1
|
Yu X, Huang C, Song Y, Zhang C, You D, Dong X, Wu D, Meeker AK, Feng H, Wang Y. Research progress and perspectives on the application of tyramide signal amplification-based multiplex immunohistochemistry/immunofluorescence: a bibliometrics analysis. Front Oncol 2025; 14:1473414. [PMID: 39927119 PMCID: PMC11804208 DOI: 10.3389/fonc.2024.1473414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Background and aims Multiplex immunohistochemistry/immunofluorescence (mIHC/IF), which uses the tyramide signal amplification (TSA) technique, enables sequential staining of multiple targets in formalin-fixed paraffin-embedded (FFPE) samples without worrying about cross-reactivity. This approach has received considerable attention from researchers over the past decades. This article aims to provide a bibliometric analysis of the research progress and perspectives on the application of TSA-based mIHC/IF. Methods We collected all the TSA-based mIHC/IF documents published between 2007 and 2023 from the Web of Science Core Collection (WoSCC) database. CiteSpace, VOSviewer and Bibliometrix R Package were used to perform the bibliometrics analysis, including details about annual publications, countries, institutions, authors, journals, and research topics and hotspots. Results A total of 873 relevant publications (811 articles and 62 reviews) with a time span of 17 years (2007-2023) were obtained. The number of annual publications started to increase rapidly since 2016. The United States (307, 35.17%) and the People's Republic of China (297, 34.02%) are the top two listed countries for both the number of articles produced and the citations. The University of Texas System (53, 6.07%) was the most productive institution. Integrating these results of hotspot and frontier analysis, TSA-based mIHC/IF provides significant benefits, particularly in neurology, cancer and immunology. Conclusion This study conducted a comprehensive bibliometric analysis for the use of TSA-based mIHC/IF. As TSA-based mIHC/IF and its associated imaging systems and analytic software progress, it will become the most promising tool for describing the variety of the whole tissue for a better understanding of pathological or physiological behavior.
Collapse
Affiliation(s)
- Xiaotong Yu
- Cancer Center of Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Debo You
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - XuRan Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - DeFu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Alan Keith Meeker
- Oncology Tissue and Imaging Services, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Hao Feng
- Oncology Tissue and Imaging Services, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Yuqing Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Papp RS, Könczöl K, Sípos K, Tóth ZE. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. Int J Mol Sci 2025; 26:739. [PMID: 39859453 PMCID: PMC11765514 DOI: 10.3390/ijms26020739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis. The anorexigenic peptide nesfatin-1 is a leptin-independent central regulator of blood glucose. Therefore, its integrative role in male rats can be assumed. To investigate this, we mapped the distribution of nesfatin-1 mRNA- and protein-producing cells in the PMv during postnatal development via in situ hybridization and immunohistochemistry, respectively. Fos-nesfatin-1, double immunostaining was used to determine the combined effect of heterosexual pheromone challenge and insulin-induced hypoglycemia on neuronal activation in adults. We found that ~75% of the pheromone-activated neurons were nesfatin-1 cells. Hypoglycemia reduced pheromone-induced cell activation, particularly in nesfatin-1 neurons. Immuno-electron microscopy revealed innervation of PMv nesfatin-1 neurons by urocortin3-immunoreactive terminals, reportedly originating from the medial amygdala. Nesfatin-1 immunopositive neurons expressed GPR10 mRNA, a receptor associated with metabolic signaling, but did not respond with accumulation of phosphorylated STAT3 immunopositivity, a marker of leptin receptor signaling, in response to intracerebroventricular leptin treatment. Our results suggest that PMv nesfatin-1 neurons are primarily responsible for integrating reproductive and metabolic signaling in male rats.
Collapse
Affiliation(s)
- Rege Sugárka Papp
- Human Brain Tissue Bank and Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| |
Collapse
|
3
|
Steffen TL, Stafford JD, Samson WK, Yosten GLC. Nesfatin-1 is a regulator of inflammation with implications during obesity and metabolic syndrome. Appetite 2024; 203:107669. [PMID: 39251090 DOI: 10.1016/j.appet.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.
Collapse
Affiliation(s)
- Tara L Steffen
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA.
| | - Joshua D Stafford
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Willis K Samson
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Gina L C Yosten
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| |
Collapse
|
4
|
Carbone EA, Caroleo M, Rania M, de Filippis R, Condoleo F, Catalano F, Aloi M, De Fazio P, Arturi F, Hribal ML, Fiorentino TV, Segura-Garcia C. Influence of NUCB/Nesfatin-1 Polymorphism on Treatment Response to Naltrexone/Bupropion SR in Binge Eating Disorder and Obesity. Biomedicines 2024; 12:451. [PMID: 38398053 PMCID: PMC10887296 DOI: 10.3390/biomedicines12020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objectives: The NUCB2 gene and its polymorphisms were identified as novel players in the regulation of food intake, potentially leading to obesity (OBE) and altered eating behaviors. Naltrexone/bupropion SR (NB) showed good efficacy and tolerability for treating OBE and altered eating behaviors associated with binge eating disorder (BED). This prospective study investigates the influence of NUCB2 gene polymorphism on NB treatment response in OBE and BED. Materials and Methods: Body mass index (BMI), eating (EDE-Q, BES, NEQ, GQ, Y-FAS 2.0) and general psychopathology (BDI, STAI-S) were evaluated at baseline (t0) and after 16 weeks (t1) of NB treatment in patients with OBE and BED (Group 1; N = 22) vs. patients with OBE without BED (Group 2; N = 20). Differences were evaluated according to the rs757081 NUCB2 gene polymorphism. Results: NUCB2 polymorphism was equally distributed between groups. Although weight at t0 was higher in Group 1, weight loss was similar at t1 in both groups. BMI was not influenced by NUCB2 polymorphism. In Group 1, the CG-genotype reported significant improvement in eating psychopathology while the GG-genotype reported improvement only for FA. No differences were observed in Group 2. Conclusions: Patients diagnosed with BED and treated with NB exhibited a more favorable treatment response within the CG-genotype of the NUCB2 polymorphism.
Collapse
Affiliation(s)
- Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (M.A.); (P.D.F.)
| | - Marianna Rania
- Center for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Renato de Filippis
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (M.A.); (P.D.F.)
| | - Francesca Condoleo
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Federica Catalano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Matteo Aloi
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (M.A.); (P.D.F.)
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (M.A.); (P.D.F.)
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.A.C.); (F.C.); (F.A.); (M.L.H.); (T.V.F.)
- Center for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
5
|
Wang M, Tong J, Zhu Q, Tang H, Tang L. Blood nesfatin-1 levels in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 14:1275753. [PMID: 38327900 PMCID: PMC10847586 DOI: 10.3389/fendo.2023.1275753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background Previous studies have investigated the relationship between nesfatin-1 level and polycystic ovary syndrome (PCOS). However, these studies have produced conflicting results. Thus, in this meta-analysis, we aimed to clarify the association between blood nesfatin-1 levels and PCOS, and the ability of nesfatin-1 as a biomarker in PCOS. Methods Meta-analysis was performed using STATA 12.0 software. We computed standard mean difference (SMD) and 95% confidence interval (CI) regarding the comparison of blood nesfatin-1 in patients with PCOS and controls. Results The present meta-analysis showed no significant difference in blood nesfatin-1 level between patients with PCOS and controls with a random effects model (SMD = 0.03; 95%CI: -0.71, 0.77; I2 = 97.1%, p value for Q test < 0.001). Subgroup analysis for different ethnicities reported no significant difference in blood nesfatin-1 level between patients with PCOS and controls in both Caucasian and Asian populations. Subgroup analysis for different sample types reported no significant difference in serum nesfatin-1 level between patients with PCOS and controls. Subgroup studies reported no significant difference in blood nesfatin-1 level between PCOS and controls in both obese and non-obese populations. Conclusion In conclusion, there is no significant relationship between blood nesfatin-1 levels and PCOS.
Collapse
Affiliation(s)
| | | | | | | | - Lisha Tang
- *Correspondence: Lisha Tang, ; Huaiyun Tang,
| |
Collapse
|
6
|
Rahmati S, Mohammadi B, Karimi-Mehr Z, Broom DR. Effects of physical activity and exercise on Nucleobindin-2 gene expression and Nesfatin-1 concentration: A rapid review. Cell Biochem Funct 2023; 41:1016-1030. [PMID: 37909689 DOI: 10.1002/cbf.3877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The aim of this rapid review is to examine the research evidence that presents the effects of physical activity and exercise on Nucleobindin-2 (NUCB2) gene expression and Nesfatin-1 concentration. Five databases (PubMed, Science Direct, Springer, Wiley, and Google Scholar) were searched for eligible studies from the earliest available date to August 2023. In human studies, Nesfatin-1 concentration either remains unchanged or increases after exercise training. It appears that higher exercise intensity and longer duration of training accentuate the increase of blood Nesfatin-1 concentration. The few human studies that have examined the acute response of exercise on Nesfatin-1 concentration from blood draws show conflicting results. There is a severe lack of biopsy studies in humans which warrants attention. All published animal studies have used the mouse model. The majority show that regular exercise training increases tissue NUCB2/Nesfatin-1. In some animal studies, where the effects of exercise on tissue Nesfatin-1 concentration has been seen as significant, there has been no significant effect of exercise on plasma Nesfatin-1 concentration. All animal studies evaluated the effect of endurance training except one which used resistance training. No animal studies have investigated the effects of acute exercise, which warrants investigation. In conclusion, human and animal studies have shown that physical training can increase NUCB2/Nesfatin-1, but research evidence examining the effect of acute exercise is in its infancy. In addition, future comparative studies are needed to compare the effects of different training protocols on NUCB2/Nesfatin-1 in humans and animals.
Collapse
Affiliation(s)
- Saleh Rahmati
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis, Iran
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behnam Mohammadi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Karimi-Mehr
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - David Robert Broom
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
7
|
Jiang Z, Wang K, Lin Y, Zhou T, Lin Y, Chen J, Lan Q, Meng Z, Liu X, Lin H, Lin D. Nesfatin-1 regulates the HMGB1-TLR4-NF-κB signaling pathway to inhibit inflammation and its effects on the random skin flap survival in rats. Int Immunopharmacol 2023; 124:110849. [PMID: 37633241 DOI: 10.1016/j.intimp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Random skin flaps are often placed by plastic surgeons to treat limb deformities and dysfunction. Nesfatin-1 (NES) is a peptide that exerts angiogenic, anti-inflammatory, and anti-oxidant effects. We assessed the impact of NES on flap survival and the underlying mechanism. METHODS We modified the McFarlane random skin flap rat model. Thirty-six male Sprague-Dawley rats were randomly divided into a control group (corn oil solution with DMSO), low-dose group (NES-L at 10 µg/kg/day), and high-dose group (NES-H at 20 µg/kg/day). On day 7 after surgery, average flap survival areas were calculated. Laser Doppler blood flow monitoring and lead oxide/gelatin angiography were used to evaluate blood perfusion and neovascularization, respectively. Flap histopathological status was evaluated by hematoxylin and eosin (H&E) staining. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical techniques were used to evaluate the expression of angiogenetic and inflammatory factors. RESULTS In the experimental groups, the mean skin flap survival areas and blood perfusion increased considerably. The SOD activities in the experimental groups increased and the MDA contents decreased. Immunohistochemically, VEGF expression was upregulated in the experimental groups and the expression levels of inflammatory factors decreased markedly. CONCLUSION NES inhibited ischemic skin flap necrosis, promoted angiogenesis, and reduced ischemia-reperfusion injury and inflammation. Inhibition of the inflammatory HMGB1-TLR4-NF-κB signal pathway, which reduced flap inflammation and oxidative stress, may explain the enhanced flap survival.
Collapse
Affiliation(s)
- Zhikai Jiang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kaitao Wang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuting Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zhou
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianpeng Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qicheng Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhefeng Meng
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuao Liu
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Liang Y, Ma Y, Wang K, Xiang M, Yi B. NUCB-2/Nesfatin-1 promotes the proliferation of nasopharyngeal carcinoma cells. Cancer Cell Int 2023; 23:181. [PMID: 37635259 PMCID: PMC10463537 DOI: 10.1186/s12935-023-03038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE The association of NUCB-2/Nesfatin-1 with nasopharyngeal carcinoma (NPC) remains unclear. We clarified the role of NUCB-2/Nesfatin-1 in the development, progression and diagnosis of NPC. MATERIALS AND METHODS In nasopharyngeal carcinoma cell lines (5-8 F, 6-10B, CNE1, CNE2 and NP69), western blotting, MTT, EdU and other techniques were performed to investigate the role of NUCB-2 in nasopharyngeal carcinoma. 70 tissue samples (39 NPC and 31 rhinitis) and 140 serum samples (including NPC, rhinitis, other head and neck tumors and healthy control) were included to explore the expression of NUCB-2 and its metabolite Nesfatin-1 in tissues or serum of patients with nasopharyngeal carcinoma. RESULTS NUCB-2 level in NPC tissue was higher than that in rhinitis tissue (P < 0.05). Suppression of NUCB-2 in the NPC cell line CNE2 inhibited proliferation and clone formation of the cells; on the contrary, improvement of NUCB-2 in the NPC cell line CNE1 promoted cell propagation and clone development. An elevated serum level of NUCB-2 in NPC patients was detected, compared to that in patients with other head and neck tumors, rhinitis or healthy donors. Determination of nesfatin-1 combined with EA-IgA, VCA-IgA and Rta-IgG in serum samples for NPC diagnosis reached a sensitivity of 93.6% and a specificity of 94.5%, while the positive and negative predictive value of this diagnostic model was 89.8% and 96.6%, and the accuracy yielded 94.2%. CONCLUSION This study revealed that NUCB-2 could enhance proliferation of NPC cells and NUCB-2/nesfatin-1 has the potential to be a serological marker to aid early diagnosis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, No. 87, Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Yating Ma
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, No. 87, Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, No. 87, Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Manglin Xiang
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, No. 87, Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, No. 87, Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Ning S, Liu C, Wang K, Cai Y, Ning Z, Li M, Zeng L. NUCB2/Nesfatin-1 drives breast cancer metastasis through the up-regulation of cholesterol synthesis via the mTORC1 pathway. J Transl Med 2023; 21:362. [PMID: 37277807 PMCID: PMC10243030 DOI: 10.1186/s12967-023-04236-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Reprogramming lipid metabolism for tumor metastasis is essential in breast cancer, and NUCB2/Nesfatin-1 plays a crucial role in regulating energy metabolism. Its high expression is associated with poor prognosis in breast cancer. Here, we studied whether NUCB2/Nesfatin-1 promotes breast cancer metastasis through reprogramming cholesterol metabolism. METHODS ELISA was employed to measure the concentration of Nesfatin-1 in the serum of breast cancer patients and the control group. Database analysis suggested that NUCB2/Nesfatin-1 might be acetylated in breast cancer, which was confirmed by treating the breast cancer cells with acetyltransferase inhibitors. Transwell migration and Matrigel invasion assays were conducted, and nude mouse lung metastasis models were established to examine the effect of NUCB2/Nesfatin-1 on breast cancer metastasis in vitro and in vivo. The Affymetrix gene expression chip results were analyzed using IPA software to identify the critical pathway induced by NUCB2/Nesfatin-1. We evaluated the effect of NUCB2/Nesfatin-1 on cholesterol biosynthesis through the mTORC1-SREBP2-HMGCR axis by utilizing mTORC1 inhibitor and rescue experiments. RESULTS NUCB2/Nesfatin-1 was found to be overexpressed in the breast cancer patients, and its overexpression was positively correlated with poor prognosis. NUCB2 was potentially acetylated, leading to high expression in breast cancer. NUCB2/Nesfatin-1 promoted metastasis in vitro and in vivo, while Nesfatin-1 rescued impaired cell metastasis induced by NUCB2 depletion. Mechanistically, NUCB2/Nesfatin-1 upregulated cholesterol synthesis via the mTORC1 signal pathway, contributing to breast cancer migration and metastasis. CONCLUSIONS Our findings demonstrate that the NUCB2/Nesfatin-1/mTORC1/SREBP2 signal pathway is critical in regulating cholesterol synthesis, essential for breast cancer metastasis. Thus, NUCB2/Nesfatin-1 might be utilized as a diagnostic tool and also used in cancer therapy for breast cancer in the future.
Collapse
Affiliation(s)
- Siyi Ning
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Caiying Liu
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Kangtao Wang
- Department of General Surgery, The Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yubo Cai
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Zhicheng Ning
- Hunan Normal University School of Medicine, Changsha, 410031, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China.
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China.
| |
Collapse
|
10
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Zhou Q, Liu Y, Feng R, Zhang W. NUCB2: roles in physiology and pathology. J Physiol Biochem 2022; 78:603-617. [PMID: 35678998 DOI: 10.1007/s13105-022-00895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Durst M, Könczöl K, Ocskay K, Sípos K, Várnai P, Szilvásy-Szabó A, Fekete C, Tóth ZE. Hypothalamic Nesfatin-1 Resistance May Underlie the Development of Type 2 Diabetes Mellitus in Maternally Undernourished Non-obese Rats. Front Neurosci 2022; 16:828571. [PMID: 35386592 PMCID: PMC8978526 DOI: 10.3389/fnins.2022.828571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth retardation (IUGR) poses a high risk for developing late-onset, non-obese type 2 diabetes (T2DM). The exact mechanism underlying this phenomenon is unknown, although the contribution of the central nervous system is recognized. The main hypothalamic nuclei involved in the homeostatic regulation express nesfatin-1, an anorexigenic neuropeptide and identified regulator of blood glucose level. Using intrauterine protein restricted rat model (PR) of IUGR, we investigated, whether IUGR alters the function of nesfatin-1. We show that PR rats develop fat preference and impaired glucose homeostasis by adulthood, while the body composition and caloric intake of normal nourished (NN) and PR rats are similar. Plasma nesfatin-1 levels are unaffected by IUGR in both neonates and adults, but pro-nesfatin-1 mRNA expression is upregulated in the hypothalamus of adult PR animals. We find that centrally injected nesfatin-1 inhibits the fasting induced neuronal activation in the hypothalamic arcuate nucleus in adult NN rats. This effect of nesfatin-1 is not seen in PR rats. The anorexigenic effect of centrally injected nesfatin-1 is also reduced in adult PR rats. Moreover, chronic central nesfatin-1 administration improves the glucose tolerance and insulin sensitivity in NN rats but not in PR animals. Birth dating of nesfatin-1 cells by bromodeoxyuridine (BrDU) reveals that formation of nesfatin-1 cells in the hypothalamus of PR rats is disturbed. Our results suggest that adult PR rats acquire hypothalamic nesfatin-1-resistance, probably due to the altered development of the hypothalamic nesfatin-1 cells. Hypothalamic nesfatin-1-resistance, in turn, may contribute to the development of non-obese type T2DM.
Collapse
Affiliation(s)
- Máté Durst
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Klementina Ocskay
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- *Correspondence: Zsuzsanna E. Tóth,
| |
Collapse
|
13
|
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022; 316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Stress is known as the process of biological responses evoked by internal or external stimuli. The ability to sense, integrate and respond to stress signals is a requisite for life. Temperature and photoperiod are very important environmental factors for animals. In addition, stress signals can also be inputted from peripheral tissue, such as starvation and inflammation. Through afferent pathways, stress signals input to the central nervous system (CNS), where various signals will integrate, and the integrated information will transmit to the peripheral effectors. As the regulators of neural activity, neuropeptides play important roles in these processes. The present review summarizes recent findings about the integration mechanism of stress signals in the CNS, emphasizing on the role of neuropeptides.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
15
|
Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021; 22:ijms22179156. [PMID: 34502065 PMCID: PMC8431171 DOI: 10.3390/ijms22179156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin’s role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.
Collapse
|
16
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
18
|
Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020; 21:ijms21218378. [PMID: 33171667 PMCID: PMC7664650 DOI: 10.3390/ijms21218378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-6184-637-24
| |
Collapse
|
19
|
Wilz AM, Wernecke K, Appel L, Kahrs J, Dore R, Jöhren O, Lehnert H, Schulz C. Endogenous NUCB2/Nesfatin-1 Regulates Energy Homeostasis Under Physiological Conditions in Male Rats. Horm Metab Res 2020; 52:676-684. [PMID: 32722818 DOI: 10.1055/a-1196-2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.
Collapse
Affiliation(s)
- Anna-Maria Wilz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kerstin Wernecke
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Lena Appel
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Johanna Kahrs
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Dore R, Krotenko R, Reising JP, Murru L, Sundaram SM, Di Spiezio A, Müller-Fielitz H, Schwaninger M, Jöhren O, Mittag J, Passafaro M, Shanabrough M, Horvath TL, Schulz C, Lehnert H. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 2020; 45:1645-1655. [PMID: 32353862 PMCID: PMC7419560 DOI: 10.1038/s41386-020-0682-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Regina Krotenko
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan Philipp Reising
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4714.60000 0004 1937 0626Present Address: Department of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Luca Murru
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Sivaraj Mohana Sundaram
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Alessandro Di Spiezio
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Department of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Helge Müller-Fielitz
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Markus Schwaninger
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Jöhren
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Maria Passafaro
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Marya Shanabrough
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Tamas L. Horvath
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, H-1078 Hungary
| | - Carla Schulz
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
21
|
Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Taché Y, Stengel A. NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 2020; 128:170308. [PMID: 32229144 DOI: 10.1016/j.peptides.2020.170308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils W G Lambrecht
- Department of Pathology and Laboratory Medicine, VA Medical Center, Long Beach, California, USA
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Li XS, Yan CY, Fan YJ, Yang JL, Zhao SX. NUCB2 polymorphisms are associated with an increased risk for type 2 diabetes in the Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:290. [PMID: 32355734 PMCID: PMC7186676 DOI: 10.21037/atm.2020.03.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background The nucleobindin 2 (NUCB2) gene encodes the NUCB2 protein, which plays a critical role in glucose metabolism and diabetes. This study explored the correlation between NUCB2 genetic variants and type 2 diabetes mellitus (T2DM). The study further examined the different NUCB2 variants that confer risk to T2DM in Chinese Han populations. Methods This study evaluated the anthropometric and glycemic profiles of 578 T2DM patients and 1,609 healthy controls. Subsequently, we genotyped five single nucleotide polymorphisms (SNPs) (rs10832756, rs1330, rs10766383, rs10832757, and rs11024251) in all the study participants using a Sequenom Mass ARRAY SNP genotyping platform. Results The distribution of polymorphisms was significantly different between the T2DM patients and healthy controls. Our logistic regression analysis results showed that the five NUCB2 SNPs are significantly correlated with the risk for T2DM, especially rs11024251(P=2.97×10−6). Interestingly, analysis of male and female sub-populations separately showed that only two of the SNPs (rs10832757 and rs11024251) have significant correlation to T2DM in males [P=0.0244, odds ratio (OR) 1.28 and P=0.0062, OR 1.35, respectively). In females however, we identified four significant SNPs (rs1330, rs10766383, rs10832757, and rs11024251; P<0.05, OR 1.31–1.42). Furthermore, we found that rs1330 is associated with body mass index of female subpopulation only (P=0.0174, β =0.0060). Conclusions NUCB2 polymorphisms could have a pivotal role in the presence of T2DM. Sex-specific SNPs of NUCB2 could account for the differences in clinical features of T2DM between male and female subpopulations. Nevertheless, our results should be replicated using larger sample sizes, and experimental investigations are needed to elucidate the molecular mechanisms of the associations observed in this study.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Chen-Yan Yan
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Yu-Juan Fan
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jia-Lin Yang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| |
Collapse
|
23
|
Angelone T, Rocca C, Pasqua T. Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacol Res 2020; 156:104766. [PMID: 32201244 DOI: 10.1016/j.phrs.2020.104766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.
Collapse
Affiliation(s)
- Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy; National Institute of Cardiovascular Research I.N.R.C., Bologna, Italy.
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
24
|
Tekin T, Çiçek B, Konyalıgil N, Güntürk İ, Yazıcı C, Karaca Z, Ünlüsavuran M. Increased hip circumference in individuals with metabolic syndrome affects serum nesfatin-1 levels. Postgrad Med J 2019; 96:600-605. [PMID: 31857495 DOI: 10.1136/postgradmedj-2019-136887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
BackgroundThis case–control study was conducted to investigate the relationship between serum nesfatin-1 levels and nutritional status and blood parameters in patients diagnosed with metabolic syndrome.MethodsThirty patients (case) diagnosed with metabolic syndrome according to National Cholesterol Education Program-Adult Treatment Panel III criteria were included. Thirty healthy subjects (control) matched with patients with metabolic syndrome in terms of age, gender and body mass index were included. Three-day food consumption records were obtained. Anthropometric indices were measured and body composition was determined by bioelectrical impedance method. Biochemical parameters and serum nesfatin-1 levels were measured after 8 hours of fasting.ResultsSerum nesfatin-1 levels were 0.245±0.272 ng/mL in the case group and 0.528±0.987 ng/mL in the control group (p>0.05). There was a positive significant correlation between serum nesfatin-1 levels and body weight, waist and hip circumferences in the case group (p<0.05). Each unit increase in hip circumference measurement affects the levels of nesfatin by 0.014 times. In the control group, there was a positive significant correlation between body weight and serum nesfatin-1 levels (p<0.05). A significant correlation was detected between HbA1c and serum nesfatin-1 levels in the case group (p<0.05). A significant relationship was detected between dietary fibre intake and the serum nesfatin-1 levels in the case group (p<0.05).ConclusionsAnthropometric indices and blood parameters were correlated with serum nesfatin-1 levels in patients with metabolic syndrome. More clinical trials may be performed to establish the relationship between serum nesfatin-1 levels and nutritional status.
Collapse
|
25
|
de Dios O, Herrero L, Gavela-Pérez T, Soriano-Guillén L, Garcés C. Sex-specific association of plasma nesfatin-1 concentrations with obesity in children. Pediatr Obes 2019; 14:e12567. [PMID: 31507101 DOI: 10.1111/ijpo.12567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nesfatin-1, an anorexigenic peptide, has been associated with food intake and thermogenesis, with discordant findings in humans and scarce studies in children to date. OBJECTIVES The aim of this study was to analyze the relationship of obesity with nesfatin-1 levels in two cohorts of children. METHODS Plasma nesfatin-1 concentrations were analyzed in 6- to 9-year-olds (n = 140) and 12- to 16-year-old children (n = 96), including children with obesity and their sex- and age-matched normal-weight counterparts. Anthropometric measurements were assessed. Cholesterol and triglycerides were determined enzymatically, insulin concentrations were measured by radioimmunoassay using a commercial kit and nesfatin-1, leptin and hs-CRP concentrations were determined using commercial ELISA kits. RESULTS Nesfatin-1 concentrations were significantly lower in younger (P = .001) and older (P = .009) girls with obesity than in their normal-weight counterparts, without showing significant differences in boys. Nesfatin-1 showed a negative significant (P < .010) correlation with weight and BMI in girls but not in boys. A significant positive correlation of nesfatin-1 levels with insulin, HOMA, and leptin levels appears in girls after adjusting by age and BMI. A significant positive correlation (P = .003) was observed between nesfatin-1 and fat mass in older children. CONCLUSIONS Our study shows lower concentrations of nesfatin-1 related to obesity in girls but not in boys at two different ages. The existence of a sex-specific association between nesfatin-1 concentrations and presence of obesity highlights the need of an analysis by gender of the relationship of nesfatin-1 with obesity.
Collapse
Affiliation(s)
- Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Leticia Herrero
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
26
|
Zhang T, Wang M, Liu L, He B, Hu J, Wang Y. Hypothalamic nesfatin-1 mediates feeding behavior via MC3/4R-ERK signaling pathway after weight loss in obese Sprague-Dawley rats. Peptides 2019; 119:170080. [PMID: 31260713 DOI: 10.1016/j.peptides.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
Nesfatin-1 is an anorexic peptide derived from nucleobindin 2 (NUCB2). An increase in hypothalamic nesfatin-1 inhibits feeding behavior and promotes weight loss. However, the effects of weight loss on hypothalamic nesfatin-1 levels are unclear. In this study, obese rats lost weight in three ways: Calorie Restriction diet (CRD), Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). We found an increase in nesfatin-1 serum and cerebrospinal fluid levels after weight loss in obese Sprague-Dawley (SD) rats. Moreover, weight loss also increased hypothalamic melanocortin 3/4 receptor (MC3/4R) and extracellular regulated kinase phosphorylation (p-ERK) signaling. Third ventricle administration of antisense morpholino oligonucleotide (MON) against the gene encoding NUCB2 inhibited hypothalamic nesfatin-1 and p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. Third ventricle administration of SHU9119 (MC3/4R blocker) blocked hypothalamic MC3/4R, inhibited p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. These findings indicate that weight loss leads to an increase in hypothalamic nesfatin-1. The increase in hypothalamic nesfatin-1 participates in regulating feeding behavior through the MC3/4R-ERK signaling especially after SG and RYGB.
Collapse
Affiliation(s)
- Tianyi Zhang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Mofei Wang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Lei Liu
- Shengjing Hospital Affiliated to China Medical University, China.
| | - Bing He
- Shengjing Hospital Affiliated to China Medical University, China.
| | - Jingyao Hu
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Yong Wang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| |
Collapse
|
27
|
Nesfatin-1 regulates glucoregulatory genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2019; 235:121-130. [PMID: 31152914 DOI: 10.1016/j.cbpa.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
The aim of this work was to determine if the anorexigen nesfatin-1 modulates the expression of genes involved in glucoregulation in rainbow trout. First, the nesfatin-1 sequence from trout was confirmed. Second, the effects of 0.1, 1 and 10 nM nesfatin-1 on insulin, glucagon, igf-I, igf-II, glut1, glut2, glut4 and sglt1 expression were tested in cultured liver, gut, muscle and adipose tissue. In liver, the expression of insulin and glucagon isoforms X1 increased after 2 h of incubation with 0.1 nM nesfatin-1, while insulin and glucagon X2 expression increased after 4 h with 1 nM treatment. All nesfatin-1 doses tested decreased glut2 expression after 4 h. In adipose tissue, all nesfatin-1 concentrations reduced insulin X1 expression at 30 min, and 1 nM nesfatin-1 increased insulin X2 expression at 4 h. In gut, 0.1, 1 and 10 nM nesfatin-1 decreased glut2 and sglt1 mRNA levels after 240 min of incubation. In muscle, 0.1 nM nesfatin-1 increased the expression of igf-I after 240 min. The expression of igf-II in muscle increased after 30 min of incubation with 1 and 10 nM nesfatin-1 and after 120 min of incubation with 0.1 and 1 nM nesfatin-1. Expression of glut1 and sglt1 in muscle increased after 240 min of incubation with 0.1 nM nesfatin-1 and after 120 min with 0.1 and 10 nM nesfatin-1, respectively. These results suggest that nesfatin-1 could decrease the gut intake of dietary glucose, and increase its uptake in glucoregulatory tissues such as liver and muscle of rainbow trout.
Collapse
|
28
|
Leung AKW, Ramesh N, Vogel C, Unniappan S. Nucleobindins and encoded peptides: From cell signaling to physiology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:91-133. [PMID: 31036300 DOI: 10.1016/bs.apcsb.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleobindins (NUCBs) are DNA and calcium binding, secreted proteins with various signaling functions. Two NUCBs, nucleobindin-1 (NUCB1) and nucleobindin-2 (NUCB2), were discovered during the 1990s. These two peptides are shown to have diverse functions, including the regulation of inflammation and bone formation, among others. In 2006, Oh-I and colleagues discovered that three peptides encoded within the NUCB2 could be processed by prohormone convertases. These peptides were named nesfatin-1, 2 and 3, mainly due to the satiety and fat influencing properties of nesfatin-1. However, it was found that nesfatin-2 and -3 have no such effects. Nesfatin-1, especially its mid-segment, is very highly conserved across vertebrates. Although the receptor(s) that mediate nesfatin-1 effects are currently unknown, it is now considered an endogenous peptide with multiple functions, affecting central and peripheral tissues to regulate metabolism, reproduction, endocrine and other functions. We recently identified a nesfatin-1-like peptide (NLP) encoded within the NUCB1. Like nesfatin-1, NLP suppressed feed intake in mice and fish, and stimulated insulin secretion from pancreatic beta cells. There is considerable evidence available to indicate that nucleobindins and its encoded peptides are multifunctional regulators of cell biology and whole animal physiology. This review aims to briefly discuss the structure, distribution, functions and mechanism of action nucleobindins and encoded peptides.
Collapse
Affiliation(s)
- Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Naresh Ramesh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, United States
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada.
| |
Collapse
|
29
|
Durst M, Könczöl K, Balázsa T, Eyre MD, Tóth ZE. Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes (Lond) 2019; 43:917-927. [PMID: 29907842 PMCID: PMC6484714 DOI: 10.1038/s41366-018-0133-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/06/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES Dysfunction in reward-related aspects of feeding, and consequent overeating in humans, is a major contributor to obesity. Intrauterine undernutrition and overnutrition are among the predisposing factors, but the exact mechanism of how overeating develops is still unclear. Consummatory behavior is regulated by the medial shell (mSh) of the accumbens nucleus (Nac) through direct connections with the rostral part of the lateral hypothalamic area (LHA). Our aim was to investigate whether an altered Nac-LHA circuit may underlie hyperphagic behavior. SUBJECTS/METHODS Intrauterine protein-restricted (PR) male Wistar rats were used as models for hyperphagia. The experiments were performed using young adult control (normally nourished) and PR animals. Sweet condensed milk (SCM) served as a reward to test consumption and subsequent activation (Fos+) of Nac and LHA neurons. Expression levels of type 1 and 2 dopamine receptors (D1R, D2R) in the Nac, as well as tyrosine hydroxylase (TH) levels in the ventral tegmental area, were determined. The D1R agonist SKF82958 was injected into the mSh-Nac of control rats to test the effect of D1R signaling on SCM intake and neuronal cell activation in the LHA. RESULTS A group of food reward-representing D1R+ neurons was identified in the mSh-Nac. Activation (Fos+) of these neurons was highly proportional to the consumed palatable food. D1R agonist treatment attenuated SCM intake and diminished the number of SCM-activated cells in the LHA. Hyperphagic PR rats showed increased intake of SCM, reduced D1R expression, and an impaired response to SCM-evoked neuronal activation in the mSh-Nac, accompanied by an elevated number of Fos+ neurons in the LHA compared to controls. CONCLUSIONS Sensitivity of food reward-representing neurons in the mSh-Nac determines the level of satisfaction that governs cessation of consumption, probably through connections with the LHA. D1R signaling is a key element in this function, and is impaired in obesity-prone rats.
Collapse
Affiliation(s)
- Máté Durst
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Tamás Balázsa
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary
| | - Mark D Eyre
- Department of Physiology I, University of Freiburg, Hermann-Herder-Str. 7, Freiburg, 79104, Germany
| | - Zsuzsanna E Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, Budapest, Hungary.
| |
Collapse
|
30
|
Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology 2019; 100:58-66. [PMID: 30292960 DOI: 10.1016/j.psyneuen.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 has been discovered a decade ago and since then drawn a lot of attention. The initially proposed anorexigenic effect was followed by the description of several other involvements such as a role in gastrointestinal motility, glucose homeostasis, cardiovascular functions and thermoregulation giving rise to a pleiotropic action of this peptide. The recent years witnessed mounting evidence on the involvement of nesfatin-1 in emotional processes as well. The present review will describe the peptide's relations to anxiety, depressiveness and stress in animal models and humans and also discuss existing gaps in knowledge in order to stimulate further research.
Collapse
Affiliation(s)
- Elena Weibert
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Kühne SG, Schalla MA, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Rose M, Stengel A. Nesfatin-1 30-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats. Nutrients 2018; 10:nu10121889. [PMID: 30513901 PMCID: PMC6315806 DOI: 10.3390/nu10121889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59—the active core of nesfatin-1—on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (–33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (−62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (−45%, p < 0.01) and the visits of open arms in the elevated zero maze test (−39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.
Collapse
Affiliation(s)
- Stephanie Gladys Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Internal Medicine, Helios Clinic, 78628 Rottweil, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Melissa Long
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Marion Rivalan
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - York Winter
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018; 2:1188-1206. [PMID: 30302423 PMCID: PMC6169466 DOI: 10.1210/js.2018-00246] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of actions were described, including modulation of gastrointestinal functions, glucose and lipid metabolism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive functions. Recent years have witnessed a great increase in our knowledge of these effects and their underlying mechanisms, which will be discussed in the present review. Lastly, gaps in knowledge will be highlighted to foster further studies.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Yurchenko AA, Daetwyler HD, Yudin N, Schnabel RD, Vander Jagt CJ, Soloshenko V, Lhasaranov B, Popov R, Taylor JF, Larkin DM. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci Rep 2018; 8:12984. [PMID: 30154520 PMCID: PMC6113280 DOI: 10.1038/s41598-018-31304-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083, Victoria, Australia
| | - Nikolay Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083, Victoria, Australia
| | | | | | - Ruslan Popov
- Yakutian Research Institute of Agriculture, 677001, Yakutsk, Russia
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090, Novosibirsk, Russia.
- Royal Veterinary College, University of London, NW01 0TU, London, UK.
| |
Collapse
|
34
|
Wei Y, Li J, Wang H, Wang G. NUCB2/nesfatin-1: Expression and functions in the regulation of emotion and stress. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:221-227. [PMID: 28963067 DOI: 10.1016/j.pnpbp.2017.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/06/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Nesfatin-1, a food-intake inhibiting factor processed from nucleobindin 2 (NUCB2), was originally identified by the Oh-I research group. The initial functional studies on NUCB2/nesfatin-1 were mainly focused on its properties of appetite regulation. As is well known, emotional state has an interactional relationship with food intake, and difficulties in regulating emotion and stress have a great influence on appetite and body weight. Some anorexigenic or orexigenic neurotransmitters also play a role in the adjustment of emotion and stress responses in addition to their actions on the homeostatic regulation of food intake, including neuropeptide Y (NPY), melanocyte stimulating hormone (MSH), corticotropin-releasing factor (CRF), and ghrelin. Furthermore, NUCB2/nesfatin-1 immunoreactive neurons were detected extensively in brain areas involved in emotion and stress regulation, such as the hippocampus, hypothalamus, amygdala, and prefrontal cortex (PFC). These data suggest that NUCB2/nesfatin-1 might also have effects on affective states; therefore, many studies were carried out researching the functions of NUCB2/nesfatin-1 in emotion regulation. An increasing body of evidence has been published to elucidate the stress-related activation of NUCB2/nesfatin-1 neurons and alteration of NUCB2/nesfatin-1 concentrations, as well as the behavioral changes induced by the administration of NUCB2/nesfatin-1. In the present review, we summarized current data focusing on the association between NUCB2/nesfatin-1, stress, and psychiatric disorders to elucidate the functions of NUCB2/nesfatin-1 in emotion regulation.
Collapse
Affiliation(s)
- Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Jiangbo Li
- Department of Clinical Psychology, The Second People's Hospital Of Wuhu, Duchun Road, Wuhu 241000, Anhui, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
35
|
Dore R, Levata L, Gachkar S, Jöhren O, Mittag J, Lehnert H, Schulz C. The thermogenic effect of nesfatin-1 requires recruitment of the melanocortin system. J Endocrinol 2017; 235:111-122. [PMID: 28851749 DOI: 10.1530/joe-17-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Sogol Gachkar
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of BrainBehavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Variations in leptin, nesfatin-1 and irisin levels induced by aerobic exercise in young trained and untrained male subjects. Biol Sport 2017; 34:339-344. [PMID: 29472736 PMCID: PMC5819477 DOI: 10.5114/biolsport.2017.69821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
The aims of this study were to investigate the impacts of acute aerobic exercise on circulating levels of hormones associated with energy metabolism, namely leptin, nesfatin-1 and irisin, in trained and untrained male subjects and to determine whether the timing of the exercise (i.e. morning or night) amplified these impacts. Thirty trained (19.2±0.7 years) and 30 untrained (19.5±0.6 years) male subjects performed two aerobic running exercises (3 days between tests) to 64-76% of the subjects' maximal heart rate for about 30 min. Pre- and post-exercise venous blood samples were taken and analysed for leptin, nesfatin-1 and irisin using enzyme-linked immunosorbent assay (ELISA). Paired samples and independent samples t-tests were used to analyse data. Irisin levels increased in all the subjects (p<0.001). In both groups, nesfatin-1 levels increased significantly after the night-time exercise (p<0.05). Importantly, leptin and nesfatin-1 levels varied among the trained and untrained groups: Both leptin and nesfatin-1 levels increased in 4 (13%) and 12 (40%) subjects, respectively, after the morning exercises, and they increased in 9 (30%) and 10 (33%) subjects, respectively, after the night-time exercise. They decreased in 5 (16%) and 7 (23%) subjects, respectively, after the morning exercise and in 6 (20%) and 3 (10%) subjects, respectively, after the night-time exercise. Exercise may result in increased energy consumption by altering irisin levels. However, due to variations among individuals, increasing leptin and nesfatin-1 levels by reducing food intake may not be applicable.
Collapse
|
37
|
Gawli K, Ramesh N, Unniappan S. Nesfatin-1-like peptide is a novel metabolic factor that suppresses feeding, and regulates whole-body energy homeostasis in male Wistar rats. PLoS One 2017; 12:e0178329. [PMID: 28542568 PMCID: PMC5444818 DOI: 10.1371/journal.pone.0178329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleobindin-1 has high sequence similarity to nucleobindin-2, which encodes the anorectic and metabolic peptide, nesfatin-1. We previously reported a nesfatin-1-like peptide (NLP), anorectic in fish and insulinotropic in mice islet beta-like cells. The main objective of this research was to determine whether NLP is a metabolic regulator in male Wistar rats. A single intraperitoneal (IP) injection of NLP (100 μg/kg BW) decreased food intake and increased ambulatory movement, without causing any change in total activity or energy expenditure when compared to saline-treated rats. Continuous subcutaneous infusion of NLP (100 μg/kg BW) using osmotic mini-pumps for 7 days caused a reduction in food intake on days 3 and 4. Similarly, water intake was also reduced for two days (days 3 and 4) with the effect being observed during the dark phase. This was accompanied by an increased RER and energy expenditure. However, decreased whole-body fat oxidation, and total activity were observed during the long-term treatment (7 days). Body weight gain was not significantly different between control and NLP infused rats. The expression of mRNAs encoding adiponectin, resistin, ghrelin, cholecystokinin and uncoupling protein 1 (UCP1) were significantly upregulated, while leptin and peptide YY mRNA expression was downregulated in NLP-treated rats. These findings indicate that administration of NLP at 100 μg/kg BW reduces food intake and modulates whole body energy balance. In summary, NLP is a novel metabolic peptide in rats.
Collapse
Affiliation(s)
- Kavishankar Gawli
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Naresh Ramesh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
38
|
Yuan JH, Chen X, Dong J, Zhang D, Song K, Zhang Y, Wu GB, Hu XH, Jiang ZY, Chen P. Nesfatin-1 in the Lateral Parabrachial Nucleus Inhibits Food Intake, Modulates Excitability of Glucosensing Neurons, and Enhances UCP1 Expression in Brown Adipose Tissue. Front Physiol 2017; 8:235. [PMID: 28484396 PMCID: PMC5401881 DOI: 10.3389/fphys.2017.00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Abstract
Nesfatin-1, an 82-amino acid neuropeptide, has been shown to induce anorexia and energy expenditure. Food intake is decreased in ad libitum-fed rats following injections of nesfatin-1 into the lateral, third, or fourth ventricles of the brain. Although the lateral parabrachial nucleus (LPBN) is a key regulator of feeding behavior and thermogenesis, the role of nesfatin-1 in this structure has not yet been delineated. We found that intra-LPBN microinjections of nesfatin-1 significantly reduced nocturnal cumulative food intake and average meal sizes without affecting meal numbers in rats. Because glucose sensitive neurons are involved in glucoprivic feeding and glucose homeostasis, we examined the effect of nesfatin-1 on the excitability of LPBN glucosensing neurons. In vivo electrophysiological recordings from LPBN glucose sensitive neurons showed that nesfatin-1 (1.5 × 10-8 M) excited most of the glucose-inhibited neurons. Chronic administration of nesfatin-1 into the LPBN of rats reduced body weight gain and enhanced the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) over a 10-day period. Furthermore, the effects of nesfatin-1 on food intake, body weight, and BAT were attenuated by treatment with the melanocortin antagonist SHU9119. These results demonstrate that nesfatin-1 in LPBN inhibited food intake, modulated excitability of glucosensing neurons and enhanced UCP1 expression in BAT via the melanocortin system.
Collapse
Affiliation(s)
- Jun-hua Yuan
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi Chen
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Di Zhang
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Kun Song
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Yue Zhang
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Guang-bo Wu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi-hao Hu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Zheng-yao Jiang
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, Qingdao UniversityQingdao, China
| |
Collapse
|
39
|
Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-O M, Yada T. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Sci Rep 2017; 7:45819. [PMID: 28374855 PMCID: PMC5379189 DOI: 10.1038/srep45819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21’s anorexigenic effect and the systemic energy state supporting it are unclear. We explored the target neuron and fed/fasted state dependence of FGF21’s anorexigenic action. Intracerebroventricular (ICV) injection of FGF21 markedly suppressed food intake in fed mice with elevated blood glucose. FGF21 induced c-Fos expression preferentially in hypothalamic paraventricular nucleus (PVN), and increased mRNA expression selectively for nucleobindin 2/nesfatin-1 (NUCB2/Nesf-1). FGF21 at elevated glucose increased [Ca2+]i in PVN NUCB2/Nesf-1 neurons. FGF21 failed to suppress food intake in PVN-preferential Sim1-Nucb2-KO mice. These findings reveal that FGF21, assisted by elevated glucose, activates PVN NUCB2/Nesf-1 neurons to suppress feeding under fed states, serving as the glycemia-monitoring messenger of liver-hypothalamic network for integrative regulation of energy and glucose metabolism.
Collapse
Affiliation(s)
- Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zhang Boyang
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kumari Parmila
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zesemdorj Otgon-Uul
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.,Metabolic and Obese Research Institute, Maebashi, Gunma 371-0037, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
40
|
Goebel-Stengel M, Stengel A. Role of Brain NUCB2/nesfatin-1 in the Stress-induced Modulation of Gastrointestinal Functions. Curr Neuropharmacol 2017; 14:882-891. [PMID: 27281021 PMCID: PMC5333592 DOI: 10.2174/1570159x14666160601153202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Background Nucleobindin2 (NUCB2)/nesfatin-1 plays a well-established role in homeostatic functions associated with food intake and stress integration. Aim This review focusses on NUCB2/nesfatin-1’s central effects on gastrointestinal functions and will summarize the effects on food intake, motility and secretion with focus on the upper gastrointestinal tract. Results We will highlight the stressors that influence brain NUCB2/nesfatin-1 expression and discuss functional implications. In addition to traditional acute psychological and physical stressors such as restraint stress and abdominal surgery we will look at immunological, visceral and metabolic stressors as well as a chronic combination stress model that have been shown to affect NUCB2/nesfatin-1 signaling and describe associated functional consequences.
Collapse
Affiliation(s)
| | - Andreas Stengel
- First Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
41
|
Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017; 232:R45-R65. [PMID: 27754932 DOI: 10.1530/joe-16-0361] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1 peptide expression in reward-related areas suggests that nesfatin-1 might also be involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over the last years, other important functions of nesfatin-1 have been discovered, many of them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis. Nesfatin-1 is not only affecting these physiological processes but also the alterations of the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions at the level of cardiovascular and digestive systems, as well as plays a role in stress response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1 research, a putative receptor has not been identified and furthermore potentially distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To tackle these open questions will be the major objectives of future research to broaden our knowledge on NUCB2/nesfatin-1.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
42
|
Abstract
Nesfatin-1, an 82 amino acid gastric peptide, is involved in regulation of food uptake and in multiple metabolic activities. Whether nesfatin-1 modulates the differentiation and lipid metabolism of brown adipocytes remains unknown. In the present study, we found that nesfatin-1 mRNA and protein were detectable in isolated brown adipocytes and gradually decreased during differentiation (95% CI 0.6057 to 1.034, p = 0.0001). The decrease in nesfatin-1 was associated with a significant reduction in p-S6. Exposure to nesfatin-1 promoted differentiation of brown adipocytes as revealed by a significant increase in UCP1 mRNA (p = 0.03) and lipolysis-related ATGL mRNA (p = 0.04). Nesfatin-1 attenuated phosphorylation of S6K and S6 during brown adipocyte differentiation. Activation of mTOR by leucine or deletion of TSC1 decreased expression of brown adipocyte-related genes UCP1, UCP3, PGC1α and PRDM16, as well as COX8B and ATP5B. Both leucine and TSC1 deletion blocked nesfatin-1-induced up-regulation of UCP1, PGC1α, COX8B and ATP5B in differentiated brown adipocytes. In conclusion, nesfatin-1 promotes the differentiation of brown adipocytes likely through the mTOR dependent mechanism.
Collapse
|
43
|
Prinz P, Stengel A. Expression and regulation of peripheral NUCB2/nesfatin-1. Curr Opin Pharmacol 2016; 31:25-30. [PMID: 27589697 DOI: 10.1016/j.coph.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
Nesfatin-1, an 82 amino acid peptide was discovered in 2006 in the rat hypothalamus and described as a centrally acting anorexigenic peptide. Besides its central expression and actions, NUCB2/nesfatin-1 has been subsequently described to be predominantly expressed in the periphery and to exert several peripheral effects. The current review focuses on the expression sites of NUCB2/nesfatin-1 in peripheral tissues of different species and its regulation by nutrition, body weight and various other parameters such as fetal development and sex.
Collapse
Affiliation(s)
- Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
44
|
Erek Toprak A, Ozlu E, Uzuncakmak TK, Yalcınkaya E, Sogut S, Karadag AS. Neutrophil/Lymphocyte Ratio, Serum Endocan, and Nesfatin-1 Levels in Patients with Psoriasis Vulgaris Undergoing Phototherapy Treatment. Med Sci Monit 2016; 22:1232-7. [PMID: 27070789 PMCID: PMC4831300 DOI: 10.12659/msm.898240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Psoriasis is an autoimmune, inflammatory, and chronic disease. Recent studies have evaluated serum endocan and nesfatin-1 levels in patients with inflammatory disorders. The neutrophil-to-lymphocyte ratio (NLR) is an inflammatory marker currently used in many diseases. The aim of the present study was to evaluate NLR, serum endocan, and nesfatin-1 levels in psoriasis vulgaris before and after narrow-band ultraviolet B (NB-UVB) phototherapy treatment and compared to healthy controls. Material/Methods This study was conducted on a total of 88 cases, 39 of which had psoriasis vulgaris and 49 were healthy volunteers. Thirty-nine psoriasis vulgaris patients underwent NB-UVB phototherapy treatment for 3 months. NLR, serum endocan, and nesfatin-1 levels were measured in all psoriasis patients before and after NB-UVB phototherapy and in the control group. Results Compared with the control group, neutrophil count and NLR were significantly higher (p<0.001) in psoriasis patients before NB-UVB phototherapy. Serum endocan levels were significantly correlated with disease activity before treatment. There was no significant difference in NLR, serum endocan, and nesfatin-1 levels in psoriasis patients before and after NB-UVB phototherapy (p>0.05). Conclusions The current study shows that NLR was higher in psoriasis vulgaris patients when compared with the control group, whereas serum endocan and nesfatin-1 levels were not significantly different. In addition, NB-UVB phototherapy did not affect NLR, serum endocan, or nesfatin-1 levels. Further larger-scale studies are required on this subject.
Collapse
Affiliation(s)
- Aybala Erek Toprak
- Department of Biochemistry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Emin Ozlu
- Department of Dermatology, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Tugba Kevser Uzuncakmak
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Emre Yalcınkaya
- Department of Biochemistry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Sadık Sogut
- Department of Biochemistry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Ayşe Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
45
|
Feijóo-Bandín S, Rodríguez-Penas D, García-Rúa V, Mosquera-Leal A, González-Juanatey JR, Lago F. Nesfatin-1: a new energy-regulating peptide with pleiotropic functions. Implications at cardiovascular level. Endocrine 2016; 52:11-29. [PMID: 26662184 DOI: 10.1007/s12020-015-0819-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is a new energy-regulating peptide widely expressed at both central and peripheral tissues with pleiotropic effects. In the last years, the study of nesfatin-1 actions and its possible implication in the development of different diseases has created a great interest among the scientific community. In this review, we will summarize nesfatin-1 main functions, focusing on its cardiovascular implications.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain.
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Vanessa García-Rúa
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Ana Mosquera-Leal
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit of the Institute of Biomedical Research (IDIS) of Santiago de Compstela, and Department of Cardiology of the University Clinical Hospital of Santiago de Compostela, 15706, Santiago De Compostela, Spain
| |
Collapse
|
46
|
Shimizu H, Tanaka M, Osaki A. Transgenic mice overexpressing nesfatin/nucleobindin-2 are susceptible to high-fat diet-induced obesity. Nutr Diabetes 2016; 6:e201. [PMID: 26950482 PMCID: PMC4817075 DOI: 10.1038/nutd.2015.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 11/15/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Nesfatin/Nucleobindin-2 (Nesf/NUCB2), a precursor of nesfatin-1, an anorexigenic protein, is ubiquitously expressed in peripheral tissues in addition to the hypothalamus. However, the role of intracellular Nesf/NUCB2 has not been established in the periphery. METHODS Nesf/NUCB2-transgenic (Tg) mice were generated, and chronological changes of body weight and daily food intake were measured in Nesf/NUCB2-Tg mice fed normal laboratory chow or 45% high-fat diet (HFD). In addition, changes of metabolic markers were evaluated in those mice. RESULTS No differences were observed in daily food intake and body weight between Nesf/NUCB2-Tg mice (n=11) and their non-Tg littermates (n=11) fed normal chow. Nesf/NUCB2-Tg mice showed increased mRNA expression of oxytocin and corticotropin-releasing hormone and decreased mRNA expression of cocaine- and amphetamine-related transcript in the hypothalamus. Nesf/NUCB2-Tg mice fed 45% HFD (n=6) showed significantly higher increase in body weight than their non-Tg littermates fed the same diet (n=8); however, no difference was observed in daily food intake between these two groups. Further, Nesf/NUCB2-Tg mice fed 45% HFD showed a significant increase in the weight of the liver, subcutaneous fat, and brown adipose tissue and decrease in the expression of uncoupling protein-1 in the subcutaneous fat. Blood glucose levels of Nesf/NUCB2-Tg mice fed 45% HFD were not different from those of their non-Tg littermates fed the same diet. Insulin levels of these Tg mice were significantly higher than those of their non-Tg littermates. Histological analysis showed marked fat deposition in the hepatocytes surrounding the hepatic central veins in Nesf/NUCB2-Tg mice fed 45% HFD. CONCLUSIONS Overexpression of Nesf/NUCB2 did not change food intake, but increased body weight only in Nesf/NUCB2-Tg mice fed HFD. The results of this study indicate that Nesf/NUCB2 was involved in the development of insulin resistance and fat deposition in the liver, independent of the modulation of energy intake.
Collapse
Affiliation(s)
- H Shimizu
- Department of Diabetes and Endocrinology, International University of Health and Welfare (IUHW) Hospital, Nasushiobara, Japan
| | - M Tanaka
- Center for Medical Science, IUHW, Otawara, Japan
| | - A Osaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
47
|
Yin Y, Li Z, Gao L, Li Y, Zhao J, Zhang W. AMPK-dependent modulation of hepatic lipid metabolism by nesfatin-1. Mol Cell Endocrinol 2015; 417:20-6. [PMID: 26363221 DOI: 10.1016/j.mce.2015.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 01/20/2023]
Abstract
The aim of this study was to characterize the mechanism by which peripheral nesfatin-1 regulates hepatic lipid metabolism. Continuous peripheral infusion of nesfatin-1 reduced adiposity and plasma levels of triglyceride and cholesterol. In mice fed high fat diet, peripheral nesfatin-1 significantly decreased hepatic steatosis measured by triglyceride content and oil red staining area and diameter. These alterations were associated with a significant reduction in lipogenesis-related transcriptional factors PPARγ and SREBP1, as well as rate-limited enzyme genes such as acaca, fasn, gpam, dgat1 and dgat2. In primary hepatocytes, nesfatin-1 inhibited both basal and oleic acid stimulated triglyceride accumulation, which was accompanied by a decrement in lipogenesis-related genes and an increase in β-oxidation-related genes. In cultured hepatocytes, nesfatin-1 increased levels of AMPK phosphorylation. Inhibition of AMPK by compound C blocked the reduction of triglyceride content elicited by nesfatin-1. Our studies demonstrate that nesfatin-1 attenuates lipid accumulation in hepatocytes by an AMPK-dependent mechanism.
Collapse
Affiliation(s)
- Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziru Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ling Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA.
| |
Collapse
|
48
|
Prinz P, Teuffel P, Lembke V, Kobelt P, Goebel-Stengel M, Hofmann T, Rose M, Klapp BF, Stengel A. Nesfatin-130-59 Injected Intracerebroventricularly Differentially Affects Food Intake Microstructure in Rats Under Normal Weight and Diet-Induced Obese Conditions. Front Neurosci 2015; 9:422. [PMID: 26635512 PMCID: PMC4655236 DOI: 10.3389/fnins.2015.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
Nesfatin-1 is well-established to induce an anorexigenic effect. Recently, nesfatin-130−59, was identified as active core of full length nesfatin-11−82 in mice, while its role in rats remains unclear. Therefore, we investigated the effects of nesfatin-130−59 injected intracerebroventricularly (icv) on the food intake microstructure in rats. To assess whether the effect was also mediated peripherally we injected nesfatin-130−59 intraperitoneally (ip). Since obesity affects the signaling of various food intake-regulatory peptides we investigated the effects of nesfatin-130−59 under conditions of diet-induced obesity (DIO). Male Sprague–Dawley rats fed ad libitum with standard diet were icv cannulated and injected with vehicle (5 μl ddH2O) or nesfatin-130−59 at 0.37, 1.1, and 3.3 μg (0.1, 0.3, 0.9 nmol/rat) and the food intake microstructure assessed using a food intake monitoring system. Next, naïve rats were injected ip with vehicle (300 μl saline) or nesfatin-130−59 (8.1, 24.3, 72.9 nmol/kg). Lastly, rats were fed a high fat diet for 10 weeks and those developing DIO were icv cannulated. Nesfatin-1 (0.9 nmol/rat) or vehicle (5 μl ddH2O) was injected icv and the food intake microstructure assessed. In rats fed standard diet, nesfatin-130−59 caused a dose-dependent reduction of dark phase food intake reaching significance at 0.9 nmol/rat in the period of 4–8 h post injection (−29%) with the strongest reduction during the fifth hour (−75%), an effect detectable for 24 h (−12%, p < 0.05 vs. vehicle). The anorexigenic effect of nesfatin-130−59 was due to a reduction in meal size (−44%, p < 0.05), while meal frequency was not altered compared to vehicle. In contrast to icv injection, nesfatin-130−59 injected ip in up to 30-fold higher doses did not alter food intake. In DIO rats fed high fat diet, nesfatin-130−59 injected icv reduced food intake in the third hour post injection (−71%), an effect due to a reduced meal frequency (−27%, p < 0.05), while meal size was not altered. Taken together, nesfatin-130−59 is the active core of nesfatin-11−82 and acts centrally to reduce food intake in rats. The anorexigenic effect depends on the metabolic condition with increased satiation (reduction in meal size) under normal weight conditions, while in DIO rats satiety (reduction in meal frequency) is induced.
Collapse
Affiliation(s)
- Philip Prinz
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Pauline Teuffel
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Vanessa Lembke
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Peter Kobelt
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Miriam Goebel-Stengel
- Department of Internal Medicine and Institute of Neurogastroenterology, Martin-Luther-Krankenhaus Berlin, Germany
| | - Tobias Hofmann
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Rose
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Burghard F Klapp
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| | - Andreas Stengel
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
49
|
Tanida M, Gotoh H, Yamamoto N, Wang M, Kuda Y, Kurata Y, Mori M, Shibamoto T. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling. Diabetes 2015; 64:3725-36. [PMID: 26310564 DOI: 10.2337/db15-0282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022]
Abstract
Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Yamamoto
- College of Pharmacology, Hokuriku University, Kanazawa, Ishikawa, Japan
| | - Mofei Wang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Masatomo Mori
- Kitakanto Molecular Novel Research Institute for Obesity and Metabolism, Midori City, Gunma, Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
50
|
Mirzaei K, Hossein-nezhad A, Keshavarz SA, Koohdani F, Eshraghian MR, Saboor-Yaraghi AA, Hosseini S, Chamari M, Zareei M, Djalali M. Association of nesfatin-1 level with body composition, dietary intake and resting metabolic rate in obese and morbid obese subjects. Diabetes Metab Syndr 2015; 9:292-298. [PMID: 25470645 DOI: 10.1016/j.dsx.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS Nesfatin-1 identified neuroendocrine peptide is involved in regulation of homeostasis via modulation of metabolism, energy homeostasis and food intake. We aimed to investigate the associations of circulating nesfatin-1 level with food intake, body composition and resting metabolic rate (RMR) and also examine the correlation between circulating peroxisome proliferator-activated receptor gamma (PPARγ) and nesfatin-1 levels in obese and morbid obese subjects. METHODS A total of 96 obese subjects (including 18 morbid obese subjects) were participated in the current cross-sectional study. We assessed the body composition with the use of Body Composition Analyzer. RMR was measured by means of the MetaCheck™, an instrument designed to measure RMR using indirect calorimetry. All baseline blood samples were obtained following an overnight fasting. Plasma concentrations of nesfatin-1 and circulating PPARγ were measured with the use of an ELISA method. Statistical analyses were performed using SPSS. RESULTS We found significant associations between fat percent and circulating nesfatin-1 in obese and morbid obese subjects. There was main association between circulating nesfatin-1 and PPARγ concentration in obese subjects and it was more strong association in morbid obese participants. There was marginally significant differences between percent predicted RMR between different categorized nesfatin-1 levels. There were also higher intakes of calorie, carbohydrate and protein in obese group who had lower concentration of nesfatin-1. CONCLUSIONS Our data indicated the fat percent as main determinant factor in circulating nesfatin-1 level. It appears nesfatin-1 and PPARγ might be concurrently involved in adipogenesis pathway.
Collapse
Affiliation(s)
- Khadijeh Mirzaei
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Hossein-nezhad
- Tehran University of Medical Sciences, Tehran, Iran; Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, MA, United States
| | - Seyed Ali Keshavarz
- Clinical Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Statistics, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Clinical Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Chamari
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Zareei
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Cellular and Molecular Nutrition Department, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|