy profile of recombinant adeno-associated viral (rAAV) vectors, they are considered the "go to" vector for retinal gene therapy. Design of a rAAV-mediated gene therapy focuses on cell tropism, high transduction efficiency, and high transgene expression levels to achieve the lowest therapeutic treatment dosage and avoid toxicity. Human retinal explants are a clinically relevant model system for exploring these aspects of rAAV-mediated gene delivery. In this chapter, we describe an ex vivo human retinal explant culture protocol to evaluate transgene expression in order to determine the selectivity and efficacy of rAAV vectors for human retinal gene therapy.
Collapse
Affiliation(s)
- Wen-Hsuan Wu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Amy Tso
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Mark P Breazzano
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Sarah R Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA.,Manhattan Eye, Ear and Throat Hospital, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Graduate Programs in Nutritional & Metabolic Biology and Neurobiology & Behavior, Columbia Stem Cell Initiative, New York, NY, USA
| | - Peter M J Quinn
- Department of Opthalmology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs 2022; 27:431-443. [PMID: 36562395 DOI: 10.1080/14728214.2022.2152003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| |
Collapse
|
17
|
Nam MH, Nahomi RB, Pantcheva MB, Dhillon A, Chiodo VA, Smith WC, Nagaraj RH. AAV2-Mediated Expression of HspB1 in RGCs Prevents Somal Damage and Axonal Transport Deficits in a Mouse Model of Ocular Hypertension. Transl Vis Sci Technol 2022; 11:8. [DOI: 10.1167/tvst.11.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rooban B. Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mina B. Pantcheva
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Armaan Dhillon
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vince A. Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - W. Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Ram H. Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
19
|
Xu D, Zhong LT, Cheng HY, Wang ZQ, Chen XM, Feng AY, Chen WY, Chen G, Xu Y. Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons. Neural Regen Res 2022; 18:1124-1131. [PMID: 36255002 PMCID: PMC9827787 DOI: 10.4103/1673-5374.355818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose- and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
Collapse
Affiliation(s)
- Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Ting Zhong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Hai-Yang Cheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Zeng-Qiang Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiong-Min Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Ai-Ying Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Yi Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| |
Collapse
|
20
|
Le N, Appel H, Pannullo N, Hoang T, Blackshaw S. Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. Front Cell Dev Biol 2022; 10:914386. [PMID: 36200040 PMCID: PMC9527291 DOI: 10.3389/fcell.2022.914386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct reprogramming of retinal Müller glia is a promising avenue for replacing photoreceptors and retinal ganglion cells lost to retinal dystrophies. However, questions have recently been raised about the accuracy of studies claiming efficient glia-to-neuron reprogramming in retina that were conducted using GFAP mini promoter-driven adeno-associated virus (AAV) vectors. In this study, we have addressed these questions using GFAP mini promoter-driven AAV constructs to simultaneously overexpress the mCherry reporter and candidate transcription factors predicted to induce glia-to-neuron conversion, in combination with prospective genetic labeling of retinal Müller glia using inducible Cre-dependent GFP reporters. We find that, while control GFAP-mCherry constructs express faithfully in Müller glia, 5 out of 7 transcription factor overexpression constructs tested are predominantly expressed in amacrine and retinal ganglion cells. These findings demonstrate strong insert-dependent effects on AAV-based GFAP mini promoter specificity that preclude its use in inferring cell lineage relationships when studying glia-to-neuron conversion in retina.
Collapse
Affiliation(s)
- Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Pannullo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
22
|
Xi Z, Öztürk BE, Johnson ME, Turunç S, Stauffer WR, Byrne LC. Quantitative single-cell transcriptome-based ranking of engineered AAVs in human retinal explants. Mol Ther Methods Clin Dev 2022; 25:476-489. [PMID: 35615708 PMCID: PMC9118357 DOI: 10.1016/j.omtm.2022.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Gene therapy is a rapidly developing field, and adeno-associated viruses (AAVs) are a leading viral-vector candidate for therapeutic gene delivery. Newly engineered AAVs with improved abilities are now entering the clinic. It has proven challenging, however, to predict the translational potential of gene therapies developed in animal models due to cross-species differences. Human retinal explants are the only available model of fully developed human retinal tissue and are thus important for the validation of candidate AAV vectors. In this study, we evaluated 18 wild-type and engineered AAV capsids in human retinal explants using a recently developed single-cell RNA sequencing (RNA-seq) AAV engineering pipeline (scAAVengr). Human retinal explants retained the same major cell types as fresh retina, with similar expression of cell-specific markers except for a photoreceptor population with altered expression of photoreceptor-specific genes. The efficiency and tropism of AAVs in human explants were quantified with single-cell resolution. The top-performing serotypes, K91, K912, and 7m8, were further validated in non-human primate and human retinal explants. Together, this study provides detailed information about the transcriptome profiles of retinal explants and quantifies the infectivity of leading AAV serotypes in human retina, accelerating the translation of retinal gene therapies to the clinic.
Collapse
Affiliation(s)
- Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, PA, USA
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Bilge E. Öztürk
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | | | - Serhan Turunç
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | | | - Leah C. Byrne
- Department of Ophthalmology, University of Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
23
|
Wang JH, Lidgerwood GE, Daniszewski M, Hu ML, Roberts GE, Wong RCB, Hung SSC, McClements ME, Hewitt AW, Pébay A, Hickey DG, Edwards TL. AAV2-mediated gene therapy for Bietti crystalline dystrophy provides functional CYP4V2 in multiple relevant cell models. Sci Rep 2022; 12:9525. [PMID: 35680963 PMCID: PMC9184470 DOI: 10.1038/s41598-022-12210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bietti crystalline dystrophy (BCD) is an inherited retinal disease (IRD) caused by mutations in the CYP4V2 gene. It is a relatively common cause of IRD in east Asia. A number of features of this disease make it highly amenable to gene supplementation therapy. This study aims to validate a series of essential precursor in vitro experiments prior to developing a clinical gene therapy for BCD. We demonstrated that HEK293, ARPE19, and patient induced pluripotent stem cell (iPSC)-derived RPE cells transduced with AAV2 vectors encoding codon optimization of CYP4V2 (AAV2.coCYP4V2) resulted in elevated protein expression levels of CYP4V2 compared to those transduced with AAV2 vectors encoding wild type CYP4V2 (AAV2.wtCYP4V2), as assessed by immunocytochemistry and western blot. Similarly, we observed significantly increased CYP4V2 enzyme activity in cells transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. We also showed CYP4V2 expression in human RPE/choroid explants transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. These preclinical data support the further development of a gene supplementation therapy for a currently untreatable blinding condition—BCD. Codon-optimized CYP4V2 transgene was superior to wild type in terms of protein expression and enzyme activity. Ex vivo culture of human RPE cells provided an effective approach to test AAV-mediated transgene delivery.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Georgina E Roberts
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.,Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia
| | - Michelle E McClements
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia. .,Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Nanjappa R, Dilbeck MD, Economides JR, Horton JC. Fundus imaging of retinal ganglion cells transduced by retrograde transport of rAAV2-retro. Exp Eye Res 2022; 219:109084. [PMID: 35460667 DOI: 10.1016/j.exer.2022.109084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Access of adeno-associated virus (AAV) to ganglion cells following intravitreal injection for gene therapy is impeded by the internal limiting membrane of the retina. As an alternative, one could transduce ganglion cells via retrograde transport after virus injection into a retinal target nucleus. It is unknown if recombinant AAV2-retro (rAAV2-retro), a variant of AAV2 developed specifically for retrograde transport, is capable of transducing retinal ganglion cells. To address this issue, equal volumes of rAAV2-retro-hSyn-EGFP and rAAV2-retro-hSyn-mCherry were mixed in a micropipette and injected into the rat superior colliculus. The time-course of viral transduction was tracked by performing serial in vivo fundus imaging. Cells that were labeled by the fluorophores within the first week remained consistent in distribution and relative signal strength on follow-up imaging. Most transduced cells were double-labeled, but some were labeled by only EGFP or mCherry. Fundus images were later aligned with retinal wholemounts. Ganglion cells in the wholemounts matched precisely the cells imaged by fundus photography. As seen in the fundus images, ganglion cells in wholemounts were sometimes labeled by only EGFP or mCherry. Overall, there was detectable label in 32-41% of ganglion cells. Analysis of the number of cells labeled by 0, 1, or 2 fluorophores, based on Poisson statistics, yielded an average of 0.66 virions transducing each ganglion cell. Although this represents a low number relative to the quantity of virus injected into the superior colliculus, the ganglion cells showed sustained and robust fluorescent labeling. In the primate, injection of rAAV2-retro into the lateral geniculate nucleus might provide a viable approach for the transduction of ganglion cells, bypassing the obstacles that have prevented effective gene delivery via intravitreal injection.
Collapse
Affiliation(s)
- Rakesh Nanjappa
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mikayla D Dilbeck
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John R Economides
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jonathan C Horton
- Program in Neuroscience, Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Mol Ther Methods Clin Dev 2022; 24:306-316. [PMID: 35229004 PMCID: PMC8844404 DOI: 10.1016/j.omtm.2022.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Positive clinical outcomes in adeno-associated virus (AAV)-mediated retinal gene therapy have often been attributed to the low immunogenicity of AAVs and immune privilege of the eye. However, several recent studies have shown potential for inflammatory responses. The current understanding of the factors contributing to inflammation, such as the pre-existence of serum antibodies against AAVs and their contribution to increases in antibody levels post-injection, is incomplete. The parameters that regulate the generation of new antibodies in response to the AAV capsid or transgene after intraocular injections are also insufficiently described. This study is a retrospective analysis of the pre-existing serum antibodies in correlation with changes in antibody levels after intraocular injections of AAV in non-human primates (NHPs) of the species Macaca fascicularis. In NHP serums, we analyzed the binding antibody (BAB) levels and a subset of these called neutralizing antibodies (NABs) that impede AAV transduction. We observed significantly higher pre-existing serum BABs against AAV8 compared with other serotypes and a dose-dependent increase in BABs and NABs in the serums collected post-injection, irrespective of the serotype or the mode of injection. Lastly, we were able to demonstrate a correlation between the serum BAB levels with clinical grading of inflammation and levels of transgene expression.
Collapse
|
26
|
Wright P, Rodgers J, Wynne J, Bishop PN, Lucas RJ, Milosavljevic N. Viral Transduction of Human Rod Opsin or Channelrhodopsin Variants to Mouse ON Bipolar Cells Does Not Impact Retinal Anatomy or Cause Measurable Death in the Targeted Cells. Int J Mol Sci 2021; 22:ijms222313111. [PMID: 34884916 PMCID: PMC8658283 DOI: 10.3390/ijms222313111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The viral gene delivery of optogenetic actuators to the surviving inner retina has been proposed as a strategy for restoring vision in advanced retinal degeneration. We investigated the safety of ectopic expression of human rod opsin (hRHO), and two channelrhodopsins (enhanced sensitivity CoChR-3M and red-shifted ReaChR) by viral gene delivery in ON bipolar cells of the mouse retina. Adult Grm6Cre mice were bred to be retinally degenerate or non-retinally degenerate (homozygous and heterozygous for the rd1Pde6b mutation, respectively) and intravitreally injected with recombinant adeno-associated virus AAV2/2(quad Y-F) serotype containing a double-floxed inverted transgene comprising one of the opsins of interest under a CMV promoter. None of the opsins investigated caused changes in retinal thickness; induced apoptosis in the retina or in transgene expressing cells; or reduced expression of PKCα (a specific bipolar cell marker). No increase in retinal inflammation at the level of gene expression (IBA1/AIF1) was found within the treated mice compared to controls. The expression of hRHO, CoChR or ReaChR under a strong constitutive promoter in retinal ON bipolar cells following intravitreal delivery via AAV2 does not cause either gross changes in retinal health, or have a measurable impact on the survival of targeted cells.
Collapse
|
27
|
Ivanova E, Corona C, Eleftheriou CG, Stout RF, Körbelin J, Sagdullaev BT. AAV-BR1 targets endothelial cells in the retina to reveal their morphological diversity and to deliver Cx43. J Comp Neurol 2021; 530:1302-1317. [PMID: 34811744 DOI: 10.1002/cne.25277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are key players in the development and maintenance of the vascular tree, the establishment of the blood-brain barrier and control of blood flow. Disruption in ECs is an early and active component of vascular pathogenesis. However, our ability to selectively target ECs in the CNS for identification and manipulation is limited. Here, in the mouse retina, a tractable model of the CNS, we utilized a recently developed AAV-BR1 system to identify distinct classes of ECs along the vascular tree using a GFP reporter. We then developed an inducible EC-specific ectopic Connexin 43 (Cx43) expression system using AAV-BR1-CAG-DIO-Cx43-P2A-DsRed2 in combination with a mouse line carrying inducible CreERT2 in ECs. We targeted Cx43 because its loss has been implicated in microvascular impairment in numerous diseases such as diabetic retinopathy and vascular edema. GFP-labeled ECs were numerous, evenly distributed along the vascular tree and their morphology was polarized with respect to the direction of blood flow. After tamoxifen induction, ectopic Cx43 was specifically expressed in ECs. Similarly to endogenous Cx43, ectopic Cx43 was localized at the membrane contacts of ECs and it did not affect tight junction proteins. The ability to enhance gap junctions in ECs provides a precise and potentially powerful tool to treat microcirculation deficits, an early pathology in numerous diseases.
Collapse
Affiliation(s)
- Elena Ivanova
- Burke Neurological Institute, White Plains, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, New York, USA
| | - Carlo Corona
- Burke Neurological Institute, White Plains, New York, USA
| | | | - Randy F Stout
- Department of Biomedical Sciences, The New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Jakob Körbelin
- Department of Oncology, Hematology, and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute, White Plains, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, New York, USA.,Department of Ophthalmology, Weill Cornell Medicine, White Plains, New York, USA
| |
Collapse
|
28
|
Tchedre KT, Batabyal S, Galicia M, Narcisse D, Mustafi SM, Ayyagari A, Chavala S, Mohanty SK. Biodistribution of adeno-associated virus type 2 carrying multi-characteristic opsin in dogs following intravitreal injection. J Cell Mol Med 2021; 25:8676-8686. [PMID: 34418301 PMCID: PMC8435460 DOI: 10.1111/jcmm.16823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy of retinal diseases using recombinant adeno-associated virus (rAAV) vector-based delivery has shown clinical success, and clinical trials based on rAAV-based optogenetic therapies are currently in progress. Recently, we have developed multi-characteristic opsin (MCO), which has been shown to effectively re-photosensitize photoreceptor-degenerated retina in mice leading to vision restoration at ambient light environment. Here, we report the biodistribution of the rAAV2 carried MCO (vMCO-I) in live samples and post-mortem organs following intraocular delivery in wild-type dogs. Immunohistochemistry showed that the intravitreal injection of vMCO-I resulted in gene transduction in the inner nuclear layer (INL) but did not induce detectable inflammatory or immune reaction in the dog retina. Vector DNA analysis of live body wastes and body fluids such as saliva and nasal secretions using quantitative polymerase chain reaction (qPCR) showed no correlative increase of vector copy in nasal secretions or saliva, minimal increase of vector copy in urine in the low-dose group 13 weeks after injection and in the faeces of the high-dose group at 3-13 weeks after injection suggesting clearance of the virus vector via urine and faeces. Further analysis of vector DNA extracted from faeces using PCR showed no transgene after 3 weeks post-injection. Intravitreal injection of vMCO-I resulted in few sporadic off-target presences of the vector in the mesenteric lymph node, liver, spleen and testis. This study showed that intravitreal rAAV2-based delivery of MCO-I for retinal gene therapy is safe.
Collapse
Affiliation(s)
- Kissaou T. Tchedre
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | | | | | | | - Ananta Ayyagari
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| | | | - Samarendra K. Mohanty
- Nanoscope Technologies LLCArlingtonTexasUSA
- Nanoscope Therapeutics IncBedfordTexasUSA
| |
Collapse
|
29
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
30
|
Frederick A, Sullivan J, Liu L, Adamowicz M, Lukason M, Raymer J, Luo Z, Jin X, Rao KN, O'Riordan C. Engineered Capsids for Efficient Gene Delivery to the Retina and Cornea. Hum Gene Ther 2021; 31:756-774. [PMID: 32578442 DOI: 10.1089/hum.2020.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adeno-associated viral (AAV) vectors represent an ideal vehicle for human gene transfer. One advantage to the AAV vector system is the availability of multiple naturally occurring serotypes that provide selective tropisms for various target cells. Strategies to enhance the properties of the natural AAV isolates have been developed and can be divided into two approaches, rational design or directed evolution. The rational design approach utilizes knowledge of AAV capsids to make targeted changes to the capsid to alter transduction efficiency or specificity, while the directed evolution approach does not require a priori knowledge of capsid structure and includes random mutagenesis, capsid shuffling, or random peptide insertion. In this study, we describe the generation of novel variants for both AAV2 and AAV5 using a rational design approach and knowledge of AAV receptor binding, surface charge, and AAV capsid protein posttranslational modifications. The novel AAV2 and AAV5 variants demonstrate improved transduction properties in both the mouse retina and cornea. The translational fidelity of the novel AAV2 variant was confirmed in the context of the nonhuman primate (NHP) retina, whereas a NHP tissue explant model was established to allow the rapid assessment of translational fidelity between species for the AAV5 variants. The capsid-modified AAV2 and AAV5 variants described in this study have novel attributes that will add to the efficacy and specificity of their potential use in gene therapy for a range of human ocular diseases.
Collapse
Affiliation(s)
- Amy Frederick
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Jennifer Sullivan
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Lin Liu
- Department of BioAnalytics, Sanofi, Framingham, Massachusetts, USA
| | - Matthew Adamowicz
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Michael Lukason
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Jasmine Raymer
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Zhengyu Luo
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Xiaoying Jin
- Department of BioAnalytics, Sanofi, Framingham, Massachusetts, USA
| | - Kollu Nageswara Rao
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Catherine O'Riordan
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| |
Collapse
|
31
|
Liu D, Deng Q, Lei X, Lu W, Zhao Q, Shen Y. Overexpression of BMP4 protects retinal ganglion cells in a mouse model of experimental glaucoma. Exp Eye Res 2021; 210:108728. [PMID: 34390734 DOI: 10.1016/j.exer.2021.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. Chordin-like 1 (CHRDL1) is an endogenous BMP antagonist. In this study, we researched whether CHRDL1 was involved in BMP4 signaling and regulation of RGC degeneration in a mouse model of glaucoma. METHODS Magnetic microbeads were intracameral injected to induce experimental glaucoma in a mouse model. A recombinant adeno-associated virus (rAAV) system was designed for overexpression of BMP4 or CHRDL1 in mouse retina. Immunohistochemistry and hematoxylin-eosin (HE) stains were performed to identify changes in retinal morphology. Electroretinogram (ERG) recordings were used to assess changes in visual function. RESULTS The mRNA expression levels of Bmp4 and its downstream BMPRIa, small mothers against decapentaplegic 1 (Smad1), were significantly upregulated in retinas with glaucoma. RGC survival was significantly enhanced in the beads + AAV-BMP4 group and significantly reduced in the beads + AAV-CHRDL1 group, compared with the beads + AAV-EGFP group. Similar results were observed in retinal explant culture in vitro. Consistent with these findings, the photopic negative response (PhNR)responses in ERG, which indicate RGC function, were restored in mice overexpressing BMP4, whereas a-wave and b-wave responses were not. Activation of CHRLD1 inhibited Smad1/5/8 phosphorylation and exacerbated RGC damage. The expression of Glial fibrillary acidic protein (GFAP) was decreased significantly in beads + AAV-BMP4 group. CONCLUSIONS BMP4 promoted RGC survival and visual function in an experimental glaucoma model. Activation of CHRDL1 exaggerated RGC degeneration by inhibiting the BMP4/Smad1/5/8 pathway. The mechanism of BMP4/Smad1/5/8 pathway may be related to the inhibition of glial cell activation. Our studies suggested that BMP4 and CHRLD1 might serve as therapeutic targets in glaucoma.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinlan Lei
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Lu
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingqing Zhao
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yin Shen
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
32
|
Sahu B, Chug I, Khanna H. The Ocular Gene Delivery Landscape. Biomolecules 2021; 11:1135. [PMID: 34439800 PMCID: PMC8394578 DOI: 10.3390/biom11081135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.
Collapse
Affiliation(s)
| | | | - Hemant Khanna
- Department of Ophthalmology & Visual Sciences, UMass Medical School, Worcester, MA 01655, USA; (B.S.); (I.C.)
| |
Collapse
|
33
|
Cheng SY, Luo Y, Malachi A, Ko J, Su Q, Xie J, Tian B, Lin H, Ke X, Zheng Q, Tai PWL, Gao G, Punzo C. Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Hum Gene Ther 2021; 32:649-666. [PMID: 34182803 PMCID: PMC8312021 DOI: 10.1089/hum.2021.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Anneliese Malachi
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jihye Ko
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 2021; 86:100975. [PMID: 34058340 DOI: 10.1016/j.preteyeres.2021.100975] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Inherited and age-related retinal degeneration is the hallmark of a large group of heterogeneous diseases and is the main cause of untreatable blindness today. Genetic factors play a major pathogenic role in retinal degenerations for both monogenic diseases (such as retinitis pigmentosa) and complex diseases with established genetic risk factors (such as age-related macular degeneration). Progress in genotyping techniques and back of the eye imaging are completing our understanding of these diseases and their manifestations in patient populations suffering from retinal degenerations. It is clear that whatever the genetic cause, the majority of vision loss in retinal diseases results from the loss of photoreceptor function. The timing and circumstances surrounding the loss of photoreceptor function determine the adequate therapeutic approach to use for each patient. Among such approaches, gene therapy is rapidly becoming a therapeutic reality applicable in the clinic. This massive move from laboratory work towards clinical application has been propelled by the advances in our understanding of disease genetics and mechanisms, gene delivery vectors, gene editing systems, and compensatory strategies for loss of photoreceptor function. Here, we provide an overview of existing modalities of retinal gene therapy and their relevance based on the needs of patient populations suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Müge Defne Tekinsoy
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France; Fondation Ophtalmologique Rothschild, F-75019, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
36
|
Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021; 12:3210. [PMID: 34050192 PMCID: PMC8163834 DOI: 10.1038/s41467-021-23561-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Diseases caused by heteroplasmic mitochondrial DNA mutations have no effective treatment or cure. In recent years, DNA editing enzymes were tested as tools to eliminate mutant mtDNA in heteroplasmic cells and tissues. Mitochondrial-targeted restriction endonucleases, ZFNs, and TALENs have been successful in shifting mtDNA heteroplasmy, but they all have drawbacks as gene therapy reagents, including: large size, heterodimeric nature, inability to distinguish single base changes, or low flexibility and effectiveness. Here we report the adaptation of a gene editing platform based on the I-CreI meganuclease known as ARCUS®. These mitochondrial-targeted meganucleases (mitoARCUS) have a relatively small size, are monomeric, and can recognize sequences differing by as little as one base pair. We show the development of a mitoARCUS specific for the mouse m.5024C>T mutation in the mt-tRNAAla gene and its delivery to mice intravenously using AAV9 as a vector. Liver and skeletal muscle show robust elimination of mutant mtDNA with concomitant restoration of mt-tRNAAla levels. We conclude that mitoARCUS is a potential powerful tool for the elimination of mutant mtDNA. Heteroplasmic mitochondrial DNA mutations lack effective treatments. Here the authors adapt I-CreI meganuclease to target the mitochondria and specifically-eliminate mtDNA with a m.5024C>T mutation in the mttRNA Ala gene.
Collapse
|
37
|
MacLaren RE. A 2020 vision of ocular gene therapy. Gene Ther 2021; 28:217-219. [PMID: 32601358 DOI: 10.1038/s41434-020-0170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, West Wing John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
38
|
Wang Y, Chu X, Wang B. Recombinant adeno-associated virus-based gene therapy combined with tissue engineering for musculoskeletal regenerative medicine. BIOMATERIALS TRANSLATIONAL 2021; 2:19-29. [PMID: 35837257 PMCID: PMC9255831 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vector-mediated gene delivery is a novel molecular therapeutic approach for musculoskeletal disorders which achieves tissue regeneration by delivering a transgene to the impaired tissue. In recent years, substantial scientific progress in rAAV gene therapy has led to several clinical trials for human musculoskeletal diseases. Nevertheless, there are still limitations in developing an optimal gene therapy model due to the low transduction efficiency and fast degradation of the gene vectors. To overcome the challenges of rAAV gene therapy, tissue engineering combined with gene therapy has emerged as a more promising alternative. An rAAV viral vector incorporated into a biomaterial has a more controlled gene expression, lower immune response, and higher efficiency. A number of biomaterials and architectures have been combined with rAAV viral vectors, each having its own advantages and limitations. This review aims to give a broad introduction to combinatorial therapy and the recent progress this new technology has offered.
Collapse
|
39
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
40
|
McClements ME, Staurenghi F, MacLaren RE, Cehajic-Kapetanovic J. Optogenetic Gene Therapy for the Degenerate Retina: Recent Advances. Front Neurosci 2020; 14:570909. [PMID: 33262683 PMCID: PMC7686539 DOI: 10.3389/fnins.2020.570909] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The degeneration of light-detecting rod and cone photoreceptors in the human retina leads to severe visual impairment and ultimately legal blindness in millions of people worldwide. Multiple therapeutic options at different stages of degeneration are being explored but the majority of ongoing clinical trials involve adeno-associated viral (AAV) vector-based gene supplementation strategies for select forms of inherited retinal disease. Over 300 genes are associated with inherited retinal degenerations and only a small proportion of these will be suitable for gene replacement therapy. However, while the origins of disease may vary, there are considerable similarities in the physiological changes that occur in the retina. When early therapeutic intervention is not possible and patients suffer loss of photoreceptor cells but maintain remaining layers of cells in the neural retina, there is an opportunity for a universal gene therapy approach that can be applied regardless of the genetic origin of disease. Optogenetic therapy offers such a strategy by aiming to restore vision though the provision of light-sensitive molecules to surviving cell types of the retina that enable light perception through the residual neurons. Here we review the recent progress in attempts to restore visual function to the degenerate retina using optogenetic therapy. We focus on multiple pre-clinical models used in optogenetic strategies, discuss their strengths and limitations, and highlight considerations including vector and transgene designs that have advanced the field into two ongoing clinical trials.
Collapse
Affiliation(s)
- Michelle E. McClements
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Federica Staurenghi
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
41
|
Millington-Ward S, Chadderton N, Berkeley M, Finnegan LK, Hanlon KS, Carrigan M, Humphries P, Kenna PF, Palfi A, Farrar GJ. Novel 199 base pair NEFH promoter drives expression in retinal ganglion cells. Sci Rep 2020; 10:16515. [PMID: 33020509 PMCID: PMC7536420 DOI: 10.1038/s41598-020-73257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Retinal ganglion cells (RGCs) are known to be involved in several ocular disorders, including glaucoma and Leber hereditary optic neuropathy (LHON), and hence represent target cells for gene therapies directed towards these diseases. Restricting gene therapeutics to the target cell type in many situations may be preferable compared to ubiquitous transgene expression, stimulating researchers to identify RGC-specific promoters, particularly promoter sequences that may also be appropriate in size to fit readily into recombinant adeno associated viral (AAV) vectors, the vector of choice for many ocular gene therapies. In the current study we analysed EGFP expression driven by various sequences of the putative human NEFH promoter in order to define sequences required for preferential expression in RGCs. EGFP expression profiles from four different potential NEFH promoter constructs were compared in vivo in mice using retinal histology and mRNA expression analysis. Notably, two efficient promoter sequences, one comprising just 199 bp, are presented in the study.
Collapse
Affiliation(s)
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Megan Berkeley
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Laura K Finnegan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Killian S Hanlon
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Carrigan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Humphries
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Arpad Palfi
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
42
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
43
|
Cao J, Liu X, Yuan Y, Wang F, Kong W, Shi G, Li W, Zhang C. A rAAV2/6 Mutant with Enhanced Targeting for Mouse Retinal Müller Cells. Curr Eye Res 2019; 45:64-71. [PMID: 31294618 DOI: 10.1080/02713683.2019.1639768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: Adeno-associated virus vector (AAV) is the most accepted gene delivery vector for retinal gene therapy. Müller cells play an important role in maintaining homeostasis and neuronal structural integrity, stability and it has been found to be involved in many retinopathies. The aim of this study is to identify a rAAV2/6 mutant which has increased tropism for Müller cell of the mouse retina.Materials and Methods: Using amino acid mutagenesis, we created a rAAV2/6 capsid mutant, rAAV2/6-S663L. In vivo imaging and retinal flat mount were employed to analyze the gene expression of rAAV2/6-S663L and wt rAAV2/6 in mouse retinal tissue. Retinal tissue cryosection, immunohistochemistry (IHC), Müller cell-specific promoter-controlled gene expression, and double AAV fluorescent protein co-expression were performed to determine the targeting of rAAV2/6-S663L for mouse retinal Müller cells.Results: In vivo imaging, retinal flat mount and retinal tissue cryosection results showed that rAAV2/6-S663L and wt rAAV2/6 have different specific tropisms in mouse retina and rAAV2/6-S663L is more preferentially targeting Müller cells. Müller cell-specific promoter-controlled gene expression experiments and IHC test confirmed that rAAV2/6-S663L has a higher tendency to infect Müller cells than wt rAAV2/6. Co-infection of the mouse retina with one rAAV2/6-S663L expressing EGFP under the control of GFAP promoter and the other one expressing mCherry under the control of CMV promoter revealed co-expression of the two fluorescent proteins in Müller cells.Conclusions: The results confirmed that rAAV2/6-S663L has a higher tropism for Müller cells than wt rAAV2/6. Our findings could add a new useful tool for retinal disease gene therapy.
Collapse
Affiliation(s)
- Jinjing Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Yun Yuan
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Feifei Wang
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Wen Kong
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Shanghai, China
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, China.,Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Chun Zhang
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
44
|
Dombrowski T, Rankovic V, Moser T. Toward the Optical Cochlear Implant. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033225. [PMID: 30323016 DOI: 10.1101/cshperspect.a033225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When hearing fails, cochlear implants (CIs) provide open speech perception to most of the currently half a million CI users. CIs bypass the defective sensory organ and stimulate the auditory nerve electrically. The major bottleneck of current CIs is the poor coding of spectral information, which results from wide current spread from each electrode contact. As light can be more conveniently confined, optical stimulation of the auditory nerve presents a promising perspective for a fundamental advance of CIs. Moreover, given the improved frequency resolution of optical excitation and its versatility for arbitrary stimulation patterns the approach also bears potential for auditory research. Here, we review the current state of the art focusing on the emerging concept of optogenetic stimulation of the auditory pathway. Developing optogenetic stimulation for auditory research and future CIs requires efforts toward viral gene transfer to the neurons, design and characterization of appropriate optogenetic actuators, as well as engineering of multichannel optical implants.
Collapse
Affiliation(s)
- Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr University Bochum, St. Elisabeth Hospital, 44787 Bochum, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany.,Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
45
|
Waldner DM, Visser F, Fischer AJ, Bech-Hansen NT, Stell WK. Avian Adeno-Associated Viral Transduction of the Postembryonic Chicken Retina. Transl Vis Sci Technol 2019; 8:1. [PMID: 31293820 PMCID: PMC6608088 DOI: 10.1167/tvst.8.4.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose The posthatching chicken is a valuable animal model for research, but molecular tools needed for altering its gene expression are not yet available. Our purpose here was to adapt the adeno-associated viral (AAV) vector method, used widely in mammalian studies, for use in investigations of the chicken retina. We hypothesized that the recently characterized avian AAV (A3V) vector could effectively transduce chick retinal cells for manipulation of gene expression, after intravitreal or subretinal injection. Methods A3V encoding enhanced green fluorescent protein (EGFP) was injected intravitreally or subretinally into P1-3 chick eye and left for 7 to 10 days. Retinas were then sectioned or flat-mounted and visualized via laser-scanning confocal microscopy for analysis of expression and imaging of retinal cells. Results Intravitreal A3V-EGFP injection resulted in EGFP expression in a small percent of retinal cells, primarily those with processes and/or cell bodies near the vitreal surface. In contrast, subretinal injection of A3V-EGFP within confined retinal “blebs” produced high rates of transduction of rods and all types of cones. Some examples of all other major retinal cell types, including horizontal, amacrine, bipolar, ganglion, and Müller cells, were also transduced, although with much lower frequency than photoreceptors. Conclusions A3V is a promising tool for investigating chick retinal cells and circuitry in situ. This novel vector can be used for studies in which local photoreceptor transduction is sufficient for meaningful observations. Translational Relevance With this vector, the postembryonic chick retina can now be used for preclinical trials of gene therapy for prevention and treatment of human retinal disease.
Collapse
Affiliation(s)
- Derek M Waldner
- Graduate Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frank Visser
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - N Torben Bech-Hansen
- Department of Medical Genetics, and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Ostrovsky MA, Kirpichnikov MP. Prospects of Optogenetic Prosthesis of the Degenerative Retina of the Eye. BIOCHEMISTRY (MOSCOW) 2019; 84:479-490. [PMID: 31234763 DOI: 10.1134/s0006297919050031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review discusses the prospects of using rhodopsin as an optogenetic tool for prosthetics of degenerative (blind) eye retina and the principles of optogenetic techniques. Retinal-containing proteins that depolarize/hyperpolarize the plasma membrane of nerve cells and, accordingly, excite/inhibit physiological activity of neurons, are described. The problem of what cells of the degenerative retina can be treated with what particular rhodopsins is discussed in detail. Viruses and promoters required for the rhodopsin gene delivery into the degenerative retina cells are described. In conclusion, main concepts and tasks associated with the optogenetic prosthetic treatment of degenerative retina employing rhodopsins are presented.
Collapse
Affiliation(s)
- M A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Molecular Physiology, Moscow, 119991, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Bioengineering, Moscow, 119991, Russia
| |
Collapse
|
47
|
Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 2019; 138:563-590. [PMID: 31115652 DOI: 10.1007/s00439-019-02028-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
|
48
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
49
|
Peynshaert K, Devoldere J, Minnaert AK, De Smedt SC, Remaut K. Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research. Curr Eye Res 2019; 44:465-475. [PMID: 30638413 DOI: 10.1080/02713683.2019.1565890] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inner limiting membrane (ILM) represents the structural boundary between the vitreous and the retina, and is suggested to act as a barrier for a wide range of retinal therapies. While it is widely acknowledged that the morphology of the human ILM exhibits regional variations and undergoes age-related changes, insight into its structure in laboratory animals is very limited. Besides presenting a detailed overview of the morphology and composition of the human ILM, this review specifically reflects on the species-specific differences in ILM structure. With these differences in mind, we furthermore summarize the most relevant reports on the barrier role of the ILM with regard to viral vectors, nanoparticles, anti-VEGF medication and stem cells. Overall, this review aims to deliberate on the impact of species-specific ILM variations on drug delivery research as well as to pinpoint knowledge gaps which future basic research should resolve.
Collapse
Affiliation(s)
- Karen Peynshaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Joke Devoldere
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - An-Katrien Minnaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Stefaan C De Smedt
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Katrien Remaut
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| |
Collapse
|
50
|
Comparative AAV-eGFP Transgene Expression Using Vector Serotypes 1-9, 7m8, and 8b in Human Pluripotent Stem Cells, RPEs, and Human and Rat Cortical Neurons. Stem Cells Int 2019; 2019:7281912. [PMID: 30800164 PMCID: PMC6360060 DOI: 10.1155/2019/7281912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/30/2018] [Accepted: 11/16/2018] [Indexed: 01/03/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ across in vitro and ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.
Collapse
|