1
|
He B, Tan K. Understanding transcriptional regulatory networks using computational models. Curr Opin Genet Dev 2016; 37:101-108. [PMID: 26950762 DOI: 10.1016/j.gde.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
Abstract
Transcriptional regulatory networks (TRNs) encode instructions for animal development and physiological responses. Recent advances in genomic technologies and computational modeling have revolutionized our ability to construct models of TRNs. Here, we survey current computational methods for inferring TRN models using genome-scale data. We discuss their advantages and limitations. We summarize representative TRNs constructed using genome-scale data in both normal and disease development. We discuss lessons learned about the structure/function relationship of TRNs, based on examining various large-scale TRN models. Finally, we outline some open questions regarding TRNs, including how to improve model accuracy by integrating complementary data types, how to infer condition-specific TRNs, and how to compare TRNs across conditions and species in order to understand their structure/function relationship.
Collapse
Affiliation(s)
- Bing He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Tan
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Steinke FC, Yu S, Zhou X, He B, Yang W, Zhou B, Kawamoto H, Zhu J, Tan K, Xue HH. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat Immunol 2014; 15:646-656. [PMID: 24836425 PMCID: PMC4064003 DOI: 10.1038/ni.2897] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
The transcription factors TCF-1 and LEF-1 are essential for early T cell development, but their roles beyond the CD4(+)CD8(+) double-positive (DP) stage are unknown. By specific ablation of these factors in DP thymocytes, we demonstrated that deficiency in TCF-1 and LEF-1 diminished the output of CD4(+) T cells and redirected CD4(+) T cells to a CD8(+) T cell fate. The role of TCF-1 and LEF-1 in the CD4-versus-CD8 lineage 'choice' was mediated in part by direct positive regulation of the transcription factor Th-POK. Furthermore, loss of TCF-1 and LEF-1 unexpectedly caused derepression of CD4 expression in T cells committed to the CD8(+) lineage without affecting the expression of Runx transcription factors. Instead, TCF-1 physically interacted with Runx3 to cooperatively silence Cd4. Thus, TCF-1 and LEF-1 adopted distinct genetic 'wiring' to promote the CD4(+) T cell fate and establish CD8(+) T cell identity.
Collapse
Affiliation(s)
- Farrah C. Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Immunology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China 100193
| | - Xinyuan Zhou
- Insitute of Immunology, Third Military Medical University, Chongqing, P. R. China 400038
| | - Bing He
- Interdisciplinary Graduate Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Wenjing Yang
- Development Biology Center, NHLBI, NIH, Bethesda, MD 20892
| | - Bo Zhou
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan 606-8507
| | - Jun Zhu
- Development Biology Center, NHLBI, NIH, Bethesda, MD 20892
| | - Kai Tan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Immunology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
3
|
Abstract
Gene regulatory networks (GRNs) provide system level explanations of developmental and physiological functions in the terms of the genomic regulatory code. Depending on their developmental functions, GRNs differ in their degree of hierarchy, and also in the types of modular sub-circuit of which they are composed, although there is a commonly employed sub-circuit repertoire. Mathematical modelling of some types of GRN sub-circuit has deepened biological understanding of the functions they mediate. The structural organization of various kinds of GRN reflects their roles in the life process, and causally illuminates both developmental and evolutionary process.
Collapse
Affiliation(s)
- Eric H Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
4
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P, for the ANZgene Multiple Sclerosis Genetics Consortium. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
5
|
Kastner P, Chan S, Vogel WK, Zhang LJ, Topark-Ngarm A, Golonzhka O, Jost B, Le Gras S, Gross MK, Leid M. Bcl11b represses a mature T-cell gene expression program in immature CD4(+)CD8(+) thymocytes. Eur J Immunol 2010; 40:2143-54. [PMID: 20544728 PMCID: PMC2942964 DOI: 10.1002/eji.200940258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bcl11b is a transcription factor that, within the hematopoietic system, is expressed specifically in T cells. Although Bcl11b is required for T-cell differentiation in newborn Bcl11b-null mice, and for positive selection in the adult thymus of mice bearing a T-cell-targeted deletion, the gene network regulated by Bcl11b in T cells is unclear. We report herein that Bcl11b is a bifunctional transcriptional regulator, which is required for the correct expression of approximately 1000 genes in CD4(+)CD8(+)CD3(lo) double-positive (DP) thymocytes. Bcl11b-deficient DP cells displayed a gene expression program associated with mature CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes, including upregulation of key transcriptional regulators, such as Zbtb7b and Runx3. Bcl11b interacted with regulatory regions of many dysregulated genes, suggesting a direct role in the transcriptional regulation of these genes. However, inappropriate expression of lineage-associated genes did not result in enhanced differentiation, as deletion of Bcl11b in DP cells prevented development of SP thymocytes, and that of canonical NKT cells. These data establish Bcl11b as a crucial transcriptional regulator in thymocytes, in which Bcl11b functions to prevent the premature expression of genes fundamental to the SP and NKT cell differentiation programs.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Walter K. Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Ling-Juan Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Olga Golonzhka
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Michael K. Gross
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Hu J, Qi Q, August A. Itk derived signals regulate the expression of Th-POK and controls the development of CD4 T cells. PLoS One 2010; 5:e8891. [PMID: 20126642 PMCID: PMC2811181 DOI: 10.1371/journal.pone.0008891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 11/18/2022] Open
Abstract
T cell development is critically dependent on both the environment and signals delivered by the T cell Receptor (TCR). The Tec family kinase Itk has been suggested to be an amplifier of signals emanating from the TCR and the loss of Itk partially affects most stages of thymopoiesis. Loss of Itk also differentially affects the development of conventional vs. non-conventional or innate memory phenotype T cells. Here, we examine whether these lineage choices are affected by a combination of TCR affinity and Itk by analyzing mice lacking Itk and carrying two TCR transgenes with differing affinities, OT-II and DO11.10. Our results show that developing thymocytes receive a gradient of signals, DO11.10>OT-II>DO11.10/Itk(-/-)>OT-II/Itk(-/-). We also show that the development of CD4(+) T cells is controlled by TCR signaling via Itk, which regulates the expression of the transcription factor, Th-POK, an enforcement factor for CD4 commitment. This results in a reduction in CD4(+) T cell development, and an increase in the development of MHC class II restricted TCR transgenic CD8(+) T cells that resemble non-conventional or innate memory phenotype CD8 T cells. This alteration accompanies increased expression of Runx3 and its target genes Eomesodermin, Granzyme B and Perforin in Itk null OT-II CD4(+) thymocytes. All together, these data suggest that Itk plays an important role in CD4/CD8 commitment by regulating signal thresholds for the lineage commitment. Our data also suggest that the lower level of TCR signaling that occurs with a low affinity TCR in the absence of Itk can redirect some MHC class II restricted CD4(+) T cell to class II-restricted CD8(+) innate memory phenotype T cells.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qian Qi
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Avery August
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|