1
|
Reynard JS, Brodard J, Roquis D, Droz E, Avia K, Verdenal T, Zufferey V, Lacombe T, Croll D, Spring JL. A divergent haplotype with a large deletion at the berry color locus causes a white-skinned phenotype in grapevine. HORTICULTURE RESEARCH 2025; 12:uhaf069. [PMID: 40303437 PMCID: PMC12038235 DOI: 10.1093/hr/uhaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Abstract
The current genetic model explaining berry skin color in Vitis vinifera is incomplete and fails to predict berry skin color phenotypes for one allele of VvMybA1, referred to as VvMybA1_SUB. Our study focuses on this specific allele, revealing that the haplotype containing VvMybA1_SUB (haplotype F) represents an ancient lineage of the berry color locus. Within haplotype F, we identified two functional subhaplotypes, HapF1 and HapF2, associated with black-skinned phenotype, and one non-functional subhaplotype, HapFDEL, responsible for white-skinned phenotype. HapF1 likely originated from wild populations domesticated in the Near East and subsequently spread globally with the expansion of viticulture. In contrast, HapF2 has a more restricted distribution and may have emerged from hybridization events between cultivated grapevines and local wild populations as viticulture migrated to the Italian peninsula. Furthermore, we found that in white-skinned berry cultivar, HapF has undergone a large deletion at the berry color locus, removing the majority of the VvMybA genes. Previous works suggested a single common origin for white-skinned varieties during grapevine domestication. Our results challenge this notion, instead proposing that white-skinned grape cultivars arose at least twice during grapevine domestication history. Alongside the major haplotype A, some white-skinned cultivars, such as cv. ‘Sultanina’ harbor HapFDEL. Since HapFDEL is present only in table grape varieties, we suggest that it likely arose from a recent mutational event and dispersed along the ancient Silk Road into East Asia. These findings enhance our understanding of the genetic diversity and evolutionary trajectory of grapevine cultivars, offering insights into their domestication and spread across different geographical regions.
Collapse
Affiliation(s)
| | - Justine Brodard
- Virology, Agroscope, Route de Duillier 60, 1260 Nyon, Switzerland
| | - David Roquis
- Hepia, Route de Presinge 150,1254 Jussy, Switzerland
| | - Eric Droz
- Virology, Agroscope, Route de Duillier 60, 1260 Nyon, Switzerland
| | - Komlan Avia
- INRAE, Université de Strasbourg, UMR SVQV, 68000 Colmar, France
| | - Thibaut Verdenal
- Viticulture, Agroscope, Av. de Rochettaz 21, 1009 Pully, Switzerland
| | - Vivian Zufferey
- Viticulture, Agroscope, Av. de Rochettaz 21, 1009 Pully, Switzerland
| | - Thierry Lacombe
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Univ Montpellier, F-34398 Montpellier, France
- IFV-INRAE-Institut Agro, UMT Geno-Vigne®, F-34398 Montpellier, France
| | - Daniel Croll
- Institute of Biology, Laboratory of Evolutionary Genetics, 2000 Neuchâtel, Switzerland
| | | |
Collapse
|
2
|
Scaglione D, Ciacciulli A, Gattolin S, Caruso M, Marroni F, Casas GL, Jurman I, Licciardello G, Catara AF, Rossini L, Licciardello C, Morgante M. Deep resequencing unveils novel SNPs, InDels, and large structural variants for the clonal fingerprinting of sweet orange [Citrus sinensis (L.) Osbeck]. THE PLANT GENOME 2025; 18:e20544. [PMID: 39906956 DOI: 10.1002/tpg2.20544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
The large phenotypic variability characterizing the sweet orange [Citrus sinensis (L.) Osbeck] germplasm arose from spontaneous somatic mutations and led to the diversification of major groups (common, acidless, Navel, and pigmented). Substantial divergence also occurred within each varietal group. The genetic basis of such variability (i.e., ripening time, fruit shape, color, acidity, and sugar content) is largely uncharacterized, and therefore not exploitable for molecular breeding. Moreover, the clonal nature of all sweet orange accessions hinders the traceability of propagation material and fruit juice using low-density molecular markers. To build a catalog of somatic mutations in Italian varieties, 20 accessions were sequenced at high coverage. This allowed the identification of single nucleotide polymorphisms (SNPs), structural variants (SVs), and large hemizygous deletions, specific to clones or varietal groups. A panel of 239 SNPs was successfully used for genotyping 221 sweet orange accessions, allowing them to be clustered into varietal groups. Furthermore, genotyping of SNPs and SVs was extended to leaf and juice samples of commercial varieties belonging to two varietal groups (Moro and Tarocco) collected from 26 sites in Southern Italy, confirming the usefulness of the identified markers for the identification of specific clones. Interestingly, we found that the insertion of the transposable element VANDAL in the gene exons significantly affected the level of allelic-specific expression. Finally, the markers developed in the present work contribute to unraveling the origin and diversification of sweet oranges, representing a reliable and efficient molecular tool for the unambiguous fingerprint of somatic mutants and an asset for the traceability of orange plant material and fruit juice.
Collapse
Affiliation(s)
| | | | - Stefano Gattolin
- CNR-National Research Council of Italy, Institute of Agricultural Biology and Biotechnology, Milan, Italy
- PTP Science Park, Lodi, Italy
| | - Marco Caruso
- CREA Research Centre Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Fabio Marroni
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
- IGA-Istituto di Genomica Applicata, Udine, Italy
| | | | - Irena Jurman
- IGA-Istituto di Genomica Applicata, Udine, Italy
| | - Grazia Licciardello
- CREA Research Centre Olive, Fruit and Citrus Crops, Acireale, Italy
- Parco Scientifico e Tecnologico della Sicilia, Catania, Italy
| | | | - Laura Rossini
- PTP Science Park, Lodi, Italy
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| | | | - Michele Morgante
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
- IGA-Istituto di Genomica Applicata, Udine, Italy
| |
Collapse
|
3
|
Fernandes de Oliveira A, Piga GK, Najoui S, Becca G, Marceddu S, Rigoldi MP, Satta D, Bagella S, Nieddu G. UV light and adaptive divergence of leaf physiology, anatomy, and ultrastructure drive heat stress tolerance in genetically distant grapevines. FRONTIERS IN PLANT SCIENCE 2024; 15:1399840. [PMID: 38957604 PMCID: PMC11217527 DOI: 10.3389/fpls.2024.1399840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.
Collapse
Affiliation(s)
| | | | - Soumiya Najoui
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Becca
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Marceddu
- Institute of Sciences of Food Production, National Research Council, Sassari, Italy
| | - Maria Pia Rigoldi
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Daniela Satta
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Simonetta Bagella
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Nieddu
- Department of Agriculture, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Li H, Yang Y, Zhang W, Zheng H, Xu X, Li H, Sun C, Hu H, Zhao W, Ma R, Tao J. Promoter replication of grape MYB transcription factor is associated with a new red flesh phenotype. PLANT CELL REPORTS 2024; 43:136. [PMID: 38709311 DOI: 10.1007/s00299-024-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061, China
| | - Yaxin Yang
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianbin Xu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenxu Sun
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Tao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
5
|
Carrara I, Terzi V, Ghizzoni R, Delbono S, Tumino G, Crespan M, Gardiman M, Francia E, Morcia C. A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of "Glera". Foods 2023; 12:3091. [PMID: 37628090 PMCID: PMC10453920 DOI: 10.3390/foods12163091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A pillar of wine authenticity is the variety/ies used. Ampelographic descriptors and SSR markers, included in several national and international databases, are extensively used for varietal identification purposes. Recently, SNP markers have been proposed as useful for grape varietal identification and traceability. Our study has been directed toward the development of a molecular toolbox able to track grape varieties from the nursery to the must. Two complementary approaches were developed, exploiting SNP markers with two different technologies, i.e., a high-throughput platform for varietal identification and a digital PCR system for varietal quantification. As proof-of-concept, the toolbox was successfully applied to the identification and quantification of the "Glera" variety along the Prosecco wine production chain. The assays developed found their limits in commercial, aged wines.
Collapse
Affiliation(s)
- Ilaria Carrara
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Valeria Terzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Roberta Ghizzoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Stefano Delbono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Manna Crespan
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Massimo Gardiman
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Enrico Francia
- Department of Life Science, Centre BIOGEST-SITEIA, University of Study of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia, Italy;
| | - Caterina Morcia
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| |
Collapse
|
6
|
He Z, Lei Y, Gong W, Ye M, Luo X. Karyotype and Phylogenetic Relationship Analysis of Five Varieties and Cultivars of Zanthoxylum armatum Based on Oligo-FISH. Genes (Basel) 2023; 14:1459. [PMID: 37510363 PMCID: PMC10379346 DOI: 10.3390/genes14071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we utilized oligo-FISH to distinguish five varieties and cultivars of Z. armatum on the basis of three oligonucleotide probes of 5S rDNA, (AG3T3)3, and (GAA)6. Karyotype analysis of the five varieties and cultivars of Z. armatum showed that the Z. armatum 'Tengjiao' karyotype formula was 2n = 2x = 98m with karyotype type 1C and an arm ratio of 4.3237, including two pairs of 5S rDNA signals and five pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'Youkangtengjiao' was 2n = 2x = 128m + 8sm with karyotype type 2B and an arm ratio of 3.5336, including three pairs of 5S rDNA signals and 17 pairs of (GAA)6 signals. The karyotype formula of Z. armatum var. novemfolius was 2n = 2x = 134m + 2sm with karyotype type 1C and an arm ratio of 5.5224, including two pairs of 5S rDNA signals and eight pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-03' was 2n = 2x = 2M + 128m + 4sm + 2st with karyotype type 2C and an arm ratio of 4.1829, including three pairs of 5S rDNA signals and nine pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-06' was 2n = 2x = 126m + 10sm with cytotype 2B and an arm ratio of 3.3011, including three pairs of 5S rDNA signals and two pairs of (GAA)6 signals. The five varieties and cultivars of Z. armatum had (AG3T3)3 signals on all chromosomes. The chromosomal symmetry of Z. armatum 'Tengjiao' was high, whereas the chromosomal symmetry of Z. armatum 'YT-03' was low, with the karyotypes of the five materials showing a trend toward polyploid evolution. The phylogenetic relationship between Z. armatum 'Tengjiao' and Z. armatum var. novemfolius was the closest, while that between Z. armatum 'YT-03' and Z. armatum 'YT-06' was closer than with Z. armatum 'Youkangtengjiao' according to oligo-FISH. The results provided a karyotype profile and a physical map that contributes to the distinction of varieties and cultivars of Z. armatum and provides strategies for distinguishing other cultivated species.
Collapse
Affiliation(s)
- Zhoujian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuting Lei
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Gong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Ye
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Kaya HB, Dilli Y, Oncu-Oner T, Ünal A. Exploring genetic diversity and population structure of a large grapevine ( Vitis vinifera L.) germplasm collection in Türkiye. FRONTIERS IN PLANT SCIENCE 2023; 14:1121811. [PMID: 37235025 PMCID: PMC10208073 DOI: 10.3389/fpls.2023.1121811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/06/2023] [Indexed: 05/28/2023]
Abstract
Grapevine (Vitis Vinifera L.) has been one of the significant perennial crops in widespread temperate climate regions since its domestication around 6000 years ago. Grapevine and its products, particularly wine, table grapes, and raisins, have significant economic importance not only in grapevine-growing countries but also worldwide. Grapevine cultivation in Türkiye dates back to ancient times, and Anatolia is considered one of the main grapevine migration routes around the Mediterranean basin. Turkish germplasm collection, conserved at the Turkish Viticulture Research Institutes, includes cultivars and wild relatives mainly collected in Türkiye, breeding lines, rootstock varieties, and mutants, but also cultivars of international origin. Genotyping with high-throughput markers enables the investigation of genetic diversity, population structure, and linkage disequilibrium, which are crucial for applying genomic-assisted breeding. Here, we present the results of a high-throughput genotyping-by-sequencing (GBS) study of 341 genotypes from grapevine germplasm collection at Manisa Viticulture Research Institute. A total of 272,962 high-quality single nucleotide polymorphisms (SNP) markers on the nineteen chromosomes were identified using genotyping-by-sequencing (GBS) technology. The high-density coverage of SNPs resulted in an average of 14,366 markers per chromosome, an average polymorphism information content (PIC) value of 0.23 and an expected heterozygosity (He) value of 0.28 indicating the genetic diversity within 341 genotypes. LD decayed very fast when r2 was between 0.45 and 0.2 and became flat when r2 was 0.05. The average LD decay for the entire genome was 30 kb when r2 = 0.2. The PCA and structure analysis did not distinguish the grapevine genotypes based on different origins, highlighting the occurrence of gene flow and a high amount of admixture. Analysis of molecular variance (AMOVA) results indicated a high level of genetic differentiation within populations, while variation among populations was extremely low. This study provides comprehensive information on the genetic diversity and population structure of Turkish grapevine genotypes.
Collapse
Affiliation(s)
- Hilal Betul Kaya
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Yıldız Dilli
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| | - Tulay Oncu-Oner
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Akay Ünal
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| |
Collapse
|
8
|
Gardiman M, De Rosso M, De Marchi F, Flamini R. Metabolomic profiling of different clones of vitis vinifera L. cv. "Glera" and "Glera lunga" grapes by high-resolution mass spectrometry. Metabolomics 2023; 19:25. [PMID: 36976385 DOI: 10.1007/s11306-023-01997-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Prosecco wine production has been strongly extended in the last decade and several new clones have been introduced. "Glera" (minimum 85%) and "Glera lunga" are grape varieties of great economic impact used to produce Prosecco wines. Study of grape berry secondary metabolites is effective in the classification of vine varieties and clones. High-resolution mass spectrometry provides complete panorama of these metabolites in single analysis and coupling to statistical multivariate analysis is successfully applied in vine chemotaxonomy. OBJECTIVES update and deepen the knowledge on the "Glera" and "Glera lunga" berry grapes chemotaxonomy and investigate some of the most produced and marketed clones by using the modern analytical and statistical tools. METHODS five clones of "Glera" and two of "Glera lunga" grown in the same vineyard with same agronomical practices were studied for three vintages. Grape berry metabolomics was characterized by UHPLC/QTOF and multivariate statistical analysis was performed on the signals of main metabolites of oenological interest. RESULTS "Glera" and "Glera lunga" showed different monoterpene profiles ("Glera" is richer in glycosidic linalool and nerol) and differences in polyphenols (catechin, epicatechin and procyanidins, trans-feruloyltartaric acid, E-ε-viniferin, isorhamnetin-glucoside, quercetin galactoside). Vintage affected the accumulation of these metabolites in berry. No statistical differentiation among the clones of each variety, was found. CONCLUSIONS Coupling HRMS metabolomics/statistical multivariate analysis enabled clear differentiation between the two varieties. The examined clones of same variety showed similar metabolomic profiles and enological characteristics, but vineyard planting using different clones can result in more consistent final wines reducing the vintage variability linked to genotype × environment interaction.
Collapse
Affiliation(s)
- Massimo Gardiman
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Mirko De Rosso
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Fabiola De Marchi
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy
| | - Riccardo Flamini
- Council for Agricultural Research and Economics - Research Center for Viticulture & Enology (CREA-VE), Conegliano (TV), 31015, Italy.
| |
Collapse
|
9
|
Villano C, Corrado G, Basile B, Di Serio E, Mataffo A, Ferrara E, Aversano R. Morphological and Genetic Clonal Diversity within the 'Greco Bianco' Grapevine ( Vitis vinifera L.) Variety. PLANTS (BASEL, SWITZERLAND) 2023; 12:515. [PMID: 36771600 PMCID: PMC9921137 DOI: 10.3390/plants12030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis vinifera L.) has been propagated vegetatively for hundreds of years. Therefore, plants tend to accumulate somatic mutations that can result in an intra-varietal diversity capable of generating distinct clones. Although it is common that winemakers request specific clones or selections for planting new vineyards, relatively limited information is available on the extent, degree, and morphological impact of the clonal diversity in traditional, highly valued grapevine varieties within production areas protected by geographical denomination of origin. Here, we present a morphological and genetic investigation of the intra-varietal diversity in 'Greco Bianco', the grapevine variety used to produce the DOCG and PDO "Greco di Tufo" wine. Seventeen clones from different farms (all within the allowed production area) were phenotypically characterized using ampelographic and ampelometric traits. The clones were also genotyped with Simple Sequence Repeats (SSR) and retrotransposon-based DNA markers (REMAP). The morphological analysis indicated a uniformity in the qualitatively scored traits, and a limited variability for the quantitative traits of the bunch and of the berry composition. The molecular markers also depicted variability among clones, which was more evident with the use of REMAPs. The comparison of the discriminatory information of the three analyses indicated that they provided different estimates of the level of diversity. The evaluation described herein of the clonal variability has implications for the management and protection of clonal selections in 'Greco Bianco' and prompts for further multidisciplinary investigations on its possible role in winemaking.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Boris Basile
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Alessandro Mataffo
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Elvira Ferrara
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Riccardo Aversano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
10
|
Alcalde-Eon C, Ferreras-Charro R, García-Estévez I, Escribano-Bailón MT. In search for flavonoid and colorimetric varietal markers of Vitis vinifera L. cv Rufete wines. Curr Res Food Sci 2023; 6:100467. [PMID: 36910918 PMCID: PMC9996384 DOI: 10.1016/j.crfs.2023.100467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
The better adaptation of autochthonous grape varieties to environmental changes is increasing the interest on them. Previous studies on Vitis vinifera L. cv Rufete, the flagship of DOP "Sierra de Salamanca", demonstrated its phenolic potential to produce quality wines. The present study aims at discovering flavonoid (HPLC-DAD-MSn) and colorimetric (CIELAB) varietal markers in commercial Rufete wines (RW) that could be employed to discriminate them from those made with other varieties or mixtures. Compared to Tempranillo wines (TW), RW showed lower phenolic contents, with lower proportions of anthocyanins and flavonols but greater of flavanols. Principal Component Analysis applied to flavonoid and chromatic variables allowed varietal separation of the samples along PC2, which was mostly driven by %total prodelphinidins, %oligomeric procyanidins and C ab * (greater in TW) and by %monomeric procyanindins and L* (greater in RW) and, additionally, by the proportions of A-type vitisins, acetaldehyde-related pigments, quercetin 3-O-glucuronide and Quercetin/Myricetin ratio (all greater in RW). The results of the present study show that the typicity of Rufete grapes is quite preserved in the wines made with up to 95% of Rufete and 5% of Tempranillo grapes or wines and independently of the enological practices of the different wineries.
Collapse
Affiliation(s)
- Cristina Alcalde-Eon
- Grupo de Investigación en Polifenoles. Departamento de Química Analítica, Nutrición y Bromatología. Facultad de Farmacia. University of Salamanca, E-37003, Salamanca, Spain
| | - Rebeca Ferreras-Charro
- Grupo de Investigación en Polifenoles. Departamento de Química Analítica, Nutrición y Bromatología. Facultad de Farmacia. University of Salamanca, E-37003, Salamanca, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles. Departamento de Química Analítica, Nutrición y Bromatología. Facultad de Farmacia. University of Salamanca, E-37003, Salamanca, Spain
| | - María-Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles. Departamento de Química Analítica, Nutrición y Bromatología. Facultad de Farmacia. University of Salamanca, E-37003, Salamanca, Spain
| |
Collapse
|
11
|
Nuzzo F, Gambino G, Perrone I. Unlocking grapevine in vitro regeneration: Issues and perspectives for genetic improvement and functional genomic studies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:99-109. [PMID: 36343465 DOI: 10.1016/j.plaphy.2022.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In vitro plant regeneration is a pivotal process in genetic engineering to obtain large numbers of transgenic, cisgenic and gene edited plants in the frame of functional gene or genetic improvement studies. However, several issues emerge as regeneration is not universally possible across the plant kingdom and many variables must be considered. In grapevine (Vitis spp.), as in other woody and fruit tree species, the regeneration process is impaired by a recalcitrance that depends on numerous factors such as genotype and explant-dependent responses. This is one of the major obstacles in developing gene editing approaches and functional genome studies in grapevine and it is therefore crucial to understand how to achieve efficient regeneration across different genotypes. Further issues that emerge in regeneration need to be addressed, such as somaclonal mutations which do not allow the regeneration of individuals identical to the original mother plant, an essential factor for commercial use of the improved grapevines obtained through the New Breeding Techniques. Over the years, the evolution of protocols to achieve plant regeneration has relied mainly on optimizing protocols for genotypes of interest whilst nowadays with new genomic data available there is an emerging opportunity to have a clearer picture of its molecular regulation. The goal of this review is to discuss the latest information available about different aspects of grapevine in vitro regeneration, to address the main factors that can impair the efficiency of the plant regeneration process and cause post-regeneration problems and to propose strategies for investigating and solving them.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy.
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
12
|
Olavarrieta CE, Sampedro MC, Vallejo A, Štefelová N, Barrio RJ, De Diego N. Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja. PLANTS 2022; 11:plants11121594. [PMID: 35736745 PMCID: PMC9229063 DOI: 10.3390/plants11121594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid β-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.
Collapse
Affiliation(s)
- Cristina E. Olavarrieta
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
- Correspondence: (C.E.O.); (N.D.D.)
| | - Maria Carmen Sampedro
- Central Service of Analysis (SGIker), University of the Basque Country UPV/EHU, Lascaray Ikergunea, Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain;
| | - Asier Vallejo
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
| | - Nikola Štefelová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ramón J. Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.V.); (R.J.B.)
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
- Correspondence: (C.E.O.); (N.D.D.)
| |
Collapse
|
13
|
A 69 kbp Deletion at the Berry Color Locus Is Responsible for Berry Color Recovery in Vitis vinifera L. Cultivar 'Riesling Rot'. Int J Mol Sci 2022; 23:ijms23073708. [PMID: 35409066 PMCID: PMC8998622 DOI: 10.3390/ijms23073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
‘Riesling Weiss’ is a white grapevine variety famous worldwide for fruity wines with higher acidity. Hardly known is ‘Riesling Rot’, a red-berried variant of ‘Riesling Weiss’ that disappeared from commercial cultivation but has increased in awareness in the last decades. The question arises of which variant, white or red, is the original and, consequently, which cultivar is the true ancestor. Sequencing the berry color locus of ‘Riesling Rot’ revealed a new VvmybA gene variant in one of the two haplophases called VvmybA3/1RR. The allele displays homologous recombination of VvmybA3 and VvmybA1 with a deletion of about 69 kbp between both genes that restores VvmybA1 transcripts. Furthermore, analysis of ‘Riesling Weiss’, ‘Riesling Rot’, and the ancestor ‘Heunisch Weiss’ along chromosome 2 using SSR (simple sequence repeat) markers elucidated that the haplophase of ‘Riesling Weiss’ was inherited from the white-berried parent variety ‘Heunisch Weiss’. Since no color mutants of ‘Heunisch Weiss’ are described that could have served as allele donors, we concluded that, in contrast to the public opinion, ‘Riesling Rot’ resulted from a mutational event in ‘Riesling Weiss’ and not vice versa.
Collapse
|
14
|
Zombardo A, Meneghetti S, Morreale G, Calò A, Costacurta A, Storchi P. Study of Inter- and Intra-varietal Genetic Variability in Grapevine Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030397. [PMID: 35161378 PMCID: PMC8839970 DOI: 10.3390/plants11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 05/10/2023]
Abstract
Vitis vinifera includes a large number of cultivars that are further distinguished in biotypes and clones, and it is actually hard to differentiate them, even through complex molecular techniques. In this work, the plant materials of 56 putative Sangiovese and 14 putative Montepulciano biotypes, two of the most widespread black-berried Italian cultivars, were collected in different wine-growing areas of Italy distributed in 13 regions, from north to south. Firstly, the samples were analyzed using SSR markers to have proper varietal identification. According to the results, the genotypes belonged to three different cultivars: Sangiovese, Sanforte, and Montepulciano. Subsequently, the samples were investigated using AFLP, SAMPL, M-AFLP, and I-SSR molecular markers to estimate their intra-varietal genetic variability. The DNA marker-based method used turned out to be performing to bring out the geographic differences among the biotypes screened, and it can therefore be considered as a powerful tool available for all the grapevine varieties.
Collapse
Affiliation(s)
- Alessandra Zombardo
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, viale Santa Margherita, 80, 52100 Arezzo, Italy;
- Correspondence: ; Tel.: +39-0575-353021
| | - Stefano Meneghetti
- Accademia Italiana della Vite e del Vino, via Logge degli Uffici Corti 1, 50122 Florence, Italy; (S.M.); (A.C.); (A.C.)
| | - Giacomo Morreale
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, viale 28 Aprile, 26, 31015 Conegliano, Italy;
| | - Antonio Calò
- Accademia Italiana della Vite e del Vino, via Logge degli Uffici Corti 1, 50122 Florence, Italy; (S.M.); (A.C.); (A.C.)
| | - Angelo Costacurta
- Accademia Italiana della Vite e del Vino, via Logge degli Uffici Corti 1, 50122 Florence, Italy; (S.M.); (A.C.); (A.C.)
| | - Paolo Storchi
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, viale Santa Margherita, 80, 52100 Arezzo, Italy;
| |
Collapse
|
15
|
Augusto D, Ibáñez J, Pinto-Sintra AL, Falco V, Leal F, Martínez-Zapater JM, Oliveira AA, Castro I. Grapevine Diversity and Genetic Relationships in Northeast Portugal Old Vineyards. PLANTS 2021; 10:plants10122755. [PMID: 34961228 PMCID: PMC8705298 DOI: 10.3390/plants10122755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
More than 100 grapevine varieties are registered as suitable for wine production in “Douro” and “Trás-os-Montes” Protected Designations of Origin regions; however, only a few are actually used for winemaking. The identification of varieties cultivated in past times can be an important step to take advantage of all the potential of these regions grape biodiversity. The conservation of the vanishing genetic resources boosts greater product diversification, and it can be considered strategic in the valorisation of these wine regions. Hence, one goal of the present study was to prospect and characterise, through molecular markers, 310 plants of 11 old vineyards that constitute a broad representation of the grape genetic patrimony of “Douro” and “Trás-os-Montes” wine regions; 280 samples, grouped into 52 distinct known varieties, were identified through comparison of their genetic profiles generated via 6 nuclear SSR and 43 informative SNP loci amplification; the remaining 30 samples, accounting for 13 different genotypes, did not match with any profile in the consulted databases and were considered as new genotypes. This study also aimed at evaluating the population structure among the 65 non-redundant genotypes identified, which were grouped into two ancestral genetic groups. The mean probability of identity values of 0.072 and 0.510 (for the 6 SSR and 226 SNP sets, respectively) were determined. Minor differences were observed between frequencies of chlorotypes A and D within the non-redundant genotypes studied. Twenty-seven pedigrees were confirmed and nine new trios were established. Ancestors of eight genotypes remain unknown.
Collapse
Affiliation(s)
- Diana Augusto
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Javier Ibáñez
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, 26007 Logroño, Spain; (J.I.); (J.M.M.-Z.)
| | - Ana Lúcia Pinto-Sintra
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (A.L.P.-S.); (F.L.); (A.A.O.)
| | - Virgílio Falco
- Chemistry Research Centre, Vila Real (CQ-VR), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Fernanda Leal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (A.L.P.-S.); (F.L.); (A.A.O.)
| | - José Miguel Martínez-Zapater
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, 26007 Logroño, Spain; (J.I.); (J.M.M.-Z.)
| | - Ana Alexandra Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (A.L.P.-S.); (F.L.); (A.A.O.)
| | - Isaura Castro
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (A.L.P.-S.); (F.L.); (A.A.O.)
- Correspondence:
| |
Collapse
|
16
|
Margaryan K, Melyan G, Röckel F, Töpfer R, Maul E. Genetic Diversity of Armenian Grapevine ( Vitis vinifera L.) Germplasm: Molecular Characterization and Parentage Analysis. BIOLOGY 2021; 10:1279. [PMID: 34943194 PMCID: PMC8698583 DOI: 10.3390/biology10121279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Armenia is an important country of origin of cultivated Vitis vinifera subsp. vinifera and wild Vitis vinifera subsp. sylvestris and has played a key role in the long history of grape cultivation in the Southern Caucasus. The existence of immense grapevine biodiversity in a small territory is strongly linked with unique relief and diverse climate conditions assembled with millennium-lasting cultural and historical context. In the present in-depth study using 25 nSSR markers, 492 samples collected in old vineyards, home gardens, and private collections were genotyped. For verification of cultivar identity, the symbiotic approach combining genotypic and phenotypic characterization for each genotype was carried out. The study provided 221 unique varieties, including 5 mutants, from which 66 were widely grown, neglected or minor autochthonous grapevine varieties, 49 turned out to be new bred cultivars created within the national breeding programs mainly during Soviet Era and 34 were non-Armenian varieties with different countries of origin. No references and corresponding genetic profiles existed for 67 genotypes. Parentage analysis was performed inferring 62 trios with 53 out of them having not been previously reported and 185 half-kinships. Instability of grapevine cultivars was detected, showing allelic variants, with three and in rare cases four alleles at one loci. Obtained results have great importance and revealed that Armenia conserved an extensive grape genetic diversity despite geographical isolation and low material exchange. This gene pool richness represents a huge reservoir of under-explored genetic diversity.
Collapse
Affiliation(s)
- Kristine Margaryan
- Research Group of Plant Genetics and Immunology, Institute of Molecular Biology of National Academy of Sciences RA, Yerevan 0014, Armenia
- Department of Genetics and Cytology, Yerevan State University, Yerevan 0025, Armenia
| | - Gagik Melyan
- Voskehat Educational and Research Center of Enology, Branch of Armenian National Agrarian University, Merdzavan 1139, Armavir Province, Armenia
| | - Franco Röckel
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany; (F.R.); (R.T.); (E.M.)
| | - Reinhard Töpfer
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany; (F.R.); (R.T.); (E.M.)
| | - Erika Maul
- Julius Kühn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany; (F.R.); (R.T.); (E.M.)
| |
Collapse
|
17
|
Zombardo A, Storchi P, Valentini P, Ciofini A, Migliaro D, Crespan M. Recovery, Molecular Characterization, and Ampelographic Assessment of Marginal Grapevine Germplasm from Southern Umbria (Central Italy). PLANTS (BASEL, SWITZERLAND) 2021; 10:1539. [PMID: 34451584 PMCID: PMC8398187 DOI: 10.3390/plants10081539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
The protection of grapevine biodiversity and the safeguarding of genetic variability are certainly primary and topical objectives for wine research, especially in territories historically devoted to viticulture. To assess the autochthonous germplasm of three different districts of Southern Umbria (Central Italy), the plant material of 70 grapevines retrieved from reforested land plots or old vineyards was collected, and their genetic identity was investigated using 13 microsatellite markers (SSR). The results revealed the presence of 39 unique genotypes, divided into 24 already-known cultivars and 15 never-reported SSR profiles. Most of the grapevine accessions were then vegetatively propagated and cultivated in a vineyard collection both to be protected from extinction and to be evaluated at the ampelographic level. Overall, this work emphasizes the need for recovering the threatened genetic variability that characterizes minor neglected grapevine cultivars or biotypes of Southern Umbria germplasm, and the requirement to revalue and exploit the more valuable genetic resources to enhance the local agri-food economy.
Collapse
Affiliation(s)
- Alessandra Zombardo
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy; (P.S.); (P.V.); (A.C.)
| | - Paolo Storchi
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy; (P.S.); (P.V.); (A.C.)
| | - Paolo Valentini
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy; (P.S.); (P.V.); (A.C.)
| | - Alice Ciofini
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy; (P.S.); (P.V.); (A.C.)
| | - Daniele Migliaro
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale 28 Aprile 26, 31015 Conegliano, TV, Italy; (D.M.); (M.C.)
| | - Manna Crespan
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale 28 Aprile 26, 31015 Conegliano, TV, Italy; (D.M.); (M.C.)
| |
Collapse
|
18
|
Whole genome resequencing and custom genotyping unveil clonal lineages in 'Malbec' grapevines (Vitis vinifera L.). Sci Rep 2021; 11:7775. [PMID: 33833358 PMCID: PMC8032709 DOI: 10.1038/s41598-021-87445-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/30/2021] [Indexed: 01/23/2023] Open
Abstract
Grapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection. Malbec is a cultivar that is well-appreciated for the elaboration of red wine. It originated in Southwestern France and was introduced in Argentina during the 1850s. In order to study the clonal genetic diversity of Malbec grapevines, we generated whole-genome resequencing data for four accessions with different clonal propagation records. A stringent variant calling procedure was established to identify reliable polymorphisms among the analyzed accessions. The latter procedure retrieved 941 single nucleotide variants (SNVs). A reduced set of the detected SNVs was corroborated through Sanger sequencing, and employed to custom-design a genotyping experiment. We successfully genotyped 214 Malbec accessions using 41 SNVs, and identified 14 genotypes that clustered in two genetically divergent clonal lineages. These lineages were associated with the time span of clonal propagation of the analyzed accessions in Argentina and Europe. Our results show the usefulness of this approach for the study of the scarce intra-cultivar genetic diversity in grapevines. We also provide evidence on how human actions might have driven the accumulation of different somatic mutations, ultimately shaping the Malbec genetic diversity pattern.
Collapse
|
19
|
Moret F, Delorme G, Clément G, Grosjean C, Lemaître-Guillier C, Trouvelot S, Adrian M, Fontaine F. Esca-affected grapevine leaf metabolome is clone- and vintage-dependent. PHYSIOLOGIA PLANTARUM 2021; 171:424-434. [PMID: 33140863 DOI: 10.1111/ppl.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Esca is a complex grapevine trunk disease caused by wood-rotting ascomycetes and basidiomycetes and leading to several foliar and wood symptoms. Given that the esca expression can be influenced by several environmental, physiological, and genetic factors, foliar symptoms are inconsistent in incidence and prevalence and may appear 1 year but not the following. We have previously reported a clone-dependent expression of the disease in cv Chardonnay. Owing to metabolome analysis, we could discriminate the metabolite fingerprint of green leaves collected on diseased vines of clones 76 and 95. These clone-dependent fingerprints were year-dependent in intensity and nature. The present work was conducted to determine if the clone-dependent disease expression observed is specific to Chardonnay or if it also occurs in another cultivar. A plot located in the Jura vineyard (France) and planted with both 1004 and 1026 clones of Trousseau, a cultivar highly susceptible to esca, was thus selected and studied during 2017 and 2018. A year-dependent variation of the symptoms expression was first observed and a possible relationship with rainfall is hypothesized and discussed. Moreover, a higher percentage of the clone 1026 vines expressed disease, compared to the 1004 ones, suggesting the higher susceptibility of this clone. Finally, metabolomic analyses of the remaining green leaves (i.e, without symptom expression) of partial esca-apoplectic vines allowed us to confirm a clone-dependent metabolic response to the disease. The metabolite fingerprints obtained differed in nature and intensity to those previously reported for Chardonnay and also between years.
Collapse
Affiliation(s)
- Florian Moret
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaël Delorme
- Chambre d'Agriculture du Jura, Lons-le-Saunier, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Claire Grosjean
- Chambre Régionale d'Agriculture de Bourgogne Franche-Comté, Bretenière, France
| | - Christelle Lemaître-Guillier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Florence Fontaine
- SFR Condorcet CNRS3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims cedex 2, France
| |
Collapse
|
20
|
Gambino G, Moine A, Boccacci P, Perrone I, Pagliarani C. Somatic embryogenesis is an effective strategy for dissecting chimerism phenomena in Vitis vinifera cv Nebbiolo. PLANT CELL REPORTS 2021; 40:205-211. [PMID: 33089358 DOI: 10.1007/s00299-020-02626-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The tendency of somatic embryogenesis to regenerate plants only from the L1 layer, associated with the spread of chimerism in grapevine, must be carefully considered in the framework of biotechnological improvement programmes. Grapevine is an important fruit crop with a high economic value linked to traditional genotypes that have been multiplied for centuries by vegetative propagation. In this way, somatic variations that can spontaneously occur within the shoot apical meristem are fixed in the whole plant and represent a source of intra-varietal variability. Previously identified inconsistencies in the allelic calls of single nucleotide variants (SNVs) suggested that the Vitis vinifera 'Nebbiolo' CVT185 clone is a potential periclinal chimera. We adopted the somatic embryogenesis technique to separate the two genotypes putatively associated with the L1 and L2 layers of CVT185 into different somaclones. Despite the recalcitrance of 'Nebbiolo' to the embryogenic process, 58 somaclones were regenerated and SNV genotyping assays attested that the genotype of all them differed from that of the mother plant and was only attributable to L1. The results confirmed that L2 has low or no competence for differentiating somatic embryos. After one year in the greenhouse, the somaclones showed no phenotypic alterations in comparison with the mother plant; however further analyses are needed to identify potential endogenous sources of variation. The tendency of somatic embryogenesis to regenerate plants only from L1 must be carefully considered in the framework of biotechnological improvement programmes in this species.
Collapse
Affiliation(s)
- Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
21
|
Grigoriou A, Tsaniklidis G, Hagidimitriou M, Nikoloudakis N. The Cypriot Indigenous Grapevine Germplasm Is a Multi-Clonal Varietal Mixture. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1034. [PMID: 32824004 PMCID: PMC7463456 DOI: 10.3390/plants9081034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Cypriot vineyards are considered as one among the earliest niches of viticulture and a pivotal hub for the domestication and dissemination of grapevine. The millennial presence of Vitis spp. in this Eastern Mediterranean island has given rise to a plethora of biotypes that have not been adequately characterized, despite their unique attributes and stress tolerance. This ancient germplasm also has an additional value since it survived the phylloxera outbreak; hence, it possesses a large amount of genetic diversity that has been unnoticed. In order to provide useful insights to the lineage of Cypriot vineyards, a two-year-spanning collection of centennial grapevine cultivars mostly regarded to belong to four indigenous variety clusters ("Mavro", "Xynisteri", "Maratheftiko", and "Veriko") was initiated. There were 164 accessions across the broader Commandaria wine zone sampled and characterized using a universal microsatellite primer set. Genetic analysis indicated that considered indigenous Cypriot germplasm has a polyclonal structure with a high level of heterozygosity. Moreover, several lineages or unexplored varieties may exist, since a larger than considered number of discrete genotypes was discovered. Furthermore, it was established that grapevine lineages in Cyprus were shaped across eras via clonal, as well as, sexual propagation. The special attributes of the Cypriot landscape are discussed.
Collapse
Affiliation(s)
- Apostolis Grigoriou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol CY-3603, Cyprus;
| | - Georgios Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization ‘Demeter’ (NAGREF), 71003 Heraklio, Greece;
| | | | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol CY-3603, Cyprus;
| |
Collapse
|
22
|
Color Intensity of the Red-Fleshed Berry Phenotype of Vitis vinifera Teinturier Grapes Varies Due to a 408 bp Duplication in the Promoter of VvmybA1. Genes (Basel) 2020; 11:genes11080891. [PMID: 32764272 PMCID: PMC7464560 DOI: 10.3390/genes11080891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
Grapevine (Vitis vinifera) teinturier cultivars are characterized by their typical reddish leaves and red-fleshed berries due to ectopic anthocyanin formation. Wines of these varieties have economic importance as they can be used for blending to enhance the color of red wines. The unique and heritable mutation has been known for a long time but the underlying genetic mechanism still is not yet understood. Here we describe the association of the red-fleshed berry phenotype with a 408 bp repetitive DNA element in the promoter of the VvmybA1 gene (grapevine color enhancer, GCE). Three different clones of ‘Teinturier’ were discovered with two, three and five allelic GCE repeats (MybA1t2, MybA1t3 and MybA1t5). All three clones are periclinal chimeras; these clones share the same L1 layer, but have distinct L2 layers with different quantities of GCE repeats. Quantitative real time PCR and HPLC analysis of leaf and berry samples showed that the GCE repeat number strongly correlates with an increase of the expression of VvmybA1 itself and the VvUFGT gene regulated by it and the anthocyanin content. A model is proposed based on autoregulation of VvmybA1t to explain the red phenotype which is similar to that of red-fleshed apples. This study presents results about the generation and modes of action of three MybA1t alleles responsible for the red-fleshed berry phenotype of teinturier grapevines.
Collapse
|
23
|
Wang W, Celton JM, Buck-Sorlin G, Balzergue S, Bucher E, Laurens F. Skin Color in Apple Fruit ( Malus × domestica): Genetic and Epigenetic Insights. EPIGENOMES 2020; 4:epigenomes4030013. [PMID: 34968286 PMCID: PMC8594686 DOI: 10.3390/epigenomes4030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Apple skin color is an important trait for organoleptic quality. In fact, it has a major influence on consumer choice. Skin color is, thus, one of the most important criteria taken into account by breeders. For apples, most novel varieties are so-called "mutants" or "sports" that have been identified in clonal populations. Indeed, many "sports" exist that show distinct phenotypic differences compared to the varieties from which they originated. These differences affect a limited number of traits of economic importance, including skin color. Until recently, the detailed genetic or epigenetic changes resulting in heritable phenotypic changes in sports was largely unknown. Recent technological advances and the availability of several high-quality apple genomes now provide the bases to understand the exact nature of the underlying molecular changes that are responsible for the observed phenotypic changes observed in sports. The present review investigates the molecular nature of sports affected in apple skin color giving arguments in favor of the genetic or epigenetic explanatory models.
Collapse
Affiliation(s)
- Wuqian Wang
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Jean-Marc Celton
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Gerhard Buck-Sorlin
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Sandrine Balzergue
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland;
| | - François Laurens
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
- Correspondence:
| |
Collapse
|
24
|
Zhang Y, Ye J, Liu C, Xu Q, Long L, Deng X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1306-1321. [PMID: 31728522 PMCID: PMC7031078 DOI: 10.1093/jxb/erz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs; or condensed tannins) are a major class of flavonoids that contribute to citrus fruit quality. However, the molecular mechanism responsible for PA biosynthesis and accumulation in citrus remains unclear. Here, we identify a PH4-Noemi regulatory complex that regulates proanthocyanidin biosynthesis in citrus. Overexpression of PH4 or Noemi in citrus calli activated the expression of PA biosynthetic genes and significantly increased the PA content. Interestingly, Noemi was also shown to be up-regulated in CsPH4-overexpressing lines compared with wild-type calli. Simultaneously, CsPH4 partially complemented the PA-deficient phenotype of the Arabidopsis tt2 mutant and promoted PA accumulation in the wild-type. Further analysis revealed that CsPH4 interacted with Noemi, and together these proteins synergistically activated the expression of PA biosynthetic genes by directly binding to the MYB-recognizing elements (MRE) of the promoters of these genes. Moreover, CsPH4 could directly bind to the promoter of Noemi and up-regulate the expression of this gene. These findings explain how the CsPH4-Noemi regulatory complex contributes to the activation of PA biosynthetic genes via a positive feedback loop and provide new insights into the molecular mechanisms underlying PA biosynthesis, which can be effectively employed for metabolic engineering to improve citrus fruit quality.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lichang Long
- Agriculture Bureau of Hongjiang City, Hongjiang, Hunan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
25
|
Ferreira V, Matus JT, Pinto-Carnide O, Carrasco D, Arroyo-García R, Castro I. Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. 'Moscatel Galego'). BMC Genomics 2019; 20:952. [PMID: 31815637 PMCID: PMC6902604 DOI: 10.1186/s12864-019-6237-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Somatic mutations occurring within meristems of vegetative propagation material have had a major role in increasing the genetic diversity of the domesticated grapevine (Vitis vinifera subsp. vinifera). The most well studied somatic variation in this species is the one affecting fruit pigmentation, leading to a plethora of different berry skin colors. Color depletion and reversion are often observed in the field. In this study we analyzed the origin of a novel white-to-red skin color reversion and studied its possible metabolic and transcriptomic consequences on cv. 'Muscat à Petits Grains Blancs' (synonym cv. 'Moscatel Galego Branco'), a member of the large family of Muscats. RESULTS The mild red-skinned variant (cv. 'Muscat à Petits Grains Rouge', synonym cv. 'Moscatel Galego Roxo'), characterized by a preferential accumulation of di-hydroxylated anthocyanins, showed in heterozygosis a partially-excised Gret1 retrotransposon in the promoter region of the MYBA1 anthocyanin regulator, while MYBA2 was still in homozygosis for its non-functional allele. Through metabolic (anthocyanin, resveratrol and piceid quantifications) and transcriptomic (RNA-Seq) analyses, we show that within a near-isogenic background, the transcriptomic consequences of color reversion are largely associated to diminished light/UV-B responses probably as a consequence of the augment of metabolic sunscreens (i.e. anthocyanins). CONCLUSIONS We propose that the reduced activity of the flavonoid tri-hydroxylated sub-branch and decreased anthocyanin synthesis and modification (e.g. methylation and acylation) are the potential causes for the mild red-skinned coloration in the pigmented revertant. The observed positive relation between anthocyanins and stilbenes could be attributable to an increased influx of phenylpropanoid intermediaries due to the replenished activity of MYBA1, an effect yet to be demonstrated in other somatic variants.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.,Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I2SysBio (Universitat de Valencia - CSIC), 46908, Paterna, Valencia, Spain
| | - Olinda Pinto-Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - David Carrasco
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rosa Arroyo-García
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo. Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
| |
Collapse
|
26
|
Genetic Diversity and Structure of the Portuguese Pear (Pyrus communis L.) Germplasm. SUSTAINABILITY 2019. [DOI: 10.3390/su11195340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A rich heritage of traditional pear varieties is kept in national Portuguese collections. Out of these varieties, “Rocha” dominates national pear production. Although a noticeable phenotypic variation among clones of this variety has been reported, little is known about its genetic variability, as to date molecular studies have been performed on a single “Rocha” clone. Eleven Simple Sequence Repeats (SSR) markers were used to assess the genetic diversity of 130 local cultivars, 80 of them being “Rocha” clones. The results allowed the differentiation of 75 genotypes of which 29 are “Rocha”. Three synonyms groups and four homonymous groups of other local varieties were confirmed. A Bayesian model-based clustering approach identified two distinct clusters. Using flow cytometry, six cultivars were found to be triploids. These results show high genetic variability among “Rocha” clones. In conclusion, there is a need for different “Rocha” clones to be preserved to enable the correct selection of the multiplication material.
Collapse
|
27
|
Ferreira V, Castro I, Carrasco D, Pinto-Carnide O, Arroyo-García R. Molecular characterization of berry color locus on the portuguese cv. ‘Fernão Pires’ and cv. ‘Verdelho’ and their red-berried somatic variant cultivars. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2019. [DOI: 10.1051/ctv/20183302184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Genotyping studies are increasing the knowledge on grapevine biodiversity, particularly regarding grape berry skin color somatic variants, supporting the research on the color trait. This study aimed to evaluate the effect of the berry color locus, and its surrounding genomic region, on the color variation of the Portuguese white-skinned cultivars ‘Fernão Pires’ and ‘Verdelho’ and its derived red-berried somatic variants cv. ‘Fernão Pires Rosado’ and cv. ‘Verdelho Roxo’, respectively.
The analysis of Gret1 insertion within the VvMYBA1 gene revealed no polymorphism responsible for white-to-red shift of the red-skinned cv. ‘Fernão Pires Rosado’ and cv. ‘Verdelho Roxo’. Moreover, VvMYBA2 showed an important role regarding the phenotypic variation of cv. ‘Fernão Pires’, through the recovery of the functional allele G on cv. ‘Fernão Pires Rosado’. Regarding the data obtained for cv. ‘Verdelho’ and cv. ‘Verdelho Roxo’, both cultivars showed Gret1 insertion on VvMYBA1 and non-functional T allele on VvMYBA2 in homozygosity for both cell layers of shoot apical meristem, suggesting the occurrence of other mutational events responsible for the color gain.
Collapse
|
28
|
Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC PLANT BIOLOGY 2018; 18:285. [PMID: 30445920 PMCID: PMC6240241 DOI: 10.1186/s12870-018-1516-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND 'Fengzao' is an early-ripening bud mutant of 'Kyoho', which matures nearly 30 days earlier than 'Kyoho'. To gain a better understanding of the regulatory role of miRNAs in early-ripening of grape berry, high-throughput sequencing approach and quantitative RT-PCR validation were employed to identify miRNAs at the genome-wide level and profile the expression patterns of the miRNAs during berry development in 'Kyho' and 'Fengzao', respectively. RESULTS Nine independent small RNA libraries were constructed and sequenced in two varieties from key berry development stages. A total of 108 known miRNAs and 61 novel miRNAs were identified. Among that, 159 miRNAs identified in 'Fengzao' all completely expressed in 'Kyoho' and there were 10 miRNAs specifically expressed in 'Kyoho'. The expression profiles of known and novel miRNAs were quite similar between two varieties. As the major differentially expressed miRNAs, novel_144, vvi-miR3626-3p and vvi-miR3626-5p only expressed in 'Kyoho', vvi-miR399b and vvi-miR399e were down-regulated in 'Fengzao', while vvi-miR477b-3p up-regulated in 'Fengzao'. According to the expression analysis and previous reports, miR169-NF-Y subunit, miR398-CSD, miR3626-RNA helicase, miR399- phosphate transporter and miR477-GRAS transcription factor were selected as the candidates for further investigations of miRNA regulation role in the early-ripening of grape. The qRT-PCR analyses validated the contrasting expression patterns for these miRNAs and their target genes. CONCLUSIONS The miRNAome of the grape berry development of 'Kyoho', and its early-ripening bud mutant, 'Fengzao' were compared by high-throughput sequencing. The expression pattern of several key miRNAs and their target genes during grape berry development and ripening stages was examined. Our results provide valuable basis towards understanding the regulatory mechanisms of early-ripening of grape berry.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Wen-Qing Lv
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|
29
|
Ferreira V, Pinto-Carnide O, Arroyo-García R, Castro I. Berry color variation in grapevine as a source of diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:696-707. [PMID: 30146416 DOI: 10.1016/j.plaphy.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Even though it is one of the oldest perennial domesticated fruit crops in the world, grapevine (Vitis vinifera L.) cultivation today is the result of both conventional breeding practices (i.e. hybridizations adopted during the last century) and vegetative propagation. Human-assisted asexual propagation has allowed the maintenance of desired traits but has largely impacted the frequency of spontaneous somatic mutations observed in the field. Consequently, many grapevine fruit attributes to date have been artificially selected, including: fruit yield, compactness, size and composition, the latter being greatly diversified in the pursuit of altering berry skin coloration. The present review provides an overview of various aspects related to grapevine diversity, with a special emphasis on grape berry skin color variation and will discuss the current knowledge of how grape skin color variation is affected by the synthesis of phenolic compounds, particularly anthocyanins and their underlying genetic factors. We hope this knowledge will be useful in supporting the importance of the berry color trait diversity in cultivated grapevines, which is used as basis for selection during breeding programs because of its application for vine growers, winemakers and consumers.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo, Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Olinda Pinto-Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rosa Arroyo-García
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo, Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
30
|
Karastan OM, Muliukina NA, Papina OS. Verification of Grape Pedigree by Microsatellite Analysis. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718050031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Ma Q, Yang J. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Gene 2018; 680:84-96. [PMID: 30257181 DOI: 10.1016/j.gene.2018.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
The length of berry lag phase determines the overall time needed for grape berries to get mature, but the functional gene networks in this phase have not been well documented. In order to reveal the origin of the somatic variation and regulation mechanism of grape berry development and ripening, an early ripening mutant of Vitis vinifera with a shorter lag phase was used for transcriptome profiling. The RNA-seq results revealed that 2021 and 2470 genes were up- and down-regulated, respectively, in the early ripening mutant compared to the wild type. The GO and KEGG enrichment analysis indicated that the up-regulated genes belonged to several pathways and metabolisms, among which the most significant constituents were for biosynthesis of secondary metabolites and flavonoid biosynthesis. The down-regulated genes were involved in biosynthesis of secondary metabolites, plant hormone signal transduction, and photosynthesis. Many transcription factors including WRKYs, AP2-EREBPs, and MYBs were also differentially expressed, suggesting their regulatory roles in berry development and ripening. The transcriptomic comparisons suggested that the prominent up-regulation of an Arabidopsis SnRK3.23, CIPK23 or PKS17 homolog could have driven the early ripening phenotype in the mutant by activating the downstream VvABF2 transcription factor in the ABA signaling. At the same time, ethylene and auxin were also involved in this process. As a result, the major ripening related genes, e.g., MYBA1, MYBA2, VvUFGT, GRIP22, and STS were activated in the mutant. The results are of importance for future studies on manipulation of grape berry ripening time.
Collapse
Affiliation(s)
- Qian Ma
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Jingli Yang
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
32
|
Zequim Maia SH, de Oliveira-Collet SA, Mangolin CA, de Fátima P.S. Machado M. Differential genetic stability in vineyards of the cultivar ‘Italy’ ( Vitis vinifera L.) cultivated in different regions of Southern and Southwestern Brazil. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2018. [DOI: 10.1051/ctv/20183301066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During more than 50 years the vegetative propagation has been the form of maintaining and multiplication of the cv. ’Italy’ vineyards, a ’Bicane’ x ’Muscat Hamburg’ hybrid. In the current study, polymorphism in 17 microsatellite loci was used to evaluate the genetic stability at DNA level in vineyards of cv. ’Italy’ planted in different regions of the states of Paraná and São Paulo, Brazil. Unchanged and equal allele frequency indicating genetic stability was reported in 47% of the microsatellite loci in vineyards of six localities, while allele frequency variation has been observed in Scu15vv, Udv44, Udv74, Udv96, Udv107, Udv108, Vvmd5, Vvmd6 and Vvs3 microsatellite loci. Alleles Udv96140 and Vvs3448, detected in vines in only one of the vineyards, evidenced somatic mutations at molecular level in cv. ’Italy’. Genetic diversity, as result of changes in the allele frequencies in 53% of microsatellite loci, was detected more frequently than somatic mutations due to new alleles. Polymorphism in microsatellite loci revealed different genetic stability in vineyards of cv. ’Italy’ cultivated in six different Brazilian regions and indicated vineyards with less genetic stability as a possible source of somatic mutants, showing traits of agronomic interest with a potential to generate new cultivars.
Collapse
|
33
|
Arrizabalaga M, Morales F, Oyarzun M, Delrot S, Gomès E, Irigoyen JJ, Hilbert G, Pascual I. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:74-83. [PMID: 29362101 DOI: 10.1016/j.plantsci.2017.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 05/21/2023]
Abstract
The intra-varietal genetic diversity of grapevine (Vitis vinifera L.) may be exploited to maintain grape quality under future warm conditions, which may alter grape berry development and composition. The present study assesses the effects of elevated temperature on the development of berry, grape composition and anthocyanins:sugars ratio of thirteen clones of V. vinifera. cv. Tempranillo that differed in length of the ripening period (time from veraison to berry total soluble solids, mainly sugars, of ca. 22 °Brix). Two temperature regimes (24 °C/14 °C or 28 °C/18 °C, day/night) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Elevated temperature hastened berry development, with a greater influence before the onset of ripening, and reduced anthocyanin concentration, colour intensity and titratable acidity. The clones significantly differed in the number of days that elapsed between fruit set and maturity. At the same concentration of total soluble solids, the anthocyanin concentration was lower at 28 °C/18 °C than 24 °C/14 °C, indicating a decoupling effect of elevated temperature during berry ripening. Thermal decoupling was explained by changes in the relative rate of response of anthocyanin and sugar build-up, rather than delayed onset of anthocyanin accumulation. Clones differed in the degree of thermal decoupling, but it was directly associated with differences neither in the length of their ripening period nor in plant vigour.
Collapse
Affiliation(s)
- Marta Arrizabalaga
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Irunlarrea, 1, 31008, Pamplona, Spain; Unité Mixte de Recherche, 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, INRA, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 33883, Villenave d'Ornon, France
| | - Fermín Morales
- Estación Experimental de Aula Dei (EEAD), CSIC, Department of Plant Nutrition, Apdo, 13034, 50080 Zaragoza, Spain
| | - Mónica Oyarzun
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Irunlarrea, 1, 31008, Pamplona, Spain
| | - Serge Delrot
- Unité Mixte de Recherche, 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, INRA, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 33883, Villenave d'Ornon, France
| | - Eric Gomès
- Unité Mixte de Recherche, 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, INRA, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 33883, Villenave d'Ornon, France
| | - Juan José Irigoyen
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Irunlarrea, 1, 31008, Pamplona, Spain
| | - Ghislaine Hilbert
- Unité Mixte de Recherche, 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, INRA, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, 33883, Villenave d'Ornon, France
| | - Inmaculada Pascual
- Universidad de Navarra, Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Irunlarrea, 1, 31008, Pamplona, Spain.
| |
Collapse
|
34
|
Tello J, Montemayor MI, Forneck A, Ibáñez J. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. PLANT METHODS 2018; 14:3. [PMID: 29339970 PMCID: PMC5759351 DOI: 10.1186/s13007-017-0267-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Low pollen viability may limit grapevine yield under certain conditions, causing relevant economic losses to grape-growers. It is usually evaluated by the quantification of the number of viable and non-viable pollen grains that are present in a sample after an adequate pollen grain staining procedure. Although the manual counting of both types of grains is the simplest and most sensitive approach, it is a laborious and time-demanding process. In this regard, novel image-based approaches can assist in the objective, accurate and cost-effective phenotyping of this trait. RESULTS Here, we introduce PollenCounter, an open-source macro implemented as a customizable Fiji tool for the high-throughput phenotyping of pollen viability. This tool splits RGB images of stained pollen grains into its primary channels, retaining red and green color fractionated images (which contain information on total and only viable pollen grains, respectively) for the subsequent isolation and counting of the regions of interest (pollen grains). This framework was successfully used for the analysis of pollen viability of a high number of samples collected in a large collection of grapevine cultivars. Results revealed a great genetic variability, from cultivars having very low pollen viability (like Corinto Bianco; viability: 14.1 ± 1.3%) to others with a very low presence of sterile pollen grains (Cuelga; viability: 98.2 ± 0.5%). A wide range of variability was also observed among several clones of cv. Tempranillo Tinto (from 97.9 ± 0.9 to 60.6 ± 5.9%, in the first season). Interestingly, the evaluation of this trait in a second season revealed differential genotype-specific sensitivity to environment. CONCLUSIONS The use of PollenCounter is expected to aid in different areas, including genetics research studies, crop improvement and breeding strategies that need of fast, precise and accurate results. Considering its flexibility, it can be used not only in grapevine, but also in other species showing a differential staining of viable and non-viable pollen grains. The wide phenotypic diversity observed at a species level, together with the identification of specific cultivars and clones largely differing in this trait, pave the way of further analyses aimed to understand the physiological and genetic causes driving to male sterility in grapevine.
Collapse
Affiliation(s)
- Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos km 6, Finca La Grajera, 26007 Logroño, Spain
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - María Ignacia Montemayor
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos km 6, Finca La Grajera, 26007 Logroño, Spain
| | - Astrid Forneck
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos km 6, Finca La Grajera, 26007 Logroño, Spain
| |
Collapse
|
35
|
Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, Tononi P, Perrone I, Raimondi S, Schneider A, Pezzotti M, Mannini F, Gribaudo I, Delledonne M. Whole-genome sequencing and SNV genotyping of 'Nebbiolo' (Vitis vinifera L.) clones. Sci Rep 2017; 7:17294. [PMID: 29229917 PMCID: PMC5725591 DOI: 10.1038/s41598-017-17405-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/23/2017] [Indexed: 01/27/2023] Open
Abstract
‘Nebbiolo’ (Vitis vinifera) is among the most ancient and prestigious wine grape varieties characterised by a wide genetic variability exhibited by a high number of clones (vegetatively propagated lines of selected mother plants). However, limited information is available for this cultivar at the molecular and genomic levels. The whole-genomes of three ‘Nebbiolo’ clones (CVT 71, CVT 185 and CVT 423) were re-sequenced and a de novo transcriptome assembly was produced. Important remarks about the genetic peculiarities of ‘Nebbiolo’ and its intra-varietal variability useful for clonal identification were reported. In particular, several varietal transcripts identified for the first time in ‘Nebbiolo’ were disease resistance genes and single-nucleotide variants (SNVs) identified in ‘Nebbiolo’, but not in other cultivars, were associated with genes involved in the stress response. Ten newly discovered SNVs were successfully employed to identify some periclinal chimeras and to classify 98 ‘Nebbiolo’ clones in seven main genotypes, which resulted to be linked to the geographical origin of accessions. In addition, for the first time it was possible to discriminate some ‘Nebbiolo’ clones from the others.
Collapse
Affiliation(s)
- Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy.
| | | | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Andrea Minio
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | | | - Paola Tononi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco (TO), Italy
| | - Anna Schneider
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco (TO), Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco (TO), Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco (TO), Italy
| | | |
Collapse
|
36
|
Zhu F, Luo T, Liu C, Wang Y, Yang H, Yang W, Zheng L, Xiao X, Zhang M, Xu R, Xu J, Zeng Y, Xu J, Xu Q, Guo W, Larkin RM, Deng X, Cheng Y. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. THE NEW PHYTOLOGIST 2017; 216:178-192. [PMID: 28681945 DOI: 10.1111/nph.14684] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/30/2017] [Indexed: 05/23/2023]
Abstract
Although the functions of carotenogenic genes are well documented, little is known about the mechanisms that regulate their expression, especially those genes involved in α - and β-branch carotenoid metabolism. In this study, an R2R3-MYB transcriptional factor (CrMYB68) that directly regulates the transformation of α- and β-branch carotenoids was identified using Green Ougan (MT), a stay-green mutant of Citrus reticulata cv Suavissima. A comprehensive analysis of developing and harvested fruits indicated that reduced expression of β-carotene hydroxylases 2 (CrBCH2) and 9-cis-epoxycarotenoid dioxygenase 5 (CrNCED5) was responsible for the delay in the transformation of α- and β-carotene and the biosynthesis of ABA. Additionally, the expression of these genes was negatively correlated with the expression of CrMYB68 in MT. Further, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays indicated that CrMYB68 can directly and negatively regulate CrBCH2 and CrNCED5. Moreover, transient overexpression experiments using leaves of Nicotiana benthamiana indicated that CrMYB68 can also negatively regulate NbBCH2 and NbNCED5. To overcome the difficulty of transgenic validation, we quantified the concentrations of carotenoids and ABA, and gene expression in a revertant of MT. The results of these experiments provide more evidence that CrMYB68 is an important regulator of carotenoid metabolism.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tao Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Xiao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingfei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, Zhejiang, 318020, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Institute of Citrus Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
37
|
Campos-Rivero G, Cazares-Sanchez E, Tamayo-Ordonez MC, Tamayo-Ordonez YJ, Padilla-Ramírez JS, Quiroz-Moreno A, Sanchez-Teyer LF. Application of sequence specific amplified polymorphism (SSAP) and simple sequence repeat (SSR) markers for variability and molecular assisted selection (MAS) studies of the Mexican guava. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajar2017.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Matus JT, Cavallini E, Loyola R, Höll J, Finezzo L, Dal Santo S, Vialet S, Commisso M, Roman F, Schubert A, Alcalde JA, Bogs J, Ageorges A, Tornielli GB, Arce-Johnson P. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:220-236. [PMID: 28370629 DOI: 10.1111/tpj.13558] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/19/2023]
Abstract
Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.
Collapse
Affiliation(s)
- José Tomás Matus
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Erika Cavallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janine Höll
- Centre for Organismal Studies Heidelberg (COS Heidelberg), Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
| | - Laura Finezzo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sandrine Vialet
- INRA, UMR1083 SPO, 2 place Viala, Montpellier, F-34060, France
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Roman
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095, Italy
| | - Andrea Schubert
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095, Italy
| | - José Antonio Alcalde
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg (COS Heidelberg), Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
- Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, Viticulture and Enology group, Neustadt/W, D-67435, Germany
- Fachhochschule Bingen, Berlinstr. 109, Bingen am Rhein, D-55411, Germany
| | - Agnès Ageorges
- INRA, UMR1083 SPO, 2 place Viala, Montpellier, F-34060, France
| | | | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Fortes AM, Gallusci P. Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:82. [PMID: 28220131 PMCID: PMC5292615 DOI: 10.3389/fpls.2017.00082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/16/2017] [Indexed: 05/20/2023]
Abstract
Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under stressed conditions has become an essential issue in order to better understand the molecular mechanisms underlying plant stress responses and enabling epigenetic in addition to genetic factors to be considered when breeding crop plants. In this perspective, we discuss the contribution of epigenetic mechanisms to our understanding of plant responses to biotic and abiotic stresses. This regulation of gene expression in response to environment raises important biological questions for perennial species such as grapevine which is asexually propagated and grown worldwide in contrasting terroirs and environmental conditions. However, most species used for epigenomic studies are annual herbaceous plants, and epigenome dynamics has been poorly investigated in perennial woody plants, including grapevine. In this context, we propose grape as an essential model for epigenetic and epigenomic studies in perennial woody plants of agricultural importance.
Collapse
Affiliation(s)
- Ana M. Fortes
- Faculdade de Ciências, Instituto de Biossistemas e Ciências Integrativas, Universidade de LisboaLisboa, Portugal
| | - Philippe Gallusci
- UMR EGFV, Université de Bordeaux, Institut national de la recherche agronomique, Institut des Sciences de la Vigne et du VinVillenave-d’Ornon, France
| |
Collapse
|
40
|
Carvalho LC, Silva M, Coito JL, Rocheta MP, Amâncio S. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:1835. [PMID: 29118776 PMCID: PMC5660995 DOI: 10.3389/fpls.2017.01835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, 'Touriga Nacional' and 'Trincadeira,' was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to "abiotic stress" and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light).
Collapse
|
41
|
Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros JP, Ageorges A, Sommerer N, Boulet JC, Terrier N, Cheynier V. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics. FRONTIERS IN PLANT SCIENCE 2017; 8:1826. [PMID: 29163566 PMCID: PMC5663694 DOI: 10.3389/fpls.2017.01826] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014-2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality.
Collapse
Affiliation(s)
- Lucie Pinasseau
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Anna Vallverdú-Queralt
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Arnaud Verbaere
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Maryline Roques
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- IFV Pôle national matériel végétal, UMT Génovigne, Montpellier, France
| | - Emmanuelle Meudec
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Loïc Le Cunff
- IFV Pôle national matériel végétal, UMT Génovigne, Montpellier, France
| | - Jean-Pierre Péros
- AGAP, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Agnès Ageorges
- SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Nicolas Sommerer
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jean-Claude Boulet
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Nancy Terrier
- SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Véronique Cheynier
- Plateforme Polyphénols SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Véronique Cheynier
| |
Collapse
|
42
|
García-Rodríguez YM, Torres-Gurrola G, Meléndez-González C, Espinosa-García FJ. Phenotypic Variations in the Foliar Chemical Profile of Persea americana Mill. cv. Hass. Chem Biodivers 2016; 13:1767-1775. [PMID: 27505234 DOI: 10.1002/cbdv.201600169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022]
Abstract
The Hass avocado tree Persea americana cv. Hass was derived from a single hybrid tree of P. americana var. drymifolia and P. americana var. guatemalensis, and it is propagated clonally by grafting. This cultivar is the most widely planted in the world but its profile of secondary metabolites has been studied rarely despite of its importance in plant protection. We illustrate the variability of the volatilome of mature leaves by describing the average chemical composition and the phenotypic variability found in 70 trees. Contrary to the uniformity expected in the Hass cultivar, high variability coefficients were found for most of the 36 detected foliar volatile compounds; furthermore we found six chemotypes grouping the foliar phenotypes of the sampled trees using hierarchical cluster analysis. About 48% of trees were grouped in one chemotype; five chemotypes grouped the remaining trees. The compounds that determined these chemotypes were: estragole, α-farnesene, β-caryophyllene, germacrene D, α-cubebene and eugenol. This striking variation in a cultivar propagated clonally is discussed in terms of somatic mutation.
Collapse
Affiliation(s)
- Yolanda Magdalena García-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, México
| | - Guadalupe Torres-Gurrola
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, México
| | - Claudio Meléndez-González
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, México
| | - Francisco J Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hda. San José de la Huerta, Morelia, Michoacán, C.P. 58089, México
| |
Collapse
|
43
|
Histological and Molecular Characterization of Grape Early Ripening Bud Mutant. Int J Genomics 2016; 2016:5620106. [PMID: 27610363 PMCID: PMC5005599 DOI: 10.1155/2016/5620106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape.
Collapse
|
44
|
Royo C, Carbonell-Bejerano P, Torres-Pérez R, Nebish A, Martínez Ó, Rey M, Aroutiounian R, Ibáñez J, Martínez-Zapater JM. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:259-73. [PMID: 26454283 DOI: 10.1093/jxb/erv452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.
Collapse
Affiliation(s)
- Carolina Royo
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Anna Nebish
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| |
Collapse
|
45
|
Cheng J, Liao L, Zhou H, Gu C, Wang L, Han Y. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7227-39. [PMID: 26357885 PMCID: PMC4765791 DOI: 10.1093/jxb/erv419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ornamental peach cultivar 'Hongbaihuatao (HBH)' can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene-regulator involved in anthocyanin transport (Riant)-which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers.
Collapse
Affiliation(s)
- Jun Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| |
Collapse
|
46
|
Schweinsberg M, Weiss LC, Striewski S, Tollrian R, Lampert KP. More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Mol Ecol 2015; 24:2673-85. [DOI: 10.1111/mec.13200] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Maximilian Schweinsberg
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Linda C. Weiss
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Sebastian Striewski
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| | - Kathrin P. Lampert
- Department of Animal Ecology, Evolution and Biodiversity; University of Bochum; 44780 Bochum Germany
| |
Collapse
|
47
|
Pelsy F, Dumas V, Bévilacqua L, Hocquigny S, Merdinoglu D. Chromosome replacement and deletion lead to clonal polymorphism of berry color in grapevine. PLoS Genet 2015; 11:e1005081. [PMID: 25835388 PMCID: PMC4383506 DOI: 10.1371/journal.pgen.1005081] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Clonal polymorphism mainly results from somatic mutations that occur naturally during plant growth. In grapevine, arrays of clones have been selected within varieties as a valuable source of diversity, among them clones showing berry color polymorphism. To identify mutations responsible for this color polymorphism, we studied a collection of 33 clones of Pinot noir, Pinot gris, and Pinot blanc. Haplotypes of the L2 cell layer of nine clones were resolved by genotyping self-progenies with molecular markers along a 10.07 Mb region of chromosome 2, including the color locus. We demonstrated that at least six haplotypes could account for the loss of anthocyanin biosynthesis. Four of them resulted from the replacement of sections of the 'colored' haplotype, sized from 31 kb to 4.4 Mb, by the homologous sections of the 'white' haplotype mutated at the color locus. This transfer of information between the two homologous sequences resulted in the partial homozygosity of chromosome 2, associated in one case with a large deletion of 108 kb-long. Moreover, we showed that, in most cases, somatic mutations do not affect the whole plant; instead, they affect only one cell layer, leading to periclinal chimeras associating two genotypes. Analysis of bud sports of Pinot gris support the hypothesis that cell layer rearrangements in the chimera lead to the homogenization of the genotype in the whole plant. Our findings shed new light on the way molecular and cellular mechanisms shape the grapevine genotypes during vegetative propagation, and enable us to propose a scheme of evolutionary mechanism of the Pinot clones.
Collapse
Affiliation(s)
- Frédérique Pelsy
- INRA, UMR1131, Colmar, France
- Université de Strasbourg, UMR1131, Strasbourg, France
| | - Vincent Dumas
- INRA, UMR1131, Colmar, France
- Université de Strasbourg, UMR1131, Strasbourg, France
| | - Lucie Bévilacqua
- INRA, UMR1131, Colmar, France
- Université de Strasbourg, UMR1131, Strasbourg, France
| | - Stéphanie Hocquigny
- INRA, UMR1131, Colmar, France
- Université de Strasbourg, UMR1131, Strasbourg, France
| | - Didier Merdinoglu
- INRA, UMR1131, Colmar, France
- Université de Strasbourg, UMR1131, Strasbourg, France
| |
Collapse
|
48
|
|
49
|
Genotyping of Vitis vinifera L. within the Slovak national collection of genetic resources. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMicrosatellites were used as a very effective tool for genetic diversity analysis and characterization of 51 grapevine (Vitis vinifera L.) accessions from the national collection of genetic resources. Genetic diversity was relatively high, 8.91 alleles were detected per analysed microsatellite locus in average, and fifty-one accessions were distinguished into 45 groups. Distribution of recent Slovak cultivars across the dendrogram accented both their genetic diversity and the effectiveness of the national breeding program in maintaining genetic diversity and generating new genetic variants. Each cultivar was different from the others and twelve of them contained 77.6% of the total genetic diversity of the whole analysed set. Microsatellite patterns were also able to confirm parentage in selected Slovak cultivars. An unusual phenomenon of triallelism was also detected in one of the analysed accessions. The present study has initiated molecular characterization within the national grapevine genetic resource collection and their comparison with well-established international cultivars.
Collapse
|
50
|
Biasi F, Deiana M, Guina T, Gamba P, Leonarduzzi G, Poli G. Wine consumption and intestinal redox homeostasis. Redox Biol 2014; 2:795-802. [PMID: 25009781 PMCID: PMC4085343 DOI: 10.1016/j.redox.2014.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.
Collapse
Key Words
- AKT, serine/threonine protein kinase (v-akt murine thimoma viral oncogene homolog1)
- Antioxidants
- CD, Crohns disease
- COX-2, cyclooxygenase-2
- Cys, cysteine
- DSS, dextran sodium sulfate
- ERK, extracellular signal-regulated kinase
- GRP, grape reaction product
- GSH, reduced glutathione
- Gut
- IBD, inflammatory bowel disease
- IFN, interferon
- IKB, inhibitor of NF-κB
- IL, interleukin
- Inflammation
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinase
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor-κB
- Nrf2, nuclear factor erythroid-2-related factor 2
- Oxidative stress
- PGE-2, prostaglandin E-2
- Polyphenols
- ROS, reactive oxygen species
- SIRT-1, silent mating type information regulation-1
- TNF-α, tumor necrosis factor alpha
- UC, Ulcerative Colitis
- Wine
- apoB48, apolipoprotein B48
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Tina Guina
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| |
Collapse
|