1
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
2
|
Yu T, Schuette F, Christofi M, Forrester JV, Graham GJ, Kuffova L. The atypical chemokine receptor-2 fine-tunes the immune response in herpes stromal keratitis. Front Immunol 2022; 13:1054260. [PMID: 36518752 PMCID: PMC9742518 DOI: 10.3389/fimmu.2022.1054260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a blinding corneal disease caused by herpes simplex virus-1 (HSV-1), a common pathogen infecting most of the world's population. Inflammation in HSK is chemokine-dependent, particularly CXCL10 and less so the CC chemokines. The atypical chemokine receptor-2 (ACKR2) is a decoy receptor predominantly for pro-inflammatory CC chemokines, which regulates the inflammatory response by scavenging inflammatory chemokines thereby modulating leukocyte infiltration. Deletion of ACKR2 exacerbates and delays the resolution of the inflammatory response in most models. ACKR2 also regulates lymphangiogenesis and mammary duct development through the recruitment of tissue-remodeling macrophages. Here, we demonstrate a dose-dependent upregulation of ACKR2 during corneal HSV-1 infection. At an HSV inoculum dose of 5.4 x 105 pfu, but not at higher dose, ACKR2 deficient mice showed prolonged clinical signs of HSK, increased infiltration of leukocytes and persistent corneal neovascularization. Viral clearance and T cell activation were similar in ACKR2-/- and wild type mice, despite a transient diminished expression of CD40 and CD86 in dendritic cells. The data suggest that ACKR2 fine-tunes the inflammatory response and the level of neovascularization in the HSK.
Collapse
Affiliation(s)
- Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Christofi
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John V. Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Perth, WA, Australia
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
3
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
4
|
Strobl J, Gail LM, Kleissl L, Pandey RV, Smejkal V, Huber J, Puxkandl V, Unterluggauer L, Dingelmaier-Hovorka R, Atzmüller D, Krausgruber T, Bock C, Wohlfarth P, Rabitsch W, Stary G. Human resident memory T cells exit the skin and mediate systemic Th2-driven inflammation. J Exp Med 2021; 218:212698. [PMID: 34643646 PMCID: PMC8563284 DOI: 10.1084/jem.20210417] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023] Open
Abstract
Emigration of tissue-resident memory T cells (TRMs) was recently introduced in mouse models and may drive systemic inflammation. Skin TRMs of patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) can coexist beside donor T cells, offering a unique human model system to study T cell migration. By genotyping, mathematical modeling, single-cell transcriptomics, and functional analysis of patient blood and skin T cells, we detected a small consistent population of circulating skin-derived T cells with a TRM phenotype (cTRMs) in the blood and unveil their skin origin and striking resemblance to skin TRMs. Blood from patients with active graft-versus-host disease (GVHD) contains elevated numbers of host cTRMs producing pro-inflammatory Th2/Th17 cytokines and mediating keratinocyte damage. Expression of gut-homing receptors and the occurrence of cTRMs in gastrointestinal GVHD lesions emphasize their potential to reseed and propagate inflammation in distant organs. Collectively, we describe a distinct circulating T cell population mirroring skin inflammation, which could serve as a biomarker or therapeutic target in GVHD.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laura Marie Gail
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Valerie Smejkal
- Vienna University of Technology, Institute of Theoretical Physics, Vienna, Austria
| | - Julian Huber
- Vienna Center for Quantum Science and Technology, Atominstitut, University of Technology, Vienna, Austria
| | - Viktoria Puxkandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Denise Atzmüller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation, Medical University of Vienna, Vienna, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
5
|
The link between serum ACKR2 level and Crohn's Disease and its activity. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.1003024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
7
|
Saçmacı H, Sabah Özcan S. A critical role for expression of atypical chemokine receptor 2 in multiple sclerosis: A preliminary project. Mult Scler Relat Disord 2020; 38:101524. [DOI: 10.1016/j.msard.2019.101524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
|
8
|
da Silva JM, dos Santos TPM, Saraiva AM, Fernandes de Oliveira AL, Garlet GP, Batista AC, de Mesquita RA, Russo RC, da Silva TA. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis. Cytokine 2019; 118:160-167. [PMID: 29550065 DOI: 10.1016/j.cyto.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/30/2022]
|
9
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Hypothalamic expression of the atypical chemokine receptor ACKR2 is involved in the systemic regulation of glucose tolerance. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1126-1137. [PMID: 30738810 DOI: 10.1016/j.bbadis.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 02/02/2023]
Abstract
In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.
Collapse
|
11
|
Borroni EM, Savino B, Bonecchi R, Locati M. Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Semin Immunol 2018; 38:63-71. [DOI: 10.1016/j.smim.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
|
12
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
13
|
Salvi V, Sozio F, Sozzani S, Del Prete A. Role of Atypical Chemokine Receptors in Microglial Activation and Polarization. Front Aging Neurosci 2017; 9:148. [PMID: 28603493 PMCID: PMC5445112 DOI: 10.3389/fnagi.2017.00148] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
Inflammatory reactions occurring in the central nervous system (CNS), known as neuroinflammation, are key components of the pathogenic mechanisms underlying several neurological diseases. The chemokine system plays a crucial role in the recruitment and activation of immune and non-immune cells in the brain, as well as in the regulation of microglia phenotype and function. Chemokines belong to a heterogeneous family of chemotactic agonists that signal through the interaction with G protein-coupled receptors (GPCRs). Recently, a small subset of chemokine receptors, now identified as “atypical chemokine receptors” (ACKRs), has been described. These receptors lack classic GPCR signaling and chemotactic activity and are believed to limit inflammation through their ability to scavenge chemokines at the inflammatory sites. Recent studies have highlighted a role for ACKRs in neuroinflammation. However, in the CNS, the role of ACKRs seems to be more complex than the simple control of inflammation. For instance, CXCR7/ACKR3 was shown to control T cell trafficking through the regulation of CXCL12 internalization at CNS endothelial barriers. Furthermore, D6/ACKR2 KO mice were protected in a model of experimental autoimmune encephalomyelitis (EAE). D6/ACKR2 KO showed an abnormal accumulation of dendritic cells at the immunization and a subsequent impairment in T cell priming. Finally, CCRL2, an ACKR-related protein, was shown to play a role in the control of the resolution phase of EAE. Indeed, CCRL2 KO mice showed exacerbated, non-resolving disease with protracted inflammation and increased demyelination. This phenotype was associated with increased microglia and macrophage activation markers and imbalanced M1 vs. M2 polarization. This review will summarize the current knowledge on the role of the ACKRs in neuroinflammation with a particular attention to their role in microglial polarization and function.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| |
Collapse
|
14
|
Bonavita O, Mollica Poeta V, Setten E, Massara M, Bonecchi R. ACKR2: An Atypical Chemokine Receptor Regulating Lymphatic Biology. Front Immunol 2017; 7:691. [PMID: 28123388 PMCID: PMC5225091 DOI: 10.3389/fimmu.2016.00691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
The lymphatic system plays an important role in the induction of the immune response by transporting antigens, inflammatory mediators, and leukocytes from peripheral tissues to draining lymph nodes. It is emerging that lymphatic endothelial cells (LECs) are playing an active role in this context via the expression of chemokines, inflammatory mediators promoting cell migration, and chemokine receptors. Particularly, LECs express atypical chemokine receptors (ACKRs), which are unable to promote conventional signaling and cell migration while they are involved in the regulation of chemokine availability. Here, we provide a summary of the data on the role of ACKR2 expressed by lymphatics, indicating an essential role for this ACKRs in the regulation of the inflammation and the immune response in different pathological conditions, including infection, allergy, and cancer.
Collapse
Affiliation(s)
- Ornella Bonavita
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy
| | - Valeria Mollica Poeta
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Elisa Setten
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
15
|
Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87:37-45. [PMID: 27498604 DOI: 10.1016/j.cyto.2016.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy.
| | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| |
Collapse
|
16
|
Bonecchi R, Graham GJ. Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response. Front Immunol 2016; 7:224. [PMID: 27375622 PMCID: PMC4901034 DOI: 10.3389/fimmu.2016.00224] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges chemokines to either limit their spatial availability or to remove them from in vivo sites. Here, we provide a brief review of these ACKRs and discuss their involvement in the resolution of inflammatory responses and the therapeutic implications of our current knowledge.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
17
|
Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 2015; 12:5-13. [PMID: 26607389 DOI: 10.1038/nrrheum.2015.157] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines and chemokine receptors are involved in leukocyte recruitment and angiogenesis underlying the pathogenesis of rheumatoid arthritis (RA) and other inflammatory rheumatic diseases. Numerous chemokines, along with both conventional and atypical cell-surface chemokine receptors, are found in inflamed synovia. Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors have yielded promising results. However, most human trials of treatment of RA with antibodies and synthetic compounds targeting chemokine signalling have failed to show clinical improvements. Chemokines can have overlapping actions, and their activities can be altered by chemical modification or proteolytic degradation. Effective targeting of chemokine pathways must take acount of these properties, and can also require high levels of receptor occupancy by therapeutic agents to prevent signalling. CCR1 is a promising target for chemokine-receptor blockade.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen, H-4004, Hungary
| | - Alisa E Koch
- University of Michigan Health System, Department of Internal Medicine, Division of Rheumatology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Qi Z, Jiang Y, Holland JW, Nie P, Secombes CJ, Wang T. Identification and expression analysis of an atypical chemokine receptor-2 (ACKR2)/CC chemokine binding protein-2 (CCBP2) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2015; 44:389-98. [PMID: 25747793 DOI: 10.1016/j.fsi.2015.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Atypical chemokine receptors (ACKRs) have emerged as key components of the chemokine system, with an essential regulatory function in innate and adaptive immune responses and inflammation. In mammals ACKR2 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. An ACKR2 like gene has been identified and cloned in rainbow trout (Teleostei) in the present study, enabling the further identification of this molecule in another group of ray-finned teleost fish (Holostei), in a lobe-finned fish (Sarcopterygii-coelacanth), and in reptiles. The identity of these ACKR2 molecules is supported by their conserved structure, and by phylogenetic tree and synteny analysis. Trout ACKR2 is highly expressed in spleen and head kidney, suggesting a homeostatic role of this receptor in limiting the availability of its potential ligands. Trout ACKR2 expression can be modulated in vivo by bacterial and parasitic infections, and in vitro by PAMPs (poly I:C and peptidoglycan) and cytokines (IL-6, TNF-α, IFN-γ and IL-21) in a time dependent manner. These patterns of expression and modulation suggest that trout ACKR2 is regulated in a complex way and has an important role in control of the chemokine network in fish as in mammals.
Collapse
Affiliation(s)
- Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|