1
|
Bu T, Kong X, Ren Y, Zhang Z, Hu W, Natallia K, Cai M, Sun P, Wu W, Yang K. Effect of Flammulina velutipes polysaccharidees on the quality and digestibility of fresh wet rice noodles: A study perspective from physicochemical and postprandial glucose homeostasis in vivo. Food Chem 2025; 484:144335. [PMID: 40273872 DOI: 10.1016/j.foodchem.2025.144335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/17/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
This study investigated the effects of alkali-extracted Flammulina velutipes polysaccharides (AEFP) on the physicochemical properties, starch digestibility, and glycemic response of fresh wet rice noodles (WRN). Adding 0.5 % - 4 % AEFP reduced the breaking rate, enhanced water absorption, and improved textural properties (e.g., elasticity, chewiness). AEFP decreased starch digestion rates in vitro, increasing resistant starch (22.27 %) whereas reducing rapidly digestible starch (19.2 %) and the predicted glycemic index (from 90.37 to 80.07). Structural analyses indicated that AEFP enhanced starch-polysaccharide interactions, inhibited starch retrogradation, and stabilized moisture distribution. In vivo studies in mice demonstrated that 4 % AEFP-WRN significantly reduced postprandial blood glucose levels (19.68 % reduction), likely due to enhanced satiety by increasing plasma glucagon-like peptide-1 and peptide tyrosine-tyrosine levels and delayed gastrointestinal motility. These findings reveal AEFP as a dual-action hydrocolloid capable of promoting noodle quality and modulating glycemic response.
Collapse
Affiliation(s)
- Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Xiao Kong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Yuting Ren
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiwei Hu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Komarova Natallia
- Scientific-Practical Center for Foodstuffs, National Academy of Sciences of Belarus, Minsk 220037, Belarus
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China.
| |
Collapse
|
2
|
Costa RJS, Gaskell SK, Henningsen K, Jeacocke NA, Martinez IG, Mika A, Scheer V, Scrivin R, Snipe RMJ, Wallett AM, Young P. Sports Dietitians Australia and Ultra Sports Science Foundation Joint Position Statement: A Practitioner Guide to the Prevention and Management of Exercise-Associated Gastrointestinal Perturbations and Symptoms. Sports Med 2025; 55:1097-1134. [PMID: 40195264 DOI: 10.1007/s40279-025-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
It is now well-established that exercise can disturb various aspects of gastrointestinal integrity and function. The pathophysiology of these perturbations, termed "exercise-induced gastrointestinal syndrome (EIGS)," can lead to exercise-associated gastrointestinal symptom (Ex-GIS) inconveniences. EIGS outcomes can impact physical performance and may lead to clinical manifestation warranting medical intervention, as well as systemic responses leading to fatality. Athlete support practitioners seek prevention and management strategies for EIGS and Ex-GIS. This current position statement aimed to critically appraise the role of EIGS and Ex-GIS prevention and management strategies to inform effective evidence-based practice and establish translational application. Intervention strategies with mostly consistent beneficial outcomes include macronutrient (i.e., carbohydrate and protein) intake and euhydration before and during exercise, dietary manipulation of fermentable oligo-, di-, and mono-saccharides and polyols (FODMAP), and gut training or feeding tolerance adjustments for the specific management of Ex-GIS from gastrointestinal functional issues. Strategies that may provide benefit and/or promising outcomes, but warrant further explorations include heat mitigating strategies and certain nutritional supplementation (i.e., prebiotics and phenols). Interventions that have reported negative outcomes included low-carbohydrate high-fat diets, probiotic supplementation, pharmaceutical administration, and feeding intolerances. Owing to individual variability in EIGS and Ex-GIS outcomes, athletes suffering from EIGS and/or support practitioners that guide athletes through managing EIGS, are encouraged to undertake gastrointestinal assessment during exercise to identify underlying causal and exacerbation factor/s, and adopt evidence-based strategies that provide individualized beneficial outcomes. In addition, abstaining from prevention and management strategies that present unclear and/or adverse outcomes is recommended.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| | - Stephanie K Gaskell
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Kayla Henningsen
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | | | - Isabel G Martinez
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Alice Mika
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Rachel Scrivin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - Rhiannon M J Snipe
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Pascale Young
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|
3
|
Wilbrink JA, van Avesaat M, Nienhuijs SW, Stronkhorst A, Masclee AAM. Changes in gastrointestinal motility and gut hormone secretion after Roux-en-Y gastric bypass and sleeve gastrectomy for individuals with severe obesity. Clin Obes 2025; 15:e12721. [PMID: 39727180 PMCID: PMC11907097 DOI: 10.1111/cob.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Bariatric surgery is very effective in long-term weight management. The present study was undertaken to investigate the short-term effects of sleeve gastrectomy (SG) and of Roux-en-Y gastric bypass (RYGB) on (a) gastrointestinal (GI) motility, that is gastric emptying and oro-cecal transit time and (b) secretion of regulatory gut peptides and (c) their interrelationship. METHODS Prospective single-centre study in which we assessed gastric emptying, oro-cecal transit time and gut peptide release in 28 severely obese individuals before and 2, respectively, 12 months after bariatric surgery (either SG or RYGB). Plasma PYY, GLP-1, ghrelin, insulin and glucose levels were measured fasting and after intake of a solid standard 459 kcal meal at each occasion. Gastric emptying was measured by 13 C octanoic acid breath testing, and oro-cecal transit time was measured by lactulose H2 breath testing. Satiation was measured using VAS scores. RESULTS After both RYGB and SG gastric emptying become significantly accelerated, and postprandial release of the distal gut peptides GLP-1 and PYY becomes significantly increased, pointing to ileal brake activation. Oro-cecal transit time becomes significantly accelerated after SG but not after RYGB. No significant correlations were observed between changes in distal gut peptide release, changes in GI motility and clinical parameters. CONCLUSION Both SG and RYGB resulted in significant weight loss and significantly affected GI motility and PYY and GLP-1 secretion. Subtle differences between both procedures were found in effect on oro-cecal transit time and patterns of peptide secretion.
Collapse
Affiliation(s)
- Jennifer A. Wilbrink
- Division of Gastroenterology‐HepatologyMaastricht University Medical Center, Maastricht, The Netherlands. NUTRIM—School for Nutrition and Translational Research in MetabolismMaastrichtthe Netherlands
- Department of Gastroenterology‐HepatologyCatharina HospitalEindhoventhe Netherlands
- Department of Gastroenterology‐HepatologyZuyderland Medical Centre Sittard‐GeleenBG Geleenthe Netherlands
| | - Mark van Avesaat
- Division of Gastroenterology‐HepatologyMaastricht University Medical Center, Maastricht, The Netherlands. NUTRIM—School for Nutrition and Translational Research in MetabolismMaastrichtthe Netherlands
- Department of Gastroenterology‐HepatologyZuyderland Medical Centre Sittard‐GeleenBG Geleenthe Netherlands
| | | | - Arnold Stronkhorst
- Department of Gastroenterology‐HepatologyCatharina HospitalEindhoventhe Netherlands
| | - Ad A. M. Masclee
- Division of Gastroenterology‐HepatologyMaastricht University Medical Center, Maastricht, The Netherlands. NUTRIM—School for Nutrition and Translational Research in MetabolismMaastrichtthe Netherlands
| |
Collapse
|
4
|
Soderstrom AJ, Wang LF, Patterson R, Beltranena E, Zijlstra RT. Feeding a Multi-Enzyme Blend to Enhance the Nutrient Digestibility of Wheat-Canola Expeller Diets in Ileal-Cannulated Weaned Pigs. Animals (Basel) 2024; 14:1644. [PMID: 38891694 PMCID: PMC11170982 DOI: 10.3390/ani14111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Canola expeller (CE) contains ~200 g/kg residual oil, but also fiber that impairs nutrient digestibility in weaned pigs. To study if feed enzymes increase digestibility, six diets containing either the basal or two CE samples mixed in at 250 g/kg (CE-A or CE-B) were formulated with or without a multi-enzyme blend containing cellulase, xylanase, glucanase, amylase, protease, invertase, and pectinase. The basal diet containing 620 g/kg wheat and 150 g/kg barley served as control. Twelve ileal-cannulated barrows (9-15 kg) were fed the six diets in a replicated 6 (pigs) × 3 (periods) Youden square. Ileal digestibility of gross energy and amino acids was 5% greater for basal than CE diets without differences between CE samples. Diet energy values were 4% greater for CE than basal diets due to residual oil in CE. Inclusion of the multi-enzyme blend increased total tract digestibility of energy of the basal but not CE diets by 2%. Net energy value was greater for CE-A than CE-B because CE-A contained more residual oil. In conclusion, feeding 250 g/kg CE increased diet energy values; thus, CE can substitute added fat in weaned pig diets. Feeding the multi-enzyme blend increased the energy digestibility of wheat and barley-based diets fed to weaned pigs. However, research is needed to identify enzyme combinations that increase the nutrient digestibility of CE.
Collapse
Affiliation(s)
- A. Janine Soderstrom
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada (E.B.)
| | - Li Fang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada (E.B.)
| | | | - Eduardo Beltranena
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada (E.B.)
| | - Ruurd T. Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada (E.B.)
| |
Collapse
|
5
|
Fitzgerald DM, Cash CM, Dudley KJ, Sibthorpe PEM, Sillence MN, de Laat MA. Expression of the GCG gene and secretion of active glucagon-like peptide-1 varies along the length of intestinal tract in horses. Equine Vet J 2024; 56:352-360. [PMID: 37853957 DOI: 10.1111/evj.14020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Active glucagon-like peptide-1 (aGLP-1) has been implicated in the pathogenesis of equine insulin dysregulation (ID), but its role is unclear. Cleavage of proglucagon (coded by the GCG gene) produces aGLP-1 in enteral L cells. OBJECTIVES The aim in vivo was to examine the sequence of the exons of GCG in horses with and without ID, where aGLP-1 was higher in the group with ID. The aims in vitro were to identify and quantify the expression of GCG in the equine intestine (as a marker of L cells) and determine intestinal secretion of aGLP-1. STUDY DESIGN Genomic studies were case-control studies. Expression and secretion studies in vitro were cross-sectional. METHODS The GCG gene sequence of the exons was determined using a hybridisation capture protocol. Expression and quantification of GCG in samples of stomach duodenum, jejunum, ileum, caecum and ascending and descending colon was achieved with droplet digital PCR. For secretory studies tissue explants were incubated with 12 mM glucose and aGLP-1 secretion was measured with an ELISA. RESULTS Although the median [IQR] post-prandial aGLP-1 concentrations were higher (p = 0.03) in animals with ID (10.2 [8.79-15.5]), compared with healthy animals (8.47 [6.12-11.7]), there was 100% pairwise identity of the exons of the GCG sequence for the cohort. The mRNA concentrations of GCG and secretion of aGLP-1 differed (p < 0.001) throughout the intestine. MAIN LIMITATIONS Only the exons of the GCG gene were sequenced and breeds were not compared. The horses used for the study in vitro were not assessed for ID and different horses were used for the small, and large, intestinal studies. CONCLUSIONS Differences in post-prandial aGLP-1 concentration were not due to a variant in the exons of the GCG gene sequence in this cohort. Both the large and small intestine are sites of GLP-1 secretion.
Collapse
Affiliation(s)
- Danielle M Fitzgerald
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christina M Cash
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Dudley
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Poppy E M Sibthorpe
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Martin N Sillence
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Melody A de Laat
- Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Li RJW, Barros DR, Kuah R, Lim YM, Gao A, Beaudry JL, Zhang SY, Lam TKT. Small intestinal CaSR-dependent and CaSR-independent protein sensing regulates feeding and glucose tolerance in rats. Nat Metab 2024; 6:39-49. [PMID: 38167726 DOI: 10.1038/s42255-023-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Daniel R Barros
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Rachel Kuah
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Anna Gao
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Valicente VM, Peng CH, Pacheco KN, Lin L, Kielb EI, Dawoodani E, Abdollahi A, Mattes RD. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv Nutr 2023; 14:718-738. [PMID: 37080461 PMCID: PMC10334162 DOI: 10.1016/j.advnut.2023.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiologic evidence supports a positive association between ultraprocessed food (UPF) consumption and body mass index. This has led to recommendations to avoid UPFs despite very limited evidence establishing causality. Many mechanisms have been proposed, and this review critically aimed to evaluate selected possibilities for specificity, clarity, and consistency related to food choice (i.e., low cost, shelf-life, food packaging, hyperpalatability, and stimulation of hunger/suppression of fullness); food composition (i.e., macronutrients, food texture, added sugar, fat and salt, energy density, low-calorie sweeteners, and additives); and digestive processes (i.e., oral processing/eating rate, gastric emptying time, gastrointestinal transit time, and microbiome). For some purported mechanisms (e.g., fiber content, texture, gastric emptying, and intestinal transit time), data directly contrasting the effects of UPF and non-UPF intake on the indices of appetite, food intake, and adiposity are available and do not support a unique contribution of UPFs. In other instances, data are not available (e.g., microbiome and food additives) or are insufficient (e.g., packaging, food cost, shelf-life, macronutrient intake, and appetite stimulation) to judge the benefits versus the risks of UPF avoidance. There are yet other evoked mechanisms in which the preponderance of evidence indicates ingredients in UPFs actually moderate body weight (e.g., low-calorie sweetener use for weight management; beverage consumption as it dilutes energy density; and higher fat content because it reduces glycemic responses). Because avoidance of UPFs holds potential adverse effects (e.g., reduced diet quality, increased risk of food poisoning, and food wastage), it is imprudent to make recommendations regarding their role in diets before causality and plausible mechanisms have been verified.
Collapse
Affiliation(s)
- Vinicius M Valicente
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Ching-Hsuan Peng
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Kathryn N Pacheco
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Luotao Lin
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Elizabeth I Kielb
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, United States
| | - Elina Dawoodani
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
8
|
Daniel H. Gut physiology meets microbiome science. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:e1. [PMID: 39295899 PMCID: PMC11406389 DOI: 10.1017/gmb.2022.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome has gained high popularity and almost every disease has meanwhile been linked to alterations in microbiome composition. Typically assessed via stool samples, the microbiome displays a huge diversity with a multitude of environmental parameters already identified as contributing to its character. Despite impressive scientific progress, normal microbiome diversity remains largely unexplained and it is tempting to speculate some of the yet unexplained variance is hidden in normal gut physiology. Although a few genome/phenome-wide associations studies have recently highlighted physiological parameters such as stool frequency, known as contributing to microbiome diversity, there is a large knowledge base from decades of basic research on gut functions that can be explored for possible links to stool features and microbiome characteristics. And, when extrapolating findings from faecal samples to the biology in the intestinal lumen or the mucosal microenvironment, gut anatomy and physiology features need to be considered. Similarly, differences in anatomy and physiology between rodents and humans need attention when discussing findings in animals in relation to human physiology and nutrition.
Collapse
Affiliation(s)
- Hannelore Daniel
- ex. School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| |
Collapse
|
9
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
10
|
McGhee M, Stein H. Short Communication: Preference for Feed, But Not Growth Performance, is Reduced if Hybrid Rye Replaces Corn in Diets for Growing Pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Kong H, Yu L, Li C, Ban X, Gu Z, Li Z. Short-Clustered Maltodextrin Activates Ileal Glucose-Sensing and Induces Glucagon-like Peptide 1 Secretion to Ameliorate Glucose Homeostasis in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12604-12619. [PMID: 36125960 DOI: 10.1021/acs.jafc.2c04978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstructing molecular structure is an effective approach to attenuating glycemic response to starch. Previously, we rearranged α-1,4 and α-1,6-glycosidic bonds in starch molecules to produce short-clustered maltodextrin (SCMD). The present study revealed that SCMD slowly released glucose until the distal ileum. The activated ileal glucose-sensing enabled SCMD to be a potent inducer for glucagon-like peptide-1 (GLP-1). Furthermore, SCMD was found feasible to serve as the dominant dietary carbohydrate to rescue mice from diabetes. Interestingly, a mixture of normal maltodextrin and resistant dextrin (MD+RD), although it caused an attenuated glycemic response similar to that of SCMD, failed to ameliorate glucose homeostasis because it hardly induced GLP-1 secretion. The serum GLP-1 levels seen in MD+RD-fed mice (5.25 ± 1.51 pmol/L) were significantly lower than those seen in SCMD-fed mice (8.25 ± 2.01 pmol/L, p < 0.05). Further investigation revealed that the beneficial effects of SCMD could be abolished by a GLP-1 receptor (GLP-1R) antagonist. These results identify GLP-1R signaling as a critical contributor to SCMD-exerted health benefits and highlight the role of ileal glucose-sensing in designing dietary carbohydrates.
Collapse
Affiliation(s)
- Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
13
|
Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int J Sport Nutr Exerc Metab 2022; 32:387-418. [PMID: 35963615 DOI: 10.1123/ijsnem.2022-0048] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Strenuous exercise is synonymous with disturbing gastrointestinal integrity and function, subsequently prompting systemic immune responses and exercise-associated gastrointestinal symptoms, a condition established as "exercise-induced gastrointestinal syndrome." When exercise stress and aligned exacerbation factors (i.e., extrinsic and intrinsic) are of substantial magnitude, these exercise-associated gastrointestinal perturbations can cause performance decrements and health implications of clinical significance. This potentially explains the exponential growth in exploratory, mechanistic, and interventional research in exercise gastroenterology to understand, accurately measure and interpret, and prevent or attenuate the performance debilitating and health consequences of exercise-induced gastrointestinal syndrome. Considering the recent advancement in exercise gastroenterology research, it has been highlighted that published literature in the area is consistently affected by substantial experimental limitations that may affect the accuracy of translating study outcomes into practical application/s and/or design of future research. This perspective methodological review attempts to highlight these concerns and provides guidance to improve the validity, reliability, and robustness of the next generation of exercise gastroenterology research. These methodological concerns include participant screening and description, exertional and exertional heat stress load, dietary control, hydration status, food and fluid provisions, circadian variation, biological sex differences, comprehensive assessment of established markers of exercise-induced gastrointestinal syndrome, validity of gastrointestinal symptoms assessment tool, and data reporting and presentation. Standardized experimental procedures are needed for the accurate interpretation of research findings, avoiding misinterpreted (e.g., pathological relevance of response magnitude) and overstated conclusions (e.g., clinical and practical relevance of intervention research outcomes), which will support more accurate translation into safe practice guidelines.
Collapse
|
14
|
Zhou S, Han L, Lu K, Qi B, Du X, Liu G, Tang Y, Zhang S, Li Y. Whey protein isolate–phytosterols nanoparticles: Preparation, characterization, and stabilized food-grade pickering emulsions. Food Chem 2022; 384:132486. [DOI: 10.1016/j.foodchem.2022.132486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
15
|
Ge S, Jia R, Liu W, Xie J, Liu M, Cai D, Zheng M, Liu H, Liu J. Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles. Food Chem 2022; 386:132513. [PMID: 35344728 DOI: 10.1016/j.foodchem.2022.132513] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
This study first used adzuki bean seed coat polyphenol (ABSCP) to modify zein and form covalent nanoparticles (ZAP) and used ZAP as an emulsifier to stabilize Pickering emulsion (ZAE). The results showed that the ratio of zein-ABSCP controlled the physicochemical properties of the two compounds. ZAP could be absorbed on the water-oil surface and stabilized ZAE, which presented as a non-Newtonian fluid state with good rheological properties. The addition of ABSCP inhibited lipid oxidation in a dose-dependent manner, as verified through the analysis of accelerated oxidation experiments (50 °C, 20 days). In in vitro gastrointestinal digestion of ZAE showed that free fatty acids (FFA) release gradually decreased with ABSCP concentration increasing. Moreover, ABSCP gave ZAE a strong red-yellow color, which allowed ZAE to be used for specific applications (e.g., natural pigments). Our findings make it feasible to develope functional food and food-grade delivery systems made of protein-plant polyphenols nanoparticles.
Collapse
Affiliation(s)
- Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Rui Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Wei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
16
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Westwater ML, Mancini F, Shapleske J, Serfontein J, Ernst M, Ziauddeen H, Fletcher PC. Dissociable hormonal profiles for psychopathology and stress in anorexia and bulimia nervosa. Psychol Med 2021; 51:2814-2824. [PMID: 32460904 PMCID: PMC8640366 DOI: 10.1017/s0033291720001440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Anorexia nervosa (AN) and bulimia nervosa (BN) are complex psychiatric conditions, in which both psychological and metabolic factors have been implicated. Critically, the experience of stress can precipitate loss-of-control eating in both conditions, suggesting an interplay between mental state and metabolic signaling. However, associations between psychological states, symptoms and metabolic processes in AN and BN have not been examined. METHODS Eighty-five women (n = 22 AN binge/purge subtype, n = 33 BN, n = 30 controls) underwent remote salivary cortisol sampling and a 2-day, inpatient study session to examine the effect of stress on cortisol, gut hormones [acyl-ghrelin, peptide tyrosine tyrosine (PYY) and glucagon-like peptide-1] and food consumption. Participants were randomized to either an acute stress induction or control task on each day, and plasma hormones were serially measured before a naturalistic, ad libitum meal. RESULTS Cortisol-awakening response was augmented in AN but not in BN relative to controls, with body mass index explaining the most variance in post-awakening cortisol (36%). Acute stress increased acyl-ghrelin and PYY in AN compared to controls; however, stress did not alter gut hormone profiles in BN. Instead, a group-by-stress interaction showed nominally reduced cortisol reactivity in BN, but not in AN, compared to controls. Ad libitum consumption was lower in both patient groups and unaffected by stress. CONCLUSIONS Findings extend previous reports of metabolic dysfunction in binge-eating disorders, identifying unique associations across disorders and under stress. Moreover, we observed disrupted homeostatic signaling in AN following psychological stress, which may explain, in part, the maintenance of dysregulated eating in this serious illness.
Collapse
Affiliation(s)
- Margaret L. Westwater
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, CambridgeCB2 0SZ, UK
| | - Flavia Mancini
- Department of Engineering, Computational and Biological Learning Laboratory, University of Cambridge, CambridgeCB2 1PZ, UK
| | - Jane Shapleske
- Adult Eating Disorders Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Jaco Serfontein
- Adult Eating Disorders Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Monique Ernst
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, CambridgeCB2 0SZ, UK
- Adult Eating Disorders Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, CambridgeCB2 0QQ, UK
| | - Paul C. Fletcher
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, CambridgeCB2 0SZ, UK
- Adult Eating Disorders Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, CambridgeCB2 0QQ, UK
| |
Collapse
|
18
|
Gaskell SK, Rauch CE, Costa RJS. Gastrointestinal Assessment and Therapeutic Intervention for the Management of Exercise-Associated Gastrointestinal Symptoms: A Case Series Translational and Professional Practice Approach. Front Physiol 2021; 12:719142. [PMID: 34557109 PMCID: PMC8452991 DOI: 10.3389/fphys.2021.719142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
This translational research case series describes the implementation of a gastrointestinal assessment protocol during exercise (GastroAxEx) to inform individualised therapeutic intervention of endurance athletes affected by exercise-induced gastrointestinal syndrome (EIGS) and associated gastrointestinal symptoms (GIS). A four-phase approach was applied. Phase 1: Clinical assessment and exploring background history of exercise-associated gastrointestinal symptoms. Phase 2: Individual tailored GastroAxEx laboratory simulation designed to mirror exercise stress, highlighted in phase 1, that promotes EIGS and GIS during exercise. Phase 3: Individually programmed therapeutic intervention, based on the outcomes of Phase 2. Phase 4: Monitoring and readjustment of intervention based on outcomes from field testing under training and race conditions. Nine endurance athletes presenting with EIGS, and two control athletes not presenting with EIGS, completed Phase 2. Two athletes experienced significant thermoregulatory strain (peak core temperature attained > 40°C) during the GastroAxEx. Plasma cortisol increased substantially pre- to post-exercise in n = 6/7 (Δ > 500 nmol/L). Plasma I-FABP concentration increased substantially pre- to post-exercise in n = 2/8 (Δ > 1,000 pg/ml). No substantial change was observed in pre- to post-exercise for systemic endotoxin and inflammatory profiles in all athletes. Breath H2 responses showed that orocecal transit time (OCTT) was delayed in n = 5/9 (90-150 min post-exercise) athletes, with the remaining athletes (n = 4/9) showing no H2 turning point by 180 min post-exercise. Severe GIS during exercise was experienced in n = 5/9 athletes, of which n = 2/9 had to dramatically reduce work output or cease exercise. Based on each athlete's identified proposed causal factors of EIGS and GIS during exercise (i.e., n = 9/9 neuroendocrine-gastrointestinal pathway of EIGS), an individualised gastrointestinal therapeutic intervention was programmed and advised, adjusted from a standard EIGS prevention and management template that included established strategies with evidence of attenuating EIGS primary causal pathways, exacerbation factors, and GIS during exercise. All participants reported qualitative data on their progress, which included their previously presenting GIS during exercise, such as nausea and vomiting, either being eliminated or diminished resulting in work output improving (i.e., completing competition and/or not slowing down during training or competition as a result of GIS during exercise). These outcomes suggest GIS during exercise in endurance athletes are predominantly related to gastrointestinal functional and feeding tolerance issues, and not necessarily gastrointestinal integrity and/or systemic issues. GastroAxEx allows for informed identification of potential causal pathway(s) and exacerbation factor(s) of EIGS and GIS during exercise at an individual level, providing a valuable informed individualised therapeutic intervention approach.
Collapse
Affiliation(s)
| | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
19
|
Hydrogel Carbohydrate-Electrolyte Beverage Does Not Improve Glucose Availability, Substrate Oxidation, Gastrointestinal Symptoms or Exercise Performance, Compared With a Concentration and Nutrient-Matched Placebo. Int J Sport Nutr Exerc Metab 2021; 30:25-33. [PMID: 31629348 DOI: 10.1123/ijsnem.2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
The impact of a carbohydrate-electrolyte solution with sodium alginate and pectin for hydrogel formation (CES-HGel), was compared to a standard CES with otherwise matched ingredients (CES-Std), for blood glucose, substrate oxidation, gastrointestinal symptoms (GIS; nausea, belching, bloating, pain, regurgitation, flatulence, urge to defecate, and diarrhea), and exercise performance. Nine trained male endurance runners completed 3 hr of steady-state running (SS) at 60% V˙O2max, consuming 90 g/hr of carbohydrate from CES-HGel or CES-Std (53 g/hr maltodextrin, 37 g/hr fructose, 16% w/v solution) in a randomized crossover design, followed by an incremental time to exhaustion (TTE) test. Blood glucose and substrate oxidation were measured every 30 min during SS and oxidation throughout TTE. Breath hydrogen (H2) was measured every 30 min during exercise and every 15 min for 2 hr postexercise. GIS were recorded every 15 min throughout SS, immediately after and every 15-min post-TTE. No differences in blood glucose (incremental area under the curve [mean ± SD]: CES-HGel 1,100 ± 96 mmol·L-1·150 min-1 and CES-Std 1,076 ± 58 mmol·L-1·150 min-1; p = .266) were observed during SS. There were no differences in substrate oxidation during SS (carbohydrate: p = .650; fat: p = .765) or TTE (carbohydrate: p = .466; fat: p = .633) and no effect of trial on GIS incidence (100% in both trials) or severity (summative rating score: CES-HGel 29.1 ± 32.6 and CES-Std 34.8 ± 34.8; p = .262). Breath hydrogen was not different between trials (p = .347), nor was TTE performance (CES-HGel 722 ± 182 s and CES-Std: 756 ± 187 s; p = .08). In conclusion, sodium alginate and pectin added to a CES consumed during endurance running does not alter the blood glucose responses, carbohydrate malabsorption, substrate oxidation, GIS, or TTE beyond those of a CES with otherwise matched ingredients.
Collapse
|
20
|
Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int J Sport Nutr Exerc Metab 2021; 30:83-98. [PMID: 31891914 DOI: 10.1123/ijsnem.2019-0300] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete's nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.
Collapse
|
21
|
PH van Trijp M, Wilms E, Ríos-Morales M, Masclee AA, Brummer RJ, Witteman BJ, Troost FJ, Hooiveld GJ. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 2021; 114:843-861. [PMID: 34036315 PMCID: PMC8408849 DOI: 10.1093/ajcn/nqab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023] Open
Abstract
Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.
Collapse
Affiliation(s)
- Mara PH van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Melany Ríos-Morales
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ad Am Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Robert Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ben Jm Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands,Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede, The Netherlands
| | - Freddy J Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Wilbrink J, Masclee G, Klaassen T, van Avesaat M, Keszthelyi D, Masclee A. Review on the Regional Effects of Gastrointestinal Luminal Stimulation on Appetite and Energy Intake: (Pre)clinical Observations. Nutrients 2021; 13:nu13051601. [PMID: 34064724 PMCID: PMC8151500 DOI: 10.3390/nu13051601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Macronutrients in the gastrointestinal (GI) lumen are able to activate “intestinal brakes”, feedback mechanisms on proximal GI motility and secretion including appetite and energy intake. In this review, we provide a detailed overview of the current evidence with respect to four questions: (1) are regional differences (duodenum, jejunum, ileum) present in the intestinal luminal nutrient modulation of appetite and energy intake? (2) is this “intestinal brake” effect macronutrient specific? (3) is this “intestinal brake” effect maintained during repetitive activation? (4) can the “intestinal brake” effect be activated via non-caloric tastants? Recent evidence indicates that: (1) regional differences exist in the intestinal modulation of appetite and energy intake with a proximal to distal gradient for inhibition of energy intake: ileum and jejunum > duodenum at low but not at high caloric infusion rates. (2) the “intestinal brake” effect on appetite and energy appears not to be macronutrient specific. At equi-caloric amounts, the inhibition on energy intake and appetite is in the same range for fat, protein and carbohydrate. (3) data on repetitive ileal brake activation are scarce because of the need for prolonged intestinal intubation. During repetitive activation of the ileal brake for up to 4 days, no adaptation was observed but overall the inhibitory effect on energy intake was small. (4) the concept of influencing energy intake by intra-intestinal delivery of non-caloric tastants is intriguing. Among tastants, the bitter compounds appear to be more effective in influencing energy intake. Energy intake decreases modestly after post-oral delivery of bitter tastants or a combination of tastants (bitter, sweet and umami). Intestinal brake activation provides an interesting concept for preventive and therapeutic approaches in weight management strategies.
Collapse
Affiliation(s)
- Jennifer Wilbrink
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Gwen Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Mark van Avesaat
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
| | - Adrian Masclee
- Division of Gastroenterology-Hepatology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (J.W.); (G.M.); (T.K.); (M.v.A.); (D.K.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3875021
| |
Collapse
|
23
|
Ratanpaul V, Zhang D, Williams BA, Diffey S, Black JL, Gidley MJ. Interplay between grain digestion and fibre in relation to gastro-small-intestinal passage rate and feed intake in pigs. Eur J Nutr 2021; 60:4001-4017. [PMID: 33950401 DOI: 10.1007/s00394-021-02567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The combined effects of grain digestibility and dietary fibre on digesta passage rate and satiety in humans are poorly understood. Satiety can be increased through gastric distention, reduced gastric emptying rate and when partially digested nutrients reach the terminal ileum to stimulate peptide release through the ileal/colonic brakes to slow the rate of digesta passage. This study determined the effects of grain digestibility and insoluble fibre on mean retention time (MRT) of digesta from mouth-to-ileum, feed intake (FI), starch digestion to the terminal ileum and faecal short chain fatty acids (SCFA) in a pig model. METHOD Twelve grain-based [milled sorghum (MS), steam-flaked-sorghum, milled wheat, and steam-flaked-wheat (SFW)] diets with different intrinsic rates of starch digestion, assessed by apparent amylase diffusion coefficient (ADC), and fibre from oat hulls (OH) at 0, 5 and 20% of the diet were fed to ileal-cannulated pigs. RESULT MRT was affected by grain-type/processing (P < 0.05) and fibre amount (P < 0.05). An approximate tenfold increase in ADC showed a limited decline in MRT (P = 0.18). OH at 20% increased MRT (P < 0.05) and reduced FI (P < 0.05). Ileal digestibility of starch increased and faecal SCFA concentration decreased with ADC; values for MS being lower (P < 0.001) and higher (P < 0.05), respectively, than for SFW. CONCLUSIONS Lower ileal digestibility of starch, higher faecal SCFA concentration and longer MRT of MS than SFW, suggest the ileal/colonic brakes may be operating. FI appeared to decrease with increasing MRT. MRT increased and intake decreased with grain-based foods/feeds that have low starch digestibility and substantial amounts of insoluble fibre.
Collapse
Affiliation(s)
- Vishal Ratanpaul
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - Dagong Zhang
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - Barbara A Williams
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | | | | | - Michael J Gidley
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
24
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Effect of oral or intragastric delivery of the bitter tastant quinine on food intake and appetite sensations: a randomised crossover trial. Br J Nutr 2021; 125:92-100. [PMID: 32660667 DOI: 10.1017/s0007114520002536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stimulation of gastrointestinal taste receptors affects eating behaviour. Intraduodenal infusion of tastants leads to increased satiation and reduced food intake, whereas intraileal infusion of tastants does not affect eating behaviour. Currently, it is unknown whether oral- or intragastric administration of tastants induces a larger effect on eating behaviour. This study investigated the effects of oral- and/or intragastric administration of quinine on food intake, appetite sensations and heart rate variability (HRV). In a blinded randomised crossover trial, thirty-two healthy volunteers participated in four interventions with a 1-week washout: oral placebo and intragastric placebo (OPGP), oral quinine and intragastric placebo (OQGP), oral placebo and intragastric quinine (OPGQ) and oral quinine and intragastric quinine (OQGQ). On test days, 150 min after a standardised breakfast, subjects ingested a capsule containing quinine or placebo and were sham-fed a mixture of quinine or placebo orally. At 50 min after intervention, subjects received an ad libitum meal to measure food intake. Visual analogue scales for appetite sensations were collected, and HRV measurements were performed at regular intervals. Oral and/or intragastric delivery of the bitter tastant quinine did not affect food intake (OPGP: 3273·6 (sem 131·8) kJ, OQGP: 3072·7 (sem 132·2) kJ, OPGQ: 3289·0 (sem 132·6) kJ and OQGQ: 3204·1 (sem 133·1) kJ, P = 0·069). Desire to eat and hunger decreased after OQGP and OPGQ compared with OPGP (P < 0·001 and P < 0·05, respectively), whereas satiation, fullness and HRV did not differ between interventions. In conclusion, sole oral sham feeding with and sole intragastric delivery of quinine decreased desire to eat and hunger, without affecting food intake, satiation, fullness or HRV.
Collapse
|
26
|
Kong H, Yu L, Gu Z, Li C, Cheng L, Hong Y, Li Z. An Innovative Short-Clustered Maltodextrin as Starch Substitute for Ameliorating Postprandial Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:354-367. [PMID: 33350823 DOI: 10.1021/acs.jafc.0c02828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary starch is usually associated with elevated postprandial glycemic response. This is a potential risk factor of type 2 diabetes. Here, a 1,4-α-glucan branching enzyme (GBE) was employed to reassemble α-1,4 and α-1,6 glycosidic bonds in starch molecules. Structural characterization showed that GBE-catalyzed molecular reassembly created an innovative short-clustered maltodextrin (SCMD), which showed a dense internal framework along with shortened external chains. Such short-clustered molecules obstructed digestive enzymes attack and displayed dramatically reduced digestibility. Therefore, SCMD was served as a dietary starch substitute to improve postprandial glucose homeostasis. A 22.3% decrease in glycemic peak was therefore detected in ICR mice following SCMD intake (10.7 mmol/L), compared with that in the control (13.8 mmol/L). Moreover, an attenuated insulin response (40.5% lower than that in control) to SCMD intake was regarded suitable for diabetes management. These novel discoveries demonstrate that enzymatically rebuilding starch molecules may be a meaningful strategy for diabetes management.
Collapse
Affiliation(s)
- Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Rogues J, Mehinagic E, Lethuillier D, Bouvret E, Hervera M, Lepoudere A. Reduction of cat voluntary feed intake in the short-term response to the sugar cane fibre supplementation. JOURNAL OF APPLIED ANIMAL NUTRITION 2020. [DOI: 10.3920/jaan2020.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is a well-known syndrome of excessive body fat in cats (Felis catus) that affects the health, welfare and lifespan of animals. Consequently, different diet strategies aiming to reduce voluntary feed intake in cats have been studied. One of these consists in reducing energy intake based on reduction of feed intake. Several clinical studies have demonstrated that dietary fibre inclusion in food reduced efficiently voluntary feed intake (VFI) in dogs. However, little clinical data is available regarding the impact of dietary fibre inclusion on cat’s feeding behaviours and VFI. The aim of the current study was to test the performance of sugar cane fibre included at three different levels in extruded feline diets. The main purpose was to measure the impact of fibre inclusion on the cats’ VFI, while maintaining palatability. Four feline diets were formulated with different inclusion levels of sugar cane fibre expressed on an as fed basis (0% sugar cane fibre (control), 3.7% of sugar cane fibre (SF3.7), 5.5% of sugar cane fibre (SF5.5) and 7.3% sugar cane fibre (SF7.3)). The VFI and palatability were evaluated in two different methods: a new method using 79 cats, called ‘consumption kinetics’ based on the dynamic measure of cat’s daily consumptions in ad libitum conditions providing information about cat’s feeding pattern, and the standard palatability two-bowl (versus) test using more than 30 cats. All foods had identical palatability performance, regardless of sugar cane fibre inclusion level, while the VFI of products containing 5.5% and 7.3% sugar cane fibre decreased significantly compared to the control diet. The level of supplementation of sugar cane fibre was efficient to reduce felines VFI without impairing food palatability level, and may be a useful ingredient to add to feline diets to improve the success of the weight management programs.
Collapse
Affiliation(s)
- J. Rogues
- Diana Pet Food, ZA du Gohélis, 56250 Elven, France
| | - E. Mehinagic
- Diana Pet Food, ZA du Gohélis, 56250 Elven, France
| | | | - E. Bouvret
- Diana Pet Food, ZA du Gohélis, 56250 Elven, France
| | - M. Hervera
- Expert Pet Nutrition, 44100 Nantes, France
| | - A. Lepoudere
- Diana Pet Food, ZA du Gohélis, 56250 Elven, France
| |
Collapse
|
28
|
Shim YE, Lee ES, Hong MG, Kim DK, Lee BH. Highly branched α-limit dextrins attenuate the glycemic response and stimulate the secretion of satiety hormone peptide YY. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020; 11:583006. [PMID: 33101215 PMCID: PMC7554589 DOI: 10.3389/fendo.2020.583006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.
Collapse
Affiliation(s)
- Julia Hanchard
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | | | | | - Darcy Lidington
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
31
|
Xie C, Jones KL, Rayner CK, Wu T. Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
32
|
Effect of bolus enteral tube feeding on body weight in ambulatory adults with obesity and type 2 diabetes: a feasibility pilot randomized trial. Nutr Diabetes 2020; 10:22. [PMID: 32555148 PMCID: PMC7298641 DOI: 10.1038/s41387-020-0125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background/objectives To ascertain the effect on body weight of 14 days of bolus enteral feeding with mixed meal (MM) and electrolyte solution (ES) in ambulatory adults with type 2 diabetes and obesity, and also the safety and feasibility of using a modified, intraorally anchored enteral feeding tube for this purpose. Subjects/methods We conducted a randomized, crossover pilot trial with 16 participants. A 140 cm, 8-French feeding tube was placed in the jejunum under electromagnetic guidance and anchored intraorally. Participants were randomized to self-administer 120 mL 523 kJ (125 kcal) MM, or 50 kJ (12 kcal) ES four times/day for 14 days. After ≥14 days without the tube, participants crossed over to the other treatment. The primary outcome compared weight change between treatments. Thereafter, participants could elect to undergo additional MM cycles. Participants were encouraged to continue with all usual activities including eating ad lib throughout the study. Results Ten participants withdrew prior to completing two randomized 14-day cycles (4 social, 3 intolerant of anchor, and 3 intolerant of tube). Six participants were assessed for the primary outcome and showed no significant difference in weight loss between MM and ES (p = 0.082). For the secondary outcome of within-group weight loss, average weight loss from baseline was significant for MM but not for ES: −2.40 kg (95% CI: −3.78, −1.02; p = 0.008) vs. −0.64 kg (95% CI: −2.01, 0.74; p = 0.27). A total of 23 2-week cycles were completed (12 paired, 2 unpaired, and 9 additional), with no significant adverse events for 334 days of tube use. Conclusions Repeated bolus nutrient administration via enteral feeding tube is associated with weight loss in adults with obesity and type 2 diabetes, with no significant difference seen between MM and ES feeds. The prototype device was safe, but requires development for further investigation into the effect of bolus jejunal feeding on weight and to improve acceptability.
Collapse
|
33
|
Gaskell SK, Taylor B, Muir J, Costa RJ. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl Physiol Nutr Metab 2020; 45:569-580. [DOI: 10.1139/apnm-2019-0187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study aimed to determine the effects of 24-h high (HFOD) and low (LFOD) fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diets before exertional heat stress on gastrointestinal integrity, function, and symptoms. Eighteen endurance runners consumed a HFOD and a LFOD (double-blind crossover design) before completing 2 h of running at 60% maximal oxygen uptake in 35 °C ambient temperature. Blood samples were collected before and after exercise to determine plasma cortisol and intestinal fatty acid binding protein (I-FABP) concentrations, and bacterial endotoxin and cytokine profiles. Breath hydrogen (H2) and gastrointestinal symptoms (GIS) were determined pre-exercise, every 15 min during, and in recovery. No differences were observed for plasma cortisol concentration between diets. Plasma I-FABP concentration was lower on HFOD compared with LFOD (p = 0.033). A trend for lower lipopolysaccharide binding protein (p = 0.088), but not plasma soluble CD14 (p = 0.478) and cytokine profile (p > 0.05), responses on HFOD was observed. A greater area under the curve breath H2 concentration (p = 0.031) was observed throughout HFOD (mean and 95% confidence interval: HFOD 2525 (1452–3597) ppm·4 h−1) compared with LFOD (1505 (1031–1978) ppm·4 h−1). HFOD resulted in greater severity of GIS compared with LFOD (pre-exercise, p = 0.017; during, p = 0.035; and total, p = 0.014). A 24-h HFOD before exertional heat stress ameliorates disturbances to epithelial integrity but exacerbates carbohydrate malabsorption and GIS severity in comparison with a LFOD. Novelty Twenty-four-hour high FODMAP diet ameliorated disturbances to gastrointestinal integrity. Twenty-four-hour high FODMAP diet results in greater carbohydrate malabsorption compared with low FODMAP diet. Incidence of GIS during exertional heat stress were pronounced on both low and high FODMAP diets, but greater GIS severity was observed with high FODMAP diet.
Collapse
Affiliation(s)
- Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Bonnie Taylor
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Jane Muir
- Department of Gastroenterology - The Alfred Hospital, Monash University, Melbourne, Victoria 3004, Australia
| | - Ricardo J.S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| |
Collapse
|
34
|
Somogyi E, Sigalet D, Adrian TE, Nyakas C, Hoornenborg CW, van Beek AP, Koopmans HS, van Dijk G. Ileal Transposition in Rats Reduces Energy Intake, Body Weight, and Body Fat Most Efficaciously When Ingesting a High-Protein Diet. Obes Surg 2020; 30:2729-2742. [PMID: 32342267 PMCID: PMC7260147 DOI: 10.1007/s11695-020-04565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose Ileal transposition (IT) allows exploration of hindgut effects of bariatric procedures in inducing weight loss and reducing adiposity. Here we investigated the role of dietary macronutrient content on IT effects in rats. Methods Male Lewis rats consuming one of three isocaloric liquid diets enriched with fat (HF), carbohydrates (HC), or protein (HP) underwent IT or sham surgery. Body weight, energy intake, energy efficiency, body composition, and (meal-induced) changes in plasma GIP, GLP-1, PYY, neurotensin, and insulin levels were measured. Results Following IT, HC intake remained highest leading to smallest weight loss among dietary groups. IT in HF rats caused high initial weight loss and profound hypophagia, but the rats caught up later, and finally had the highest body fat content among IT rats. HP diet most efficaciously supported IT-induced reduction in body weight and adiposity, but (as opposed to other diet groups) lean mass was also reduced. Energy efficiency decreased immediately after IT irrespective of diet, but normalized later. Energy intake alone explained variation in post-operative weight change by 80%. GLP-1, neurotensin, and PYY were upregulated by IT, particularly during (0–60 min) and following 17-h post-ingestive intake, with marginal diet effects. Thirty-day post-operative cumulative energy intake was negatively correlated to 17-h post-ingestive PYY levels, explaining 47% of its variation. Conclusion Reduction in energy intake underlies IT-induced weight loss, with highest efficacy of the HP diet. PYY, GLP-1, and neurotensin levels are upregulated by IT, of which PYY may be most specifically related to reduced intake and weight loss after IT.
Collapse
Affiliation(s)
- Edit Somogyi
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sigalet
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Csaba Nyakas
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Christiaan W Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henry S Koopmans
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
35
|
Caponio GR, Lorusso MP, Sorrenti GT, Marcotrigiano V, Difonzo G, De Angelis E, Guagnano R, Ciaula AD, Diella G, Logrieco AF, Montagna MT, Monaci L, De Angelis M, Portincasa P. Chemical Characterization, Gastrointestinal Motility and Sensory Evaluation of Dark Chocolate: A Nutraceutical Boosting Consumers' Health. Nutrients 2020; 12:939. [PMID: 32231009 PMCID: PMC7230710 DOI: 10.3390/nu12040939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
We performed a comprehensive study encompassing chemical characterization and sensory evaluation of two types of dark chocolate, i.e., artisanal (Choco-A) and industrial (Choco-I), as well as an evaluation of onset of gastrointestinal symptoms and gastrointestinal motility in healthy subjects fed with dark chocolate. Proteomic, lipid and metabolite analysis were performed by LC-MS/MS analysis and the total phenol content and antioxidant activity were estimated in both types of chocolate. Fifty healthy volunteers joined the study of the sensory characteristics of both types of chocolate; another 16 subjects underwent the study of gallbladder and gastric emptying by functional ultrasonography and orocecal transit time by lactulose H2-breath test after ingestion of dark chocolate. Identification of polyphenols, amino acids and fatty acids was carried out in both types of chocolate analysed, and results confirmed their richness in polyphenols, amino acid derivatives and fatty acids (FAs) either saturated (stearic, myristic, palmitic, ecosanoic) or unsaturated (oleic and linolenic). For agreeability, Choco-A scored higher than Choco-I for smell, texture, and taste and they did not show significant differences in the gastrointestinal motility. In conclusion as for gastrointestinal motility studies, we report that the ingestion of a small amount of chocolate induced a mild gallbladder, gastric contraction and a fast transit time compared to the test meal in healthy subjects.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy; (G.R.C.); (M.D.A.)
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Pio Lorusso
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giovanni Trifone Sorrenti
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit BT, 76125 Barletta-Andria-Trani, Italy; (G.T.S.); (V.M.)
| | - Vincenzo Marcotrigiano
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit BT, 76125 Barletta-Andria-Trani, Italy; (G.T.S.); (V.M.)
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy; (G.R.C.); (M.D.A.)
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/o, 70126 Bari, Italy; (E.D.A.); (A.F.L.)
| | - Rocco Guagnano
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/o, 70126 Bari, Italy; (E.D.A.); (A.F.L.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giusy Diella
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy (M.T.M.)
| | - Antonio Francesco Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/o, 70126 Bari, Italy; (E.D.A.); (A.F.L.)
| | - Maria Teresa Montagna
- Department of Biomedical Sciences and Human Oncology, Section of Hygiene, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy (M.T.M.)
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Amendola 122/o, 70126 Bari, Italy; (E.D.A.); (A.F.L.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy; (G.R.C.); (M.D.A.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
36
|
Herwig E, Schwean-Lardner K, Van Kessel A, Savary RK, Classen HL. Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS One 2020; 15:e0228647. [PMID: 32032378 PMCID: PMC7006927 DOI: 10.1371/journal.pone.0228647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
The objective of this research was to evaluate activation of the ileal brake in broiler chickens using diets containing semi-purified wheat (WS; rapidly and highly digested) and pea (PS; slowly and poorly digested) starch. Diets were formulated to contain six WS:PS ratios (100:0, 80:20, 60:40, 40:60, 20:80, 0:100) and each starch ratio was fed to 236 Ross 308 male broilers housed in 4 litter floor pens. At 28 d of age, the effect of PS concentration was assessed on starch digestion, digestive tract morphology, and digesta pH and short-chain fatty acid (SCFA) concentration. Glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) status were assessed in serum (ELISA) and via gene expression in jejunal and ileal tissue (proglucagon for GLP-1). Data were analyzed using regression analyses, and significance was accepted at P ≤ 0.05. Increasing dietary PS resulted in reduced starch digestibility in the small intestine, but had no effect in the colon. Crop content pH responded quadratically to PS level with an estimated minimum at 55% PS. Total SCFA increased linearly in the crop with PS level, but changed in a quadratic fashion in the ileum (estimated maximum at 62% PS). Ceacal SCFA concentrations were highest for the 80 and 100% PS levels. The relative empty weight (crop, small intestine, colon), length (small intestine) and content (crop jejunum, Ileum) of digestive tract sections increased linearly with increasing PS concentration. Dietary treatment did not affect serum GLP-1 or PYY or small intestine transcript abundance. In conclusion, feeding PS increased the presence of L-cell activators (starch, SCFA) and increased trophic development and content of the digestive tract, suggestive of L-cell activation. However, no direct evidence of ileal brake activation was found by measuring venous blood levels of GLP-1 or PYY or corresponding gene expression in small intestine tissue.
Collapse
Affiliation(s)
- Eugenia Herwig
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachel K. Savary
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
37
|
Ju M, Zhu G, Huang G, Shen X, Zhang Y, Jiang L, Sui X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105329] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Ratanpaul V, Williams BA, Black JL, Gidley MJ. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 2019; 13:2745-2754. [PMID: 31223098 DOI: 10.1017/s1751731119001459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Grains rich in starch constitute the primary source of energy for both pigs and humans, but there is incomplete understanding of physiological mechanisms that determine the extent of digestion of grain starch in monogastric animals including pigs and humans. Slow digestion of starch to produce glucose in the small intestine (SI) leads to undigested starch escaping to the large intestine where it is fermented to produce short-chain fatty acids. Glucose generated from starch provides more energy than short-chain fatty acids for normal metabolism and growth in monogastrics. While incomplete digestion of starch leads to underutilised feed in pigs and economic losses, it is desirable in human nutrition to maintain consistent body weight in adults. Undigested nutrients reaching the ileum may trigger the ileal brake, and fermentation of undigested nutrients or fibre in the large intestine triggers the colonic brake. These intestinal brakes reduce the passage rate in an attempt to maximise nutrient utilisation, and lead to increased satiety that may reduce feed intake. The three physiological mechanisms that control grain digestion and feed intake are: (1) gastric emptying rate; (2) interplay of grain digestion and passage rate in the SI controlling the activation of the ileal brake; and (3) fermentation of undigested nutrients or fibre in the large intestine activating the colonic brake. Fibre plays an important role in influencing these mechanisms and the extent of their effects. In this review, an account of the physiological mechanisms controlling the passage rate, feed intake and enzymatic digestion of grains is presented: (1) to evaluate the merits of recently developed methods of grain/starch digestion for application purposes; and (2) to identify opportunities for future research to advance our understanding of how the combination of controlled grain digestion and fibre content can be manipulated to physiologically influence satiety and food intake.
Collapse
Affiliation(s)
- V Ratanpaul
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - B A Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - J L Black
- John L Black Consulting, PO Box 4021, Warrimoo, NSW, 2774, Australia
| | - M J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
39
|
Zhang Z, Jung KJ, Zhang R, Muriel Mundo JL, McClements DJ. In situ monitoring of lipid droplet release from biopolymer microgels under simulated gastric conditions using magnetic resonance imaging and spectroscopy. Food Res Int 2019; 123:181-188. [DOI: 10.1016/j.foodres.2019.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
|
40
|
Gidley MJ, Yakubov GE. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’ vs ‘insoluble’. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Encapsulation of lipids as emulsion-alginate beads reduces food intake: a randomized placebo-controlled cross-over human trial in overweight adults. Nutr Res 2019; 63:86-94. [DOI: 10.1016/j.nutres.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023]
|
42
|
Klaassen T, Alleleyn AME, van Avesaat M, Troost FJ, Keszthelyi D, Masclee AAM. Intraintestinal Delivery of Tastants Using a Naso-Duodenal-Ileal Catheter Does Not Influence Food Intake or Satiety. Nutrients 2019; 11:nu11020472. [PMID: 30813412 PMCID: PMC6412712 DOI: 10.3390/nu11020472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Intraduodenal activity of taste receptors reduces food intake. Taste receptors are expressed throughout the entire gastrointestinal tract. Currently, there are no data available on the effects of distal taste receptor activation. In this study, we investigate the effect of intraduodenal and/or intraileal activation of taste receptors on food intake and satiety. In a single-blind randomized crossover trial, fourteen participants were intubated with a naso-duodenal-ileal catheter and received four infusion regimens: duodenal placebo and ileal placebo (DPIP), duodenal tastants and ileal placebo (DTIP), duodenal placebo and ileal tastants (DPIT), duodenal tastants and ileal tastants (DTIT). Fifteen minutes after cessation of infusion, subjects received an ad libitum meal to measure food intake. Visual analog scale scores for satiety feelings were collected at regular intervals. No differences in food intake were observed between the various interventions (DPIP: 786.6 ± 79.2 Kcal, DTIP: 803.3 ± 69.0 Kcal, DPIT: 814.7 ± 77.3 Kcal, DTIT: 834.8 ± 59.2 Kcal, p = 0.59). No differences in satiety feelings were observed. Intestinal infusion of tastants using a naso-duodenal-ileal catheter did not influence food intake or satiety feelings. Possibly, the burden of the four-day naso-duodenal-ileal intubation masked a small effect that tastants might have on food intake and satiety.
Collapse
Affiliation(s)
- Tim Klaassen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, 5911 AA Venlo, The Netherlands.
| | - Annick M E Alleleyn
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Mark van Avesaat
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Freddy J Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, 5911 AA Venlo, The Netherlands.
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Adrian A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
43
|
Assessing the effect of rate and extent of starch digestion in broiler and laying hen feeding behaviour. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Pascoviche DM, Goldstein N, Fishman A, Lesmes U. Impact of fatty acids unsaturation on stability and intestinal lipolysis of bioactive lipid droplets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
45
|
Alleleyn AME, van Avesaat M, Ripken D, Bleiel SB, Keszthelyi D, Wilms E, Troost FJ, Hendriks HFJ, Masclee AAM. The Effect of an Encapsulated Nutrient Mixture on Food Intake and Satiety: A Double-Blind Randomized Cross-Over Proof of Concept Study. Nutrients 2018; 10:nu10111787. [PMID: 30453597 PMCID: PMC6265922 DOI: 10.3390/nu10111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Activation of the intestinal brake by infusing nutrients into the distal small intestine with catheters inhibits food intake and enhances satiety. Encapsulation of macronutrients, which protects against digestion in the proximal gastrointestinal tract, can be a non-invasive alternative to activate this brake. In this study, we investigate the effect of oral ingestion of an encapsulated casein and sucrose mixture (active) targeting the distal small intestine versus a control product designed to be released in the stomach on food intake, satiety, and plasma glucose concentrations. Fifty-nine volunteers received the active and control product on two separate test days. Food intake was determined during an ad libitum meal 90 min after ingestion of the test product. Visual analogue scale scores for satiety and blood samples for glucose analysis were collected at regular intervals. Ingestion of the active product decreased food intake compared to the control product (655 kcal compared with 699 kcal, respectively, p < 0.05). The area under the curve (AUC) for hunger was decreased (p < 0.05) and AUC for satiety was increased (p < 0.01) after ingestion of the active product compared to the control product. Ingestion of an encapsulated protein-carbohydrate mixture resulted in inhibition of food intake compared to a non-encapsulated control product.
Collapse
Affiliation(s)
- Annick M E Alleleyn
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Mark van Avesaat
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Dina Ripken
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
- The Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
- Division of Human Nutrition, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Sinéad B Bleiel
- AnaBio Technologies LTD., Innovation Centre, Carrigtwohill, T45 RW24 Cork, Ireland.
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Ellen Wilms
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Freddy J Troost
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
- Food Innovation and Health, Centre of Healthy Eating and Food Innovation, Maastricht University, 5911 AA Venlo, The Netherlands.
| | - Henk F J Hendriks
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | - Adrian A M Masclee
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
46
|
Magro DO, Cazzo E, Kotze PG, Vasques ACJ, Martinez CAR, Chaim EA, Geloneze B, Pareja JC, Coy CSR. Glucose Metabolism Parameters and Post-Prandial GLP-1 and GLP-2 Release Largely Vary in Several Distinct Situations: a Controlled Comparison Among Individuals with Crohn's Disease and Individuals with Obesity Before and After Bariatric Surgery. Obes Surg 2018; 28:378-388. [PMID: 28776152 DOI: 10.1007/s11695-017-2851-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aims to compare the post-prandial curves of glucose, insulin, GLP-1, and GLP-2 among individuals with Crohn's disease (CD), obese individuals before and after bariatric surgery, and healthy controls. METHODS This an exploratory cross-sectional study that involved five groups of patients (two groups of individuals with CD-active and inactive), bariatric patients (pre- and post-surgery, who were their own controls), and a distinct separated control group of healthy volunteers. C-reactive protein (CRP) levels and the post-prandial curves of glucose, insulin, GLP-1, and GLP-2 curves were assessed and compared. RESULTS The pre-RYGB group presented significantly higher levels of CRP than the post-RYGB (p = 0.001) and the control group (p = 0.001). The inactive CD group presented a higher post-prandial GLP-1 area under the curve (AUC) than the pre-RYGB group (p = 0.009). The post-RYGB group presented significantly higher AUCs of GLP-2 than the pre-RYGB group (p < 0.0001), both inactive and active CD groups (p < 0.0001 in both situations), and the control group (p = 0.002). The pre-RYGB group presented a significantly higher AUC of glucose than the post-RYGB (p = 0.02) and both active and inactive CD groups (p = 0.019 and p = 0.046, respectively). The pre-RYGB group presented a significantly higher AUC of insulin than the control (p = 0.005) and both CD groups (p < 0.0001). CONCLUSIONS Obesity is associated with an inflammatory state comparable to the one observed in CD; inflammation may also be enrolled in the blockade of GLP-2. CD individuals present a more incretin-driven pattern of glucose metabolism, as a way to prevent hypoglycemia and compensate the carbohydrate malabsorption and GLP-2 blockade.
Collapse
Affiliation(s)
- Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil
| | - Everton Cazzo
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil.
| | - Paulo Gustavo Kotze
- Colorectal Surgery Unit, Cajuru University Hospital, Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Ana Carolina Junqueira Vasques
- Research Laboratory of Metabolism and Diabetes (LIMED), Gastrocentro, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil
| | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil
| | - Bruno Geloneze
- Research Laboratory of Metabolism and Diabetes (LIMED), Gastrocentro, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Carlos Pareja
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil
| | - Cláudio Saddy Rodrigues Coy
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n, 13083-887, Campinas, São Paulo, Brazil
| |
Collapse
|
47
|
Abstract
The well-regulated mechanisms of intestinal transit favor aboral movement of intestinal contents during the formation of normal stool. Electrical pacemakers initiate mechanical smooth muscular propulsion under regulation by the enteric nervous system-a function of the "brain-gut axis." Several unique intestinal motor patterns function in concert to enhance the activities of intestinal transit. Development of pharmacologic targets of intestinal transit mechanisms afford clinicians control in the management of functional gastrointestinal disorders. This review highlights the important physiologic events of intestinal transit, discusses selected pharmacologic and neuromodulators involved in these processes, and provides relevant clinical correlates to physiologic events.
Collapse
|
48
|
Corstens MN, Berton-Carabin CC, Schroën K, Viau M, Meynier A. Emulsion encapsulation in calcium-alginate beads delays lipolysis during dynamic in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Pasman WJ, Hendriks HFJ, Minekus MM, de Ligt RAF, Scholtes-Timmerman MJ, Clabbers NDS, Leonards NM, Johnson J, Bellmann S. Subjective feelings of appetite of wholegrain breakfasts evaluated under controlled, laboratory and 'at home' conditions. Physiol Behav 2018; 194:285-291. [PMID: 29913230 DOI: 10.1016/j.physbeh.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Appetite regulating properties of foods are usually investigated under laboratory conditions, whereas in real life, foods are consumed under at home conditions. The objective of this study was to compare the acute effects of breakfasts when tested in a laboratory condition and in an at home condition. Appetite regulating properties of two bread breakfasts and two cereal breakfasts were also compared. SUBJECTS AND METHODS In this randomized cross-over trial balanced for laboratory and at home test conditions, thirty-two women consumed five breakfasts, i.e. two bread breakfasts, two cereal breakfasts and one fried-egg breakfast. Visual analogue scales for measuring appetite were captured via an on-line scoring system and were analyzed as incremental area under the curve, as satiation phase and as satiety phase. RESULTS Location effects were limited to two small effects only. An overall location effect in hunger feelings was observed (p = 0.040), which occurred specifically during the short satiation period (p = 0.0002) where hunger feelings scored higher under laboratory conditions. Similarly, a location effect was observed for desire to eat (p = 0.001); this was again higher under laboratory conditions. No other location effects were observed. Bread breakfasts did not differ in their appetite regulating properties. The Steel Cut oatmeal breakfast was reported to be more satiating (p = 0.001) as compared to the ready-to-eat cereal. CONCLUSIONS Whereas the five breakfasts varied somewhat in their appetite regulating properties, evaluation under laboratory conditions overall did not result in different appetite scores compared to the at home conditions. This suggests that at home testing may be a useful alternative to laboratory test conditions for nutrition research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jodee Johnson
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition Sciences, Barrington, IL, USA
| | | |
Collapse
|
50
|
Chegeni M, Amiri M, Nichols BL, Nairn HY, Hamaker BR. Dietary starch breakdown product sensing mobilizes and apically activates α‐glucosidases in small intestinal enterocytes. FASEB J 2018; 32:3903-3911. [DOI: 10.1096/fj.201701029r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad Chegeni
- Department of Food ScienceWhistler Center for Carbohydrate ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Mahdi Amiri
- Department of Physiological ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Buford L. Nichols
- Department of PediatricsU.S. Department of Agriculture/Agricultural Research ServiceChildren's Nutrition Research CenterBaylor College of MedicineHoustonTexasUSA
| | - Hassan Y. Nairn
- Department of Physiological ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Bruce R. Hamaker
- Department of Food ScienceWhistler Center for Carbohydrate ResearchPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|