1
|
Olagunju AS, Sardinha AVD, Amarante-Mendes GP. Long-Lasting, Fine-Tuned Anti-Tumor Activity of Recombinant Listeria monocytogenes Vaccine Is Controlled by Pyroptosis and Necroptosis Regulatory and Effector Molecules. Pathogens 2024; 13:828. [PMID: 39452700 PMCID: PMC11510422 DOI: 10.3390/pathogens13100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
One of the main objectives of developing new anti-cancer vaccine strategies is to effectively induce CD8+ T cell-mediated anti-tumor immunity. Live recombinant vectors, notably Listeria monocytogenes, have been shown to elicit a robust in vivo CD8+ T-cell response in preclinical settings. Significantly, it has been demonstrated that Listeria induces inflammatory/immunogenic cell death mechanisms such as pyroptosis and necroptosis in immune cells that favorably control immunological responses. Therefore, we postulated that the host's response to Listeria-based vectors and the subsequent induction of CD8+ T cell-mediated immunity would be compromised by the lack of regulatory or effector molecules involved in pyroptosis or necroptosis. To test our hypothesis, we used recombinant L. monocytogenes carrying the ovalbumin gene (LM.OVA) to vaccinate wild-type (WT), caspase-1/11-/-, gsdmd-/-, ripk3-/-, and mlkl-/- C57Bl/6 mice. We performed an in vivo cytotoxicity assay to assess the efficacy of OVA-specific CD8+ T lymphocytes in eliminating target cells in wild-type and genetically deficient backgrounds. Furthermore, we evaluated the specific anti-tumor immune response in mice inoculated with the B16F0 and B16F0.OVA melanoma cell lines. Our findings demonstrated that while caspase-1/11 and GSDMD deficiencies interfere with the rapid control of LM.OVA infection, neither of the KOs seems to contribute to the early activation of OVA-specific CTL responses. In contrast, the individual deficiency of each one of these proteins positively impacts the generation of long-lasting effector CD8+ T cells.
Collapse
Affiliation(s)
- Abolaji S. Olagunju
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| | - Andrew V. D. Sardinha
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| | - Gustavo P. Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (A.S.O.); (A.V.D.S.)
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023; 13:88. [PMID: 38201292 PMCID: PMC10778170 DOI: 10.3390/cells13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vertically transmitted infections are a significant cause of fetal morbidity and mortality during pregnancy and pose substantial risks to fetal development. These infections are primarily transmitted to the fetus through two routes: (1) direct invasion and crossing the placenta which separates maternal and fetal circulation, or (2) ascending the maternal genitourinary tact and entering the uterus. Only two bacterial species are commonly found to cross the placenta and infect the fetus: Listeria monocytogenes and Treponema pallidum subsp. pallidum. L. monocytogenes is a Gram-positive, foodborne pathogen found in soil that acutely infects a wide variety of mammalian species. T. pallidum is a sexually transmitted spirochete that causes a chronic infection exclusively in humans. We briefly review the pathogenesis of these two very distinct bacteria that have managed to overcome the placental barrier and the role placental immunity plays in resisting infection. Both organisms share characteristics which contribute to their transplacental transmission. These include the ability to disseminate broadly within the host, evade immune phagocytosis, and the need for a strong T cell response for their elimination.
Collapse
Affiliation(s)
- Samuel J. Eallonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
OuYang X, Liu P, Zheng Y, Jiang H, Lv Q, Huang W, Hao H, Pian Y, Kong D, Jiang Y. TRIM32 reduced the recruitment of innate immune cells and the killing capacity of Listeria monocytogenes by inhibiting secretion of chemokines. Gut Pathog 2023; 15:32. [PMID: 37415157 DOI: 10.1186/s13099-023-00558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Listeria monocytogenes (Lm) is a facultative, intracellular Gram-positive pathogenic bacterium that causes sepsis, a condition characterized by persistent excessive inflammation and organ dysfunction. However, the pathogenesis of Lm-induced sepsis is unknown. In this research, we discovered that TRIM32 is required for innate immune regulation during Lm infection. Trim32 deficiency remarkably reduced bacteremia and proinflammatory cytokine secretion in mice with severe Lm infection, preventing sepsis. Trim32-/- mice had a lower bacterial burden after Lm infection and survived significantly longer than wild-type (WT) mice, as well as lower serum levels of inflammatory cytokines TNF-α, IL-6, IL-18, IL-12p70, IFN-β, and IFN-γ at 1 day post infection (dpi) compared to WT mice. On the other hand, the chemokines CXCL1, CCL2, CCL7, and CCL5 were enhanced at 3 dpi in Trim32-/- mice than WT mice, reflecting increased recruitment of neutrophils and macrophages. Furthermore, Trim32-/- mice had higher levels of macrophage-associated iNOS to kill Lm. Collectively, our findings suggest that TRIM32 reduces innate immune cells recruitment and Lm killing capabilities via iNOS production.
Collapse
Affiliation(s)
- Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Huaijie Hao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China.
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
4
|
Modulatory Impacts of Multi-Strain Probiotics on Rabbits’ Growth, Nutrient Transporters, Tight Junctions and Immune System to Fight against Listeria monocytogenes Infection. Animals (Basel) 2022; 12:ani12162082. [PMID: 36009671 PMCID: PMC9405287 DOI: 10.3390/ani12162082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is a crucial period associated with great stress and susceptibility to infection, implying adverse impacts on farmed rabbits’ production. Recently, probiotics have been provided as direct microbial feed supplements, which are considered the ideal antibiotic substitutes during pathogenic infections with an emphasis on promoting rabbits’ growth and modulating their immune functions. Therefore, our experiment was carried out to explore the efficacy of multi-strain probiotics (MSP) on rabbits’ growth, molecular aspects, such as nutrients transporters, cytokines, and intestinal integrity, and effectiveness against Listeria monocytogenes (L. monocytogenes) infection. Altogether, our findings proposed the beneficial consequences of MSP on rabbits’ growth, gut health, and immunity. After post-experimental infection of rabbits with L. monocytogenes, administration of MSP during the whole rearing period greatly reduced the detrimental impact of infection and consequently renovated efficient rabbits’ production. Abstract Multi-strain probiotics (MSP) are considered innovative antibiotics’ substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits’ growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.
Collapse
|
5
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Innate immune responses to Listeria in vivo. Curr Opin Microbiol 2020; 59:95-101. [PMID: 33307408 DOI: 10.1016/j.mib.2020.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes (Lm) is a foodborne bacterial pathogen that causes listeriosis, a severe infection that manifests as bacteremia and meningo-encephalitis mostly in immunocompromised individuals, and maternal-fetal infection. A critical pathogenic determinant of Lm relies on its ability to actively cross the intestinal barrier, disseminate systemically and cross the blood-brain and placental barriers. Here we illustrate how Lm both evades innate immunity, favoring its dissemination in host tissues, and triggers innate immune defenses that participate to its control.
Collapse
|
7
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
8
|
Picard L, Maakaroun-Vermesse Z, Hoarau C, Castelnau P, Périvier M. Pediatric neurolisteriosis: A diagnosis to consider even in the absence of immunodeficiency. Arch Pediatr 2019; 26:171-173. [PMID: 30885606 DOI: 10.1016/j.arcped.2019.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 12/31/2018] [Accepted: 02/09/2019] [Indexed: 11/29/2022]
Abstract
Neurolisteriosis is known to affect vulnerable groups, for example neonates or children with immunodeficiency. This is a key point of the current clinical guidelines regarding pediatric meningitis. We report a rare case of neurolisteriosis in an immunocompetent infant, without the typical signs of listeriosis, which led to a delay in administering the appropriate antibiotherapy. This case illustrates the clinical heterogeneity of neurolisteriosis and the relevance of appropriate polymerase chain reaction (PCR) tests when the clinical presentation differs from the current guidelines. This case also reminds us that raw or unpasteurized milk-based food products pose a risk even in immunocompetent infants or children.
Collapse
Affiliation(s)
- L Picard
- Service de Neuropédiatrie et handicaps de l'enfant, hôpital pédiatrique Gatien de Clocheville, Centre Hospitalier Régional Universitaire de Tours, 49, boulevard Béranger, 37044 Tours, France
| | - Z Maakaroun-Vermesse
- Service de médecine interne et de maladies infectieuses, hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 2, boulevard Tonnellé, 37000 Tours, France
| | - C Hoarau
- Unité transversale d'allergologie et immunologie clinique, hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, 2, boulevard Tonnellé, 37000 Tours, France
| | - P Castelnau
- Service de Neuropédiatrie et handicaps de l'enfant, hôpital pédiatrique Gatien de Clocheville, Centre Hospitalier Régional Universitaire de Tours, 49, boulevard Béranger, 37044 Tours, France; Inserm, UMR 1253, iBrain, Université de Tours, 37000 Tours, France
| | - M Périvier
- Service de Neuropédiatrie et handicaps de l'enfant, hôpital pédiatrique Gatien de Clocheville, Centre Hospitalier Régional Universitaire de Tours, 49, boulevard Béranger, 37044 Tours, France; Inserm, UMR 1253, iBrain, Université de Tours, 37000 Tours, France.
| |
Collapse
|
9
|
Rao DM, Phan DT, Choo MJ, Owen AL, Perraud AL, Gally F. Mice Lacking Fatty Acid-Binding Protein 5 Are Resistant to Listeria monocytogenes. J Innate Immun 2019; 11:469-480. [PMID: 30884482 DOI: 10.1159/000496405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
To investigate the role of fatty acid-binding protein 5 (FABP5) in infectious diseases, FABP5-deficient mice were challenged with Listeria monocytogenes, a facultative intracellular bacterial pathogen. Interestingly, FABP5-deficient animals were able to clear the infection within 3 days whereas control wild-type (WT) animals showed comparatively higher bacterial burdens in the liver and spleen. Sections of infected tissues showed an increase in inflammatory foci in WT mice compared to FABP5-deficient mice. FABP5-deficient mice had lower circulating inflammatory cytokines and increased inducible nitric oxide synthase production. FABP5-deficient mouse bone marrow-derived macrophages produced higher levels of nitrite anion than their WT counterparts in response to various stimuli. Additionally, in contrast to FABP5-/- mice, transgenic mice overexpressing FABP5 in myeloid cells (LysM-Cre driven) showed decreased survival rates and increased bacterial burden and inflammatory cytokines. Overall, these findings suggest that increased FABP5 levels correlate with a higher L. monocytogenes bacterial burden and elevated subsequent inflammation.
Collapse
Affiliation(s)
- Deviyani M Rao
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA
| | - Della T Phan
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA
| | - Michelle J Choo
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA
| | - Amie L Owen
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA
| | - Anne-Laure Perraud
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA,
| |
Collapse
|
10
|
Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. J Immunol Res 2018; 2018:5081634. [PMID: 30116753 PMCID: PMC6079409 DOI: 10.1155/2018/5081634] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022] Open
Abstract
γδ T cells, a subgroup of T cells based on the γδ TCR, when compared with conventional T cells (αβ T cells), make up a very small proportion of T cells. However, its various subgroups are widely distributed in different parts of the human body and are attractive effectors for infectious disease immunity. γδ T cells are activated and expanded by nonpeptidic antigens (P-Ags), major histocompatibility complex (MHC) molecules, and lipids which are associated with different kinds of pathogen infections. Activation and proliferation of γδ T cells play a significant role in diverse infectious diseases induced by viruses, bacteria, and parasites and exert their potential effector function to effectively eliminate infection. It is well known that many types of infectious diseases are detrimental to human life and health and give rise to high incidence of illnesses and death rate all over the world. To date, there is no comprehensive understanding of the correlation between γδ T cells and infectious diseases. In this review, we will focus on the various subgroups of γδ T cells (mainly Vδ1 T cells and Vδ2 T cells) which can induce multiple immune responses or effective functions to fight against common pathogen infections, such as Mycobacterium tuberculosis, Listeria monocytogenes, influenza viruses, HIV, EBV, and HBV. Hopefully, the gamma-delta T cell study will provide a novel effective way to treat infectious diseases.
Collapse
Affiliation(s)
- Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
|
12
|
Gally F, Rao DM, Schmitz C, Colvin KL, Yeager ME, Perraud AL. The TRPM2 ion channel contributes to cytokine hyperproduction in a mouse model of Down Syndrome. Biochim Biophys Acta Mol Basis Dis 2017; 1864:126-132. [PMID: 28970008 DOI: 10.1016/j.bbadis.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Trisomy 21 (Down Syndrome, DS) is the most common chromosomal anomaly. Although DS is mostly perceived as affecting cognitive abilities and cardiac health, individuals with DS also exhibit dysregulated immune functions. Levels of pro-inflammatory cytokines are increased, but intrinsic alterations of innate immunity are understudied in DS. Furthermore, elevated Reactive Oxygen Species (ROS) are well documented in individuals with DS, further exacerbating inflammatory processes. Chronic inflammation and oxidative stress are often precursors of subsequent tissue destruction and pathologies, which affect a majority of persons with DS. Together with ROS, the second messenger ion Ca2+ plays a central role in immune regulation. TRPM2 (Transient Receptor Potential Melastatin 2) is a Ca2+-permeable ion channel that is activated under conditions of oxidative stress. The Trpm2 gene is located on human Chromosome 21 (Hsa21). TRPM2 is strongly represented in innate immune cells, and numerous studies have documented its role in modulating inflammation. We have previously found that as a result of suboptimal cytokine production, TRPM2-/- mice are highly susceptible to the bacterial pathogen Listeria monocytogenes (Lm). We therefore used Lm infection to trigger and characterize immune responsiveness in the DS mouse model Dp10(yey), and to investigate the potential contribution of TRPM2. In comparison to wildtype (WT), Dp10(yey) mice show an increased resistance against Lm infection and higher IFNγ serum concentrations. Using a gene elimination approach, we show that these effects correlate with Trpm2 gene copy number, supporting the notion that Trpm2 might promote hyperinflammation in DS.
Collapse
Affiliation(s)
- Fabienne Gally
- Linda Crnic Institute for Down Syndrome Research, CO, United States; National Jewish Health, Dept. of Biomedical Research, CO, United States
| | - Deviyani M Rao
- Linda Crnic Institute for Down Syndrome Research, CO, United States; National Jewish Health, Dept. of Biomedical Research, CO, United States
| | - Carsten Schmitz
- Linda Crnic Institute for Down Syndrome Research, CO, United States; National Jewish Health, Dept. of Biomedical Research, CO, United States; University of Colorado Denver, Dept. of Immunology and Microbiology, United States
| | - Kelley L Colvin
- Linda Crnic Institute for Down Syndrome Research, CO, United States; University of Colorado Denver, Dept. of Pediatrics, Section of Cardiology, Dept. of Bioengineering, United States
| | - Michael E Yeager
- Linda Crnic Institute for Down Syndrome Research, CO, United States; University of Colorado Denver, Dept. of Pediatrics, Section of Cardiology, Dept. of Bioengineering, United States
| | - Anne-Laure Perraud
- Linda Crnic Institute for Down Syndrome Research, CO, United States; National Jewish Health, Dept. of Biomedical Research, CO, United States; University of Colorado Denver, Dept. of Immunology and Microbiology, United States.
| |
Collapse
|
13
|
Tavakkoli H, Rahmani M, Ghanbarpoor R, Kheirandish R. Induced systemic listeriosis in Alectoris chukar chicks: clinical, histopathological and microbiological findings. Br Poult Sci 2016; 56:651-7. [PMID: 26551997 DOI: 10.1080/00071668.2015.1113505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Systemic listeriosis was induced in 14-d-old Chukar partridge chicks, Alectoris chukar, by intravenous injection of a suspension containing 10(6) cfu/ml of viable Listeria monocytogenes organisms to study the course of infection. 2. Septicaemic and encephalitic forms of listeriosis were observed in all birds. Infection resulted in a fever response 8-h post-inoculation. Disease rapidly developed over a 24-h period with decreased activity, lethargy, ruffled feathers, huddling, listlessness, inability to stand, wing droop, decreased feed and water consumption, growth depression, neural disturbances and finally death. Gross and histopathological changes were observed in the myocardium, proventriculus, gizzard, intestine, pancreas, kidney, liver, spleen, lung, meninges and joints. 3. The diversity of these clinical signs and lesions suggests a high susceptibility of Chukar partridge chicks to systemic listeriosis.
Collapse
Affiliation(s)
- H Tavakkoli
- a Department of Clinical Science, Faculty of Veterinary Medicine , Shahid Bahonar University of Kerman , Kerman , Iran
| | - M Rahmani
- b Faculty of Veterinary Medicine , Shahid Bahonar University of Kerman , Kerman , Iran
| | - R Ghanbarpoor
- c Department of Pathobiology, Faculty of Veterinary Medicine , Shahid Bahonar University of Kerman , Kerman , Iran
| | - R Kheirandish
- c Department of Pathobiology, Faculty of Veterinary Medicine , Shahid Bahonar University of Kerman , Kerman , Iran
| |
Collapse
|
14
|
Wang S, Peng L, Gai Z, Zhang L, Jong A, Cao H, Huang SH. Pathogenic Triad in Bacterial Meningitis: Pathogen Invasion, NF-κB Activation, and Leukocyte Transmigration that Occur at the Blood-Brain Barrier. Front Microbiol 2016; 7:148. [PMID: 26925035 PMCID: PMC4760054 DOI: 10.3389/fmicb.2016.00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs): pathogen penetration, nuclear factor-kappaB (NF-κB) activation in coordination with type 1 interferon (IFN) signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells (BMEC). This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS) inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Shifu Wang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Liang Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Zhongtao Gai
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
| | - Lehai Zhang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong UniversityJinan, China
| | - Ambrose Jong
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical UniversityGuangzhou, China
| | - Sheng-He Huang
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|