1
|
Pauls MMH, Fish J, Binnie LR, Benjamin P, Betteridge S, Clarke B, Dhillon MPK, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Young R, Barrick TR, Isaacs JD, Hainsworth AH. Testing the cognitive effects of tadalafil. Neuropsychological secondary outcomes from the PASTIS trial. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100187. [PMID: 37811523 PMCID: PMC10550803 DOI: 10.1016/j.cccb.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Cerebral small vessel disease (SVD) is a major cause of cognitive impairment in older people. As secondary endpoints in a phase-2 randomised clinical trial, we tested the effects of single administration of a widely-used PDE5 inhibitor, tadalafil, on cognitive performance in older people with SVD. In a double-blinded, placebo-controlled, cross-over trial, participants received tadalafil (20 mg) and placebo on two visits ≥ 7 days apart (randomised to order of treatment). The Montreal Cognitive Assessment (MOCA) was administered at baseline, alongside a measure to estimate optimal intellectual ability (Test of Premorbid Function). Then, before and after treatment, a battery of neuropsychological tests was administered, assessing aspects of attention, information processing speed, working memory and executive function. Sixty-five participants were recruited and 55 completed the protocol (N = 55, age: 66.8 (8.6) years, range 52-87; 15/40 female/male). Median MOCA score was 26 (IQR: 23, 27], range 15-30). No significant treatment effects were seen in any of the neuropsychological tests. There was a trend towards improved performance on Digit Span Forward (treatment effect 0.37, C.I. 0.01, 0.72; P = 0.0521). We did not identify significant treatment effects of single-administration tadalafil on neuropsychological performance in older people with SVD. The trend observed on Digit Span Forward may help to inform future studies. Clinical trial registration http://www.clinicaltrials.gov. Unique identifier: NCT00123456, https://eudract.ema.europa.eu. Unique identifier: 2015-001,235-20NCT00123456.
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Jessica Fish
- Neuropsychology, St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Wellbeing, University of Glasgow, UK
| | - Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
- Neuroradiology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Shai Betteridge
- Neuropsychology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Rita Ghatala
- South London Stroke Research Network, London, UK
| | | | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Denmark
| | - Jeremy B Madigan
- Neuroradiology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Anthony C Pereira
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan BY Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
| | | | | | - Robin Young
- Robertson Centre for Biostatistics, University of Glasgow, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Hainsworth AH, Arancio O, Elahi FM, Isaacs JD, Cheng F. PDE5 inhibitor drugs for use in dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12412. [PMID: 37766832 PMCID: PMC10520293 DOI: 10.1002/trc2.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/29/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Ottavio Arancio
- Department of Pathology and Cell BiologyTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Fanny M. Elahi
- Departments of Neurology and NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeremy D. Isaacs
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Feixiong Cheng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
3
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
5
|
Duarte-Silva E, Meiry da Rocha Araújo S, Oliveira WH, Lós DB, Bonfanti AP, Peron G, de Lima Thomaz L, Verinaud L, Peixoto CA. Sildenafil Alleviates Murine Experimental Autoimmune Encephalomyelitis by Triggering Autophagy in the Spinal Cord. Front Immunol 2021; 12:671511. [PMID: 34054847 PMCID: PMC8156813 DOI: 10.3389/fimmu.2021.671511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS) disease that affects millions of people worldwide. The search for more promising drugs for the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor (PDE5I) that has been shown to possess neuroprotective effects in the Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic pathways, but other signaling pathways were not previously covered. Therefore, the aim of the present study was to further investigate the effects of Sildenafil treatment on autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice were divided into the following groups: (A) Control - received only water; (B) EAE - EAE untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results showed that EAE mice presented a pro-nitrosative profile characterized by high tissue nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in the spinal cord.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Shyrlene Meiry da Rocha Araújo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Wilma Helena Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Memory Enhancers for Alzheimer's Dementia: Focus on cGMP. Pharmaceuticals (Basel) 2021; 14:ph14010061. [PMID: 33451088 PMCID: PMC7828493 DOI: 10.3390/ph14010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic guanosine-3',5'-monophosphate, better known as cyclic-GMP or cGMP, is a classical second messenger involved in a variety of intracellular pathways ultimately controlling different physiological functions. The family of guanylyl cyclases that includes soluble and particulate enzymes, each of which comprises several isoforms with different mechanisms of activation, synthesizes cGMP. cGMP signaling is mainly executed by the activation of protein kinase G and cyclic nucleotide gated channels, whereas it is terminated by its hydrolysis to GMP operated by both specific and dual-substrate phosphodiesterases. In the central nervous system, cGMP has attracted the attention of neuroscientists especially for its key role in the synaptic plasticity phenomenon of long-term potentiation that is instrumental to memory formation and consolidation, thus setting off a "gold rush" for new drugs that could be effective for the treatment of cognitive deficits. In this article, we summarize the state of the art on the neurochemistry of the cGMP system and then review the pre-clinical and clinical evidence on the use of cGMP enhancers in Alzheimer's disease (AD) therapy. Although preclinical data demonstrates the beneficial effects of cGMP on cognitive deficits in AD animal models, the results of the clinical studies carried out to date are not conclusive. More trials with a dose-finding design on selected AD patient's cohorts, possibly investigating also combination therapies, are still needed to evaluate the clinical potential of cGMP enhancers.
Collapse
|
8
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Therapeutic Potential of Phosphodiesterase Inhibitors against Neurodegeneration: The Perspective of the Medicinal Chemist. ACS Chem Neurosci 2020; 11:1726-1739. [PMID: 32401481 PMCID: PMC8007108 DOI: 10.1021/acschemneuro.0c00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Increasing human
life expectancy prompts the development of novel
remedies for cognitive decline: 44 million people worldwide are affected
by dementia, and this number is predicted to triple by 2050. Acetylcholinesterase
and N-methyl-d-aspartate receptors represent
the targets of currently available drugs for Alzheimer’s disease,
which are characterized by limited efficacy. Thus, the search for
therapeutic agents with alternative or combined mechanisms of action
is wide open. Since variations in 3′,5′-cyclic adenosine
monophosphate, 3′,5′-cyclic guanosine monophosphate,
and/or nitric oxide levels interfere with downstream pathways involved
in memory processes, evidence supporting the potential of phosphodiesterase
(PDE) inhibitors in contrasting neurodegeneration should be
critically considered. For the preparation of this Review, more than
140 scientific papers were retrieved by searching PubMed and Scopus
databases. A systematic approach was adopted when overviewing the
different PDE isoforms, taking into account details on brain localization,
downstream molecular mechanisms, and inhibitors currently under study,
according to available in vitro and in vivo data. In the context of drug repurposing, a section focusing on
PDE5 was introduced. Original computational studies were performed
to rationalize the emerging evidence that suggests the role of PDE5
inhibitors as multi-target agents against neurodegeneration.
Moreover, since such compounds must cross the blood–brain barrier
and reach inhibitory concentrations in the central nervous system
to exert their therapeutic activity, physicochemical parameters
were analyzed and discussed. Taken together, literature and computational
data suggest that some PDE5 inhibitors, such as tadalafil, represent
promising candidates.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
9
|
Hackett G. Should All Men with Type 2 Diabetes Be Routinely Prescribed a Phosphodiesterase Type 5 Inhibitor? World J Mens Health 2020; 38:271-284. [PMID: 32378365 PMCID: PMC7308237 DOI: 10.5534/wjmh.200027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Important health problems in men such as type 2 diabetes (T2DM), insulin resistance, erectile dysfunction, benign prostatic hyperplasia and depression have been shown to have to share common pathological processes, such as endothelial dysfunction and inflammation. This paper discusses the role of phosphodiesterase type 5 (PDE5) inhibitors, through beneficial effects on endothelial function and mediators of chronic inflammation and the possibility to treat or preventing these common conditions. We explore possible barriers to this approach, namely the lack of multiple product licences to treat each of these conditions and how these can be overcome by involving the patient in personalised decisions. We also discuss how opportunities are lost by patients with multiple medical conditions being referred to specialists, primarily interested in one specific problem, with little motivation to treat or prevent conditions outside their remit. We explore how these problems might be related to time and financial restraints or simply a lack of awareness of evidence published in journals related to other specialities. As specialists, we often pride ourselves on providing "personalised" or "patient centred" care, but we can only truly be doing so if we assess the specific needs of the patient across a range of conditions. As part of personalised care in T2DM, we routinely prescribe statins, angiotensin converting enzyme inhibitors and metformin, often with poor compliance. In this paper we explore whether the licensed daily PDE5 inhibitor tadalafil should be added routinely to this list as it will potentially improve and prevent bothersome symptoms and improve compliance with other medications.
Collapse
Affiliation(s)
- Geoffrey Hackett
- Department of Urology, University Hospitals Birmingham NHS Foundation Trust, England, UK.,School of Health and Life Sciences, Aston University, England, UK.
| |
Collapse
|
10
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
11
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
12
|
Gulisano W, Tropea MR, Arancio O, Palmeri A, Puzzo D. Sub-efficacious doses of phosphodiesterase 4 and 5 inhibitors improve memory in a mouse model of Alzheimer's disease. Neuropharmacology 2018; 138:151-159. [PMID: 29885420 DOI: 10.1016/j.neuropharm.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Cyclic nucleotides cAMP and cGMP cooperate to ensure memory acquisition and consolidation. Increasing their levels by phosphodiesterase inhibitors (PDE-Is) enhanced cognitive functions and rescued memory loss in different models of aging and Alzheimer's disease (AD). However, side effects due to the high doses used limited their application in humans. Based on previous studies suggesting that combinations of sub-efficacious doses of cAMP- and cGMP-specific PDE-Is improved synaptic plasticity and memory in physiological conditions, here we aimed to study whether this treatment was effective to counteract the AD phenotype in APPswe mice. We found that a 3-week chronic treatment with a combination of sub-efficacious doses of the cAMP-specific PDE4-I roflumilast (0.01 mg/kg) and the cGMP-specific PDE5-I vardenafil (0.1 mg/kg) improved recognition, spatial and contextual fear memory. Importantly, the cognitive enhancement persisted for 2 months beyond administration. This long-lasting action, and the possibility to minimize side effects due to the low doses used, might open feasible therapeutic strategies against AD.
Collapse
Affiliation(s)
- Walter Gulisano
- Dept. Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Maria Rosaria Tropea
- Dept. Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Dept. of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Agostino Palmeri
- Dept. Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Dept. Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Abstract
High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ.
Collapse
|
15
|
Teich AF, Sakurai M, Patel M, Holman C, Saeed F, Fiorito J, Arancio O. PDE5 Exists in Human Neurons and is a Viable Therapeutic Target for Neurologic Disease. J Alzheimers Dis 2017; 52:295-302. [PMID: 26967220 PMCID: PMC4927884 DOI: 10.3233/jad-151104] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphodiesterase 5 (PDE5) is a critical component of the cGMP-PKG axis of cellular signaling in neurons, and inhibition of PDE5 has been shown to be therapeutic in a wide range of neurologic conditions in animal models. However, enthusiasm for PDE5 inhibitors in humans is limited by data suggesting that PDE5 may not exist in human neurons. Here, we first show that past attempts to quantify PDE5 mRNA were flawed due to the use of incorrect primers, and that when correct primers are used, PDE5 mRNA is detectable in human brain tissue. We then show that PDE5 protein exists in human brain by western blot and ELISA. Most importantly, we performed immunohistochemistry and demonstrate that PDE5 is present in human neurons. We hope that this work will trigger a renewed interest in the development of PDE5 inhibitors for neurologic disease.
Collapse
Affiliation(s)
- Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Mikako Sakurai
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Mitesh Patel
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Cameron Holman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Faisal Saeed
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Jole Fiorito
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Heckman PRA, Blokland A, Prickaerts J. From Age-Related Cognitive Decline to Alzheimer's Disease: A Translational Overview of the Potential Role for Phosphodiesterases. ADVANCES IN NEUROBIOLOGY 2017; 17:135-168. [PMID: 28956332 DOI: 10.1007/978-3-319-58811-7_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer's disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans. Psychopharmacology (Berl) 2015; 232:343-53. [PMID: 24998257 DOI: 10.1007/s00213-014-3667-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE One of the most often reported cognitive deficits of acute cannabis administration is an impaired recall of previously learned information. OBJECTIVE The aim of the present study was to determine whether cannabis-induced memory impairment in humans is mediated via glutamatergic or cholinergic pathways. METHODS Fifteen occasional cannabis users participated in a double-blind, placebo-controlled, six-way cross-over study. On separate test days, subjects received combinations of pretreatment (placebo, vardenafil 20 mg or rivastigmine 3 mg) and treatment (placebo or 1,376 mg cannabis/kg body weight). Cognitive tests were administered immediately after inhalation of treatment was finished and included measures of memory (visual verbal learning task, prospective memory test, Sternberg memory test), perceptual-motor control (critical tracking task), attention (divided attention task) and motor impulsivity (stop signal task). RESULTS The results of this study demonstrate that subjects under the influence of cannabis were impaired in all memory tasks, in critical tracking, divided attention and the stop signal task. Pretreatment with rivastigmine attenuated the effect of cannabis on delayed recall and showed a trend towards significance on immediate recall. When cannabis was given in combination with vardenafil, there were no significant interaction effects in any of the tasks. CONCLUSIONS The present data therefore suggest that acetylcholine plays an important role in cannabis-induced memory impairment, whereas similar results for glutamate have not been demonstrated in this study.
Collapse
|
18
|
Peixoto CA, Nunes AKS, Garcia-Osta A. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition. Mediators Inflamm 2015; 2015:940207. [PMID: 26770022 PMCID: PMC4681825 DOI: 10.1155/2015/940207] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a potential therapeutic strategy for neuroinflammatory, neurodegenerative, and memory loss diseases. Mechanistically, PDE5-Is produce an anti-inflammatory and neuroprotection effect by increasing expression of nitric oxide synthases and accumulation of cGMP and activating protein kinase G (PKG), the signaling pathway of which is thought to play an important role in the development of several neurodiseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The aim of this paper was to review present knowledge of the signaling pathways that underlie the use of PDE5-Is in neuroinflammation, neurogenesis, learning, and memory.
Collapse
Affiliation(s)
- Christina Alves Peixoto
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- *Christina Alves Peixoto:
| | - Ana Karolina Santana Nunes
- 1Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), 50.740-465 Recife, PE, Brazil
- 2Universidade Federal de Pernambuco, 50.670-901 Recife, PE, Brazil
| | - Ana Garcia-Osta
- 3Neurobiology of Alzheimer's disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Moore CS, Grant MD, Zink TA, Panizzon MS, Franz CE, Logue MW, Hauger RL, Kremen WS, Lyons MJ. Erectile dysfunction, vascular risk, and cognitive performance in late middle age. Psychol Aging 2014; 29:163-72. [PMID: 24660805 DOI: 10.1037/a0035463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular disease is the most common etiology of erectile dysfunction (ED). Men with ED are at a 65% increased relative risk of developing coronary heart disease and a 43% increased risk of stroke within 10 years. Vascular disease is associated with cognitive impairment; ED-an overt manifestation of vascular dysfunction-could also signal early compromised cognition. We sought to determine whether cognitive differences existed between men with ED and healthy peers. Our sample consisted of 651 men (ages 51-60 years) from the Vietnam Era Twin Study of Aging. ED was associated with poorer cognitive performance, particularly on attention-executive-psychomotor speed tasks. ED remained significantly associated with cognition after inclusion of other cardiovascular risk factors (including hypertension, high cholesterol, body mass index, and smoking). These findings underscore the importance of further study of ED as a predictor of cognitive and cardiovascular health. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | - Mark W Logue
- Biomedical Genetics, Boston University School of Medicine
| | | | | | | |
Collapse
|
20
|
Koh JS, Ko HJ, Wang SM, Cho KJ, Kim JC, Lee SJ, Pae CU. The impact of depression and somatic symptoms on treatment outcomes in patients with chronic prostatitis/chronic pelvic pain syndrome: a preliminary study in a naturalistic treatment setting. Int J Clin Pract 2014; 68:478-85. [PMID: 24471930 DOI: 10.1111/ijcp.12340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM The aim of this study was to evaluate the impact of depression and somatic symptoms on treatment outcomes in Korean male patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) attending a routine clinical practice. METHODS This was a 12-week prospective observational study (n = 80). The Korean version of the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) to measure the severity of CP/CPPS, the Korean version of the Patient Health Questionnaire-9 (PHQ-9) to assess depression, the Korean version of the Patient Health Questionnaire-15 (PHQ-15) to evaluate somatisation and the Korean version of the EuroQol Questionnaire-5 Dimensions (EQ-5D), specifically the EQ-5D utility index and the EQ-5D visual analogue scale (EQ-5D VAS), to assess quality of life, were utilised and given at baseline and week 12. The primary and secondary end-points in this study were changes in the NIH-CPSI total score from baseline to week 12 according to depression and somatisation. RESULTS The change in NIH-CPSI total score was significantly higher in those without depression than in those with depression (p = 0.003), with a magnitude of difference of 2.8. The responder rate (a ≥ 4 point decrease in NIH-CPSI total score from baseline) was significantly higher in those without depression (42.9%) than in those with depression (17.2%, p = 0.023). However, significant differences were not observed between the two groups in the other outcome measures or in all study outcomes between subjects with or without somatisation. A logistic regression analysis revealed that the presence or absence of depression may be a principal predictor of response to treatment. CONCLUSION These preliminary results indicate that depression may have a negative impact on treatment outcome and is a likely predictor of response to treatment in patients with CP/CPPS. However, additional studies with adequate power and improved design are necessary to further support the present findings.
Collapse
Affiliation(s)
- J S Koh
- Department of Urology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Effects of daily low-dose treatment with phosphodiesterase type 5 inhibitor on cognition, depression, somatization and erectile function in patients with erectile dysfunction: a double-blind, placebo-controlled study. Int J Impot Res 2013; 26:76-80. [PMID: 24285284 DOI: 10.1038/ijir.2013.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors have recently been shown to have cognitive-enhancing effects in animal models and in our previous pilot study. To investigate the efficacy of daily low-dose treatment with a PDE5 inhibitor on cognitive function, depression and somatization in patients with erectile dysfunction (ED), 8-week, double-blind, placebo-controlled study enrolled 60 male patients with ED for ≥ 3 months without cognitive impairment. Forty-nine patients completed the study. Patients were randomized to receive either daily low-dose udenafil 50 mg or placebo for 2 months. The International Index of Erectile Function-5 (IIEF-5), the Korean version of the Mini-Mental State Examination (K-MMSE) for general cognitive function and the Seoul Neuropsychological Screening Battery for comprehensive neuropsychological examination, the Physical Health Questionnaire-9 (PHQ-9) for depression and the Physical Health Questionnaire-15 (PHQ-15) for somatization were administered at baseline and at 2 months. The change in the mean IIEF-5 was significantly higher in the udenafil group than the placebo group (6.08 ± 4.72 vs 2.20 ± 3.50, P=0.008). The changes in the PHQ-9 and PHQ-15 were -2.04 ± 3.14 and -2.17 ± 2.87 in the udenafil group, and 1.20 ± 1.63 and 0.56 ± 2.48 in the placebo group (both, P<0.001). The changes in the K-MMSE and Digit Span Forward were 1.25 ± 1.26 and 0.92 ± 1.02 in the udenafil group, and -0.52 ± 1.19 and -0.24 ± 1.13 in the placebo group (both, P<0.001). However, there were no differences in the other neuropsychological tests. Daily dosing with a PDE5 inhibitor seems to improve cognitive function, depression and somatization, as well as erectile function, in patients with ED.
Collapse
|
22
|
Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntington's disease. PLoS One 2013; 8:e73664. [PMID: 24040016 PMCID: PMC3764028 DOI: 10.1371/journal.pone.0073664] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 01/05/2023] Open
Abstract
Huntington’s disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3',5'-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and HdhQ7/Q111 mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD.
Collapse
|
23
|
PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res 2013; 250:251-6. [DOI: 10.1016/j.bbr.2013.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
|
24
|
Reneerkens OAH, Sambeth A, Ramaekers JG, Steinbusch HWM, Blokland A, Prickaerts J. The effects of the phosphodiesterase type 5 inhibitor vardenafil on cognitive performance in healthy adults: a behavioral-electroencephalography study. J Psychopharmacol 2013; 27:600-8. [PMID: 23427190 DOI: 10.1177/0269881113477747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphodiesterase type 5 inhibitors (PDE5-Is) improve cognitive performance of rodents, but the few human studies investigating their effects did not systematically investigate cognitive effects and the results have been quite contradictory. Therefore, we examined whether the PDE5-I vardenafil improves memory and executive functioning and affect electroencephalography (EEG) in healthy young adults. Participants were selected out of a group of volunteers, based on their performance on a memory screening and they were orally treated with vardenafil (10-20 mg or placebo). Memory and executive functioning were tested while EEG activity was recorded. Additionally, a simple reaction time task and questionnaires addressing various complaints were presented. No prominent effects of vardenafil on cognition were found: participants only made more mistakes on a reaction time task after 20 mg vardenafil. During encoding of words, the P300 was generally smaller after vardenafil treatment. Furthermore, the N400 was larger after vardenafil 10 mg than placebo treatment in a spatial memory task at Fz. Finally, headache and feeling weak were reported more after vardenafil treatment. Vardenafil did not affect cognitive performance of healthy adults and showed only some incidental effects on ERPs. These findings in humans do not corroborate the cognition-enhancing effects of PDE5-Is in healthy animals.
Collapse
Affiliation(s)
- O A H Reneerkens
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Reneerkens OAH, Sambeth A, Van Duinen MA, Blokland A, Steinbusch HWM, Prickaerts J. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology (Berl) 2013; 225:303-12. [PMID: 22855271 DOI: 10.1007/s00213-012-2817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
Abstract
RATIONALE Sensory gating is an adaptive mechanism of the brain to prevent overstimulation. Patients suffering from clinical disorders such as Alzheimer's disease or schizophrenia exhibit a deficit in gating, which indicates not only an impairment in basic information processing that might contribute to the cognitive problems seen in these patients. Phosphodiesterase type 5 inhibitors (PDE5-Is) have been shown to improve cognition in rodents in various behavioural tasks and might consequently be an interesting target for cognition enhancement. However, the effects of PDE5-Is on sensory gating are not known yet. OBJECTIVES This work aims to study the effects of PDE5 inhibition on auditory sensory gating in rats and humans. METHODS In the rat study, vehicle or 0.3-3 mg/kg of the PDE5-I vardenafil was given orally 30 min before testing and electrode locations were the vertex, hippocampus and the striatum. The human subjects received placebo, 10-20 mg vardenafil 85 min before testing and sensory gating was measured at the cortex (Fz, Fcz and Cz) electrodes. RESULTS Significant gating was only found for the N1 component in rats while all three peaks P1, N1 and P2 showed gating in humans, i.e. the response to the second sound click was decreased as compared with the first for these deflections. Administration of vardenafil did neither have an effect on sensory gating in rats nor in humans. CONCLUSIONS These findings imply that positive effects of PDE5 inhibition on cognition are not mediated by more early phases of information processing.
Collapse
Affiliation(s)
- O A H Reneerkens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
García-Osta A, Cuadrado-Tejedor M, García-Barroso C, Oyarzábal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem Neurosci 2012; 3:832-44. [PMID: 23173065 DOI: 10.1021/cn3000907] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly. In AD patients, memory loss is accompanied by the formation of beta-amyloid plaques and the appearance of tau in a pathological form. Given the lack of effective treatments for AD, the development of new management strategies for these patients is critical. The continued failure to find effective therapies using molecules aimed at addressing the anti-beta amyloid pathology has led researchers to focus on other non-amyloid-based approaches to restore memory function. Promising non-amyloid related candidate targets include phosphosdiesterases (PDEs), and indeed, Rolipram, a specific PDE4 inhibitor, was the first compound found to effectively restore cognitive deficits in animal models of AD. More recently, PDE5 inhibitors have also been shown to effectively restore memory function. Accordingly, inhibitors of other members of the PDE family may also improve memory performance in AD and non-AD animal models. Hence, in this review, we will summarize the data supporting the use of PDE inhibitors as cognitive enhancers and we will discuss the possible mechanisms of action underlying these effects. We shall also adopt a medicinal chemistry perspective that leads us to propose the most promising PDE candidates on the basis of inhibitor selectivity, brain distribution, and mechanism of action.
Collapse
Affiliation(s)
- Ana García-Osta
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Carolina García-Barroso
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Julen Oyarzábal
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
- Small
Molecule Discovery Platform, CIMA (Centro
de investigación Médica
Aplicada), Avda Pio XII, Pamplona, Spain
| | - Rafael Franco
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| |
Collapse
|
27
|
Reneerkens OA, Rutten K, Akkerman S, Blokland A, Shaffer CL, Menniti FS, Steinbusch HW, Prickaerts J. Phosphodiesterase type 5 (PDE5) inhibition improves object recognition memory: Indications for central and peripheral mechanisms. Neurobiol Learn Mem 2012; 97:370-9. [DOI: 10.1016/j.nlm.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 02/16/2012] [Accepted: 02/27/2012] [Indexed: 01/10/2023]
|