1
|
Mora CC, Rojas Contreras JA, Rosales Villarreal MC, Urban Martínez JL, Delgado E, Medrano Roldan H, Hernández Rodarte FS, Reyes Jáquez D. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. Heliyon 2025; 11:e41878. [PMID: 39872451 PMCID: PMC11770503 DOI: 10.1016/j.heliyon.2025.e41878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.5, and 50/50 %) from a mining operation in Zacatecas, Mexico, were evaluated. The mineral was crushed to a particle size of 0.125 inches or smaller, containing gold and silver concentrations of 0.609 g/ton and 138.89 g/ton, respectively. Four native microorganisms were identified using molecular biology techniques and a 16S rRNA gene fragment: Acidovorax citrulli, Brevundimonas albigilva, Sphingomonas korenensis, and Methylobacterium organophilum. The bioleaching system achieved metal extractions of 84.12 % and 63.93 % for gold and silver, respectively. Different microorganisms were identified at various processing times: Sphingomonas korenensis (days 1, 2, 5, 8, and 11), Methylobacterium organophilum (days 1 and 2), Paenibacillus dongdonensis (days 1 and 2), Brevundimonas albigilva (day 5), Ureibacillus manganicus (day 5), Peribacillus simplex (day 8), Niallia circulans (day 8), Massilia atriviolacea (day 11), and Bacillus licheniformis (day 11). The dominant bacterium throughout the process was Sphingomonas korenensis, which appeared at all stages of the experiment.
Collapse
Affiliation(s)
- Cuauhtémoc Contreras Mora
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Juan Antonio Rojas Contreras
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Mayra Cristina Rosales Villarreal
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - José Luis Urban Martínez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Efren Delgado
- Food Science and Technology, Department of Family and Consumer Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003-8001, USA
| | - Hiram Medrano Roldan
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Felipe Samuel Hernández Rodarte
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Damián Reyes Jáquez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| |
Collapse
|
2
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
3
|
Parada-Pozo G, Bravo LA, Sáez PL, Cavieres LA, Reyes-Díaz M, Abades S, Alfaro FD, De la Iglesia R, Trefault N. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiol Ecol 2022; 98:6679102. [PMID: 36040342 DOI: 10.1093/femsec/fiac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 01/21/2023] Open
Abstract
In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.
Collapse
Affiliation(s)
- Génesis Parada-Pozo
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - León A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera. 4811230, Temuco, Chile
| | - Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, 4070386, Chile.,Instituto de Ecología y Biodiversidad (IEB), 775000, Santiago, Chile
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad (IEB), 775000, Santiago, Chile.,Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4070386, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 4811230, Chile.,Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile
| | - Sebastián Abades
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - Fernando D Alfaro
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - Rodrigo De la Iglesia
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Nicole Trefault
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
4
|
Németh JB, Knapp DG, Kósa A, Hegedűs PÁ, Herczeg G, Vági P, Kovács GM. Micro-scale Experimental System Coupled with Fluorescence-based Estimation of Fungal Biomass to Study Utilisation of Plant Substrates. MICROBIAL ECOLOGY 2022; 83:714-723. [PMID: 34218293 PMCID: PMC8979871 DOI: 10.1007/s00248-021-01794-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The degradation capacity and utilisation of complex plant substrates are crucial for the functioning of saprobic fungi and different plant symbionts with fundamental functions in ecosystems. Measuring the growth capacity and biomass of fungi on such systems is a challenging task. We established a new micro-scale experimental setup using substrates made of different plant species and organs as media for fungal growth. We adopted and tested a reliable and simple titration-based method for the estimation of total fungal biomass within the substrates using fluorescence-labelled lectin. We found that the relationship between fluorescence intensity and fungal dry weight was strong and linear but differed among fungi. The effect of the plant organ (i.e. root vs. shoot) used as substrate on fungal growth differed among plant species and between root endophytic fungal species. The novel microscale experimental system is useful for screening the utilisation of different substrates, which can provide insight into the ecological roles and functions of fungi. Furthermore, our fungal biomass estimation method has applications in various fields. As the estimation is based on the fungal cell wall, it measures the total cumulative biomass produced in a certain environment.
Collapse
Affiliation(s)
- Julianna B Németh
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dániel G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Panna Á Hegedűs
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Pál Vági
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Dong X, Liu C, Ma D, Wu Y, Man H, Wu X, Li M, Zang S. Organic Carbon Mineralization and Bacterial Community of Active Layer Soils Response to Short-Term Warming in the Great Hing'an Mountains of Northeast China. Front Microbiol 2022; 12:802213. [PMID: 35003032 PMCID: PMC8739994 DOI: 10.3389/fmicb.2021.802213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
As a buffer layer for the energy and water exchange between atmosphere and permafrost, the active layer is sensitive to climate warming. Changes in the thermal state in active layer can alter soil organic carbon (SOC) dynamics. It is critical to identify the response of soil microbial communities to warming to better predict the regional carbon cycle under the background of global warming. Here, the active layer soils collected from a wetland-forest ecotone in the continuous permafrost region of Northeastern China were incubated at 5 and 15°C for 45 days. High-throughput sequencing of the 16S rRNA gene was used to examine the response of bacterial community structure to experimental warming. A total of 4148 OTUs were identified, which followed the order 15°C > 5°C > pre-incubated. Incubation temperature, soil layer and their interaction have significant effects on bacterial alpha diversity (Chao index). Bacterial communities under different temperature were clearly distinguished. Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria accounted for more than 80% of the community abundance at the phylum level. Warming decreased the relative abundance of Chloroflexi and Acidobacteria, while Actinobacteria and Proteobacteria exhibited increasing trend. At family level, the abundance of norank_o__norank_c__AD3 and Ktedonobacteraceae decreased significantly with the increase of temperature, while Micrococcaccac increased. In addition, the amount of SOC mineralization were positively correlated with the relative abundances of most bacterial phyla and SOC content. SOC content was positively correlated with the relative abundance of most bacterial phyla. Results indicate that the SOC content was the primary explanatory variable and driver of microbial regulation for SOC mineralization. Our results provide a new perspective for understanding the microbial mechanisms that accelerates SOC decomposition under warming conditions in the forest-wetland ecotone of permafrost region.
Collapse
Affiliation(s)
- Xingfeng Dong
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Chao Liu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Dalong Ma
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Haoran Man
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Xiangwen Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Miao Li
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| |
Collapse
|
6
|
Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D'Acqui L, Mascalchi C, Ventura S, Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica). FEMS Microbiol Ecol 2021; 97:6307020. [PMID: 34151349 DOI: 10.1093/femsec/fiab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ice-free areas of Victoria Land, in Antarctica, are characterized by different terrestrial ecosystems, that are dominated by microorganisms supporting highly adapted communities. Despite the unique conditions of these ecosystems, reports on their bacterial diversity are still fragmentary. From this perspective, 60 samples from 14 localities were analyzed. These localities were distributed in coastal sites with differently developed biological soil crusts, inner sites in the McMurdo Dry Valleys with soils lacking of plant coverage, and a site called Icarus Camp, with a crust developed on a thin locally weathered substrate of the underlying parent granitic-rock. Bacterial diversity was studied through 16S rRNA metabarcoding sequencing. Communities diversity, composition and the abundance and composition of different taxonomic groups were correlated to soil physicochemical characteristics. Firmicutes, Bacteroidetes, Cyanobacteria and Proteobacteria dominated these communities. Most phyla were mainly driven by soil granulometry, an often disregarded parameter and other abiotic parameters. Bacterial composition differed greatly among the three macrohabitats, each having a distinct bacterial profile. Communities within the two main habitats (coastal and inner ones) were well differentiated from each other as well, therefore depending on site-specific physicochemical characteristics. A core community of the whole samples was observed, mainly represented by Firmicutes and Bacteroidetes.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Luigi Paolo D'Acqui
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cristina Mascalchi
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Stefano Ventura
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,The Italian Embassy in Israel, Trade Tower, 25 Hamered Street, 68125, Tel Aviv, Israel
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
7
|
Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile. DIVERSITY 2021. [DOI: 10.3390/d13070328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Permafrost peatlands, containing a sizable amount of soil organic carbon (OC), play a pivotal role in soil (peat) OC transformation into soluble and volatile forms and greatly contribute to overall natural CO2 and CH4 emissions to the atmosphere under ongoing permafrost thaw and soil OC degradation. Peat microorganisms are largely responsible for the processing of this OC, yet coupled studies of chemical and bacterial parameters in permafrost peatlands are rather limited and geographically biased. Towards testing the possible impact of peat and peat pore water chemical composition on microbial population and diversity, here we present results of a preliminary study of the western Siberia permafrost peatland discontinuous permafrost zone. The quantitative evaluation of microorganisms and determination of microbial diversity along a 100 cm thick peat soil column, which included thawed and frozen peat and bottom mineral horizon, was performed by RT-PCR and 16S rRNA gene-based metagenomic analysis, respectively. Bacteria (mainly Proteobacteria, Acidobacteria, Actinobacteria) strongly dominated the microbial diversity (99% sequences), with a negligible proportion of archaea (0.3–0.5%). There was a systematic evolution of main taxa according to depth, with a maximum of 65% (Acidobacteria) encountered in the active layer, or permafrost boundary (50–60 cm). We also measured C, N, nutrients and ~50 major and trace elements in peat (19 samples) as well as its pore water and dispersed ice (10 samples), sampled over the same core, and we analyzed organic matter quality in six organic and one mineral horizon of this core. Using multiparametric statistics (PCA), we tested the links between the total microbial number and 16S rRNA diversity and chemical composition of both the solid and fluid phase harboring the microorganisms. Under climate warming and permafrost thaw, one can expect a downward movement of the layer of maximal genetic diversity following the active layer thickening. Given a one to two orders of magnitude higher microbial number in the upper (thawed) layers compared to bottom (frozen) layers, an additional 50 cm of peat thawing in western Siberia may sizably increase the total microbial population and biodiversity of active cells.
Collapse
|
8
|
Fernández-Martínez MÁ, García-Villadangos M, Moreno-Paz M, Gangloff V, Carrizo D, Blanco Y, González S, Sánchez-García L, Prieto-Ballesteros O, Altshuler I, Whyte LG, Parro V, Fairén AG. Geomicrobiological Heterogeneity of Lithic Habitats in the Extreme Environment of Antarctic Nunataks: A Potential Early Mars Analog. Front Microbiol 2021; 12:670982. [PMID: 34276605 PMCID: PMC8284421 DOI: 10.3389/fmicb.2021.670982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geomicrobiology of the permanently exposed lithic substrates of nunataks from Livingston Island (South Shetlands, Antarctic Peninsula), with focus on prokaryotic community structure and their main metabolic traits. Contrarily to first hypothesis, an extensive sampling based on different gradients and multianalytical approaches demonstrated significant differences for most geomicrobiological parameters between the bedrock, soil, and loose rock substrates, which overlapped any other regional variation. Brevibacillus genus dominated on bedrock and soil substrates, while loose rocks contained a diverse microbial community, including Actinobacteria, Alphaproteobacteria and abundant Cyanobacteria inhabiting the milder and diverse microhabitats within. Archaea, a domain never described before in similar Antarctic environments, were also consistently found in the three substrates, but being more abundant and potentially more active in soils. Stable isotopic ratios of total carbon (δ 13C) and nitrogen (δ 15N), soluble anions concentrations, and the detection of proteins involved in key metabolisms via the Life Detector Chip (LDChip), suggest that microbial primary production has a pivotal role in nutrient cycling at these exposed areas with limited deposition of nutrients. Detection of stress-resistance proteins, such as molecular chaperons, suggests microbial molecular adaptation mechanisms to cope with these harsh conditions. Since early Mars may have encompassed analogous environmental conditions as the ones found in these Antarctic nunataks, our study also contributes to the understanding of the metabolic features and biomarker profiles of a potential Martian microbiota, as well as the use of LDChip in future life detection missions.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Martínez
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain.,Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | | | | | | | | | - Sergi González
- Antarctic Group, Agencia Estatal de Meteorología, Barcelona, Spain
| | | | | | - Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Victor Parro
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain
| | - Alberto G Fairén
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
10
|
Zhou J, Lao YM, Song JT, Jin H, Zhu JM, Cai ZH. Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. WATER RESEARCH 2020; 183:116020. [PMID: 32653764 DOI: 10.1016/j.watres.2020.116020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Yong-Min Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jun-Ting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
11
|
Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S, Kovařovic V, Busse HJ, Staňková E, Barták M, Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112. [PMID: 32847787 DOI: 10.1016/j.syapm.2020.126112] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5-99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T=CCM 8692T=LMG 31213T), Massilia aquatica sp. nov. (P3165T=CCM 8693T=LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T=CCM 8733T=LMG 31210T), and Massilia frigida sp. nov. (P5534T=CCM 8695T=LMG 31212T).
Collapse
Affiliation(s)
- Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vojtěch Kovařovic
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Section of Experimental Plant Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
12
|
Malcheva B, Nustorova M, Zhiyanski M, Sokolovska M, Yaneva R, Abakumov E. Diversity and activity of microorganisms in Antarctic polar soils. ONE ECOSYSTEM 2020. [DOI: 10.3897/oneeco.5.e51816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study is focused on microbiological analyses in polar soils in selected monitoring sites in Livingstone Island, Antarctica region. The analyses include determination of the quantity and qualitative composition of the heterotrophic block of soil microflora (non-spore-forming bacteria, bacilli, actinomycetes, micromycetes, bacteria absorbing mineral nitrogen), insofar as it plays a major role in the element cycling and soil formation processes. Aerobic (rapidly and slowly growing) and anaerobic groups of soil microorganisms were investigated and the biogenicity (total microflora) and the rate of mineralisation processes (mineralisation coefficient) were determined. Mostly non-spore-forming aerobic bacteria, followed by actinomycetes, are dominant in determining the biogenicity of the studied polar soils. The rearrangement of the microorganisms in the composition of the total microflora by degree of dominance indicates the participation of all the studied groups of microorganisms in most sites in the initial and final stages of the decomposition of organic matter. The mineralisation of soils is most active in sites with vegetation cover. The established pigmentation in aerobic microorganisms is probably due to their good adaptation and protection under extreme polar conditions, while the absence of oxygen impedes the formation of pigments.
Collapse
|
13
|
Lekang K, Lanzén A, Jonassen I, Thompson E, Troedsson C. Evaluation of a eukaryote phylogenetic microarray for environmental monitoring of marine sediments. MARINE POLLUTION BULLETIN 2020; 154:111102. [PMID: 32319925 DOI: 10.1016/j.marpolbul.2020.111102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Increased exploitation of resources in sensitive marine ecosystems emphasizes the importance of knowledge regarding ecological impacts. However, current bio-monitoring practices are limited in terms of target-organisms and temporal resolution. Hence, developing new technologies is vital for enhanced ecosystem understanding. In this study, we have applied a prototype version of a phylogenetic microarray to assess the eukaryote community structures of marine sediments from an area with ongoing oil and gas drilling activity. The results were compared with data from both sequencing (metabarcoding) and morphology-based monitoring to evaluate whether microarrays were capable of detecting ecosystem disturbances. A significant correlation between microarray data and chemical pollution indicators, as well as sequencing-based results, was demonstrated, and several potential indicator organisms for pollution-associated parameters were identified, among them a large fraction of microorganisms not covered by traditional morphology-based monitoring. This suggests that microarrays have a potential in future environmental monitoring.
Collapse
Affiliation(s)
- Katrine Lekang
- Department of Biology, University of Bergen, Bergen, Norway; Department of Pharmacy, University of Oslo, Norway.
| | - Anders Lanzén
- AZTI-Tecnalia, Marine Research Division, Pasaia, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Eric Thompson
- Department of Biology, University of Bergen, Bergen, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway; NORCE, Bergen, Norway
| | - Christofer Troedsson
- Department of Biology, University of Bergen, Bergen, Norway; NORCE, Bergen, Norway; Ocean Bergen AS, Bergen, Norway
| |
Collapse
|
14
|
Gupta V, Singh I, Rasool S, Verma V. Next generation sequencing and microbiome's taxonomical characterization of frozen soil of north western Himalayas of Jammu and Kashmir, India. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Li J, Gu X, Gui Y. Prokaryotic Diversity and Composition of Sediments From Prydz Bay, the Antarctic Peninsula Region, and the Ross Sea, Southern Ocean. Front Microbiol 2020; 11:783. [PMID: 32411115 PMCID: PMC7198716 DOI: 10.3389/fmicb.2020.00783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The V3–V4 hypervariable regions of the 16S ribosomal RNA gene were analyzed to assess prokaryotic diversity and community compositions within 19 surface sediment samples collected from three different regions (depth: 250–3,548 m) of Prydz Bay, the Antarctic Peninsula region, and the Ross Sea. In our results, we characterized 1,079,709 clean tag sequences representing 43,227 operational taxonomic units (OTUs, 97% similarity). The prokaryotic community distribution exhibited obvious geographical differences, and the sequences formed three distinct clusters according to the samples’ origins. In general, the biodiversity of Prydz Bay was higher than those of the Antarctic Peninsula region and the Ross Sea, and there were similar prokaryotic communities in different geographic locations. The most dominant clades in the prokaryotic communities were Proteobacteria, Bacteroidetes, Thaumarchaeota, Oxyphotobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, Fusobacteria, and Planctomycetes, but unique prokaryotic community compositions were found in each of the sampling regions. Our results also demonstrated that the prokaryotic diversity and community distribution were mainly influenced by geographical and physicochemical factors, such as Zn, V, Na, K, water depth, and especially geographical distance (longitude variation of sample location) and Ba ion content. Moreover, geochemical factors such as nutrient contents (TC, P, and Ca) also played important roles in prokaryotic diversity and community distribution. This represents the first report that Ba ion content has an obvious effect on prokaryotic diversity and community distribution in Southern Ocean sediments.
Collapse
Affiliation(s)
- Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| |
Collapse
|
16
|
|
17
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Sci Rep 2019; 9:2686. [PMID: 30804443 PMCID: PMC6389919 DOI: 10.1038/s41598-019-39521-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 02/01/2023] Open
Abstract
Terrestrial ecosystems in the maritime Antarctic experienced rapid warming during the latter half of the 20th century. While warming ceased at the turn of the millennium, significant increases in air temperature are expected later this century, with predicted positive effects on soil fungal diversity, plant growth and ecosystem productivity. Here, by sequencing 16S ribosomal RNA genes in 40 soils sampled from along a 1,650 km climatic gradient through the maritime Antarctic, we determine whether rising air temperatures might similarly influence the diversity of soil bacteria. Of 22 environmental factors, mean annual surface air temperature was the strongest and most consistent predictor of soil bacterial diversity. Significant, but weaker, associations between bacterial diversity and soil moisture content, C:N ratio, and Ca, Mg, PO43− and dissolved organic C concentrations were also detected. These findings indicate that further rises in air temperature in the maritime Antarctic may enhance terrestrial ecosystem productivity through positive effects on soil bacterial diversity.
Collapse
|
19
|
Zhang Y, Lu L, Chang X, Jiang F, Gao X, Yao Y, Li C, Cao S, Zhou Q, Peng F. Small-Scale Soil Microbial Community Heterogeneity Linked to Landform Historical Events on King George Island, Maritime Antarctica. Front Microbiol 2018; 9:3065. [PMID: 30619151 PMCID: PMC6296293 DOI: 10.3389/fmicb.2018.03065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Although research on microbial biogeography has made great progress in the past decade, distributions of terrestrial microbial communities in extreme environments such as Antarctica are not well understood. In addition, knowledge of whether and how historical contingencies affect microbial distributions at small spatial scales is lacking. Here, we analyzed soil-borne microbial (bacterial, archaeal, and fungal) communities in 12 quadrat plots around the Fildes Region of King George Island, maritime Antarctica, and the communities were divided into two groups according to the soil elemental compositions and environmental attributes of Holocene raised beach and Tertiary volcanic stratigraphy. Prokaryotic communities of the two groups were well separated; the prokaryotic data were primarily correlated with soil elemental compositions and were secondly correlated with environmental attributes (e.g., soil pH, total organic carbon, NO3 -, and vegetation coverage; Pearson test, r = 0.59 vs. 0.52, both P < 0.01). The relatively high abundance of P, S, Cl, and Br in Group 1 (Holocene raised beach site) was likely due to landform uplift. Lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe) correlated with prokaryotic communities in Group 2 may have originated from weathering of Tertiary volcanic rock. No significant correlations were found between the fungal community distribution and both the soil elemental composition and environmental attributes in this study; however, Monte Carlo tests revealed that elements Sr and Ti, soil pH, sampling altitude, and moss and lichen species numbers had significant impacts on fungal communities. The elements and nutrients accumulated during the formation of different landforms influenced the development of soils, plant growth, and microbial communities, and this resulted in small-scale spatially heterogeneous biological distributions. These findings provide new evidence that geological evolutionary processes in the Fildes Region were crucial to its microbial community development, and the results highlight that microbial distribution patterns are the legacies of historical events at this small spatial scale. Based on this study, the ice-free regions in maritime Antarctica represent suitable research sites for studying the influence of geomorphological features on microbial distributions, and we envision the possibility of a site-specific landform assignment through the analysis of the soil prokaryotic community structure.
Collapse
Affiliation(s)
- Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Lu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xulu Chang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Jiang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangdong Gao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yifeng Yao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chengsen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shunan Cao
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- ChosenMed Technology (Beijing) Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Development and testing of an 18S rRNA phylogenetic microarray for marine sediments. J Microbiol Methods 2018; 154:95-106. [DOI: 10.1016/j.mimet.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
|
21
|
Volkova PY, Geras'kin SA. 'Omic' technologies as a helpful tool in radioecological research. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:156-167. [PMID: 29677564 DOI: 10.1016/j.jenvrad.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This article presents a brief review of the modern 'omic' technologies, namely genomics, epigenomics, transcriptomics, proteomics, and metabolomics, as well as the examples of their possible use in radioecology. For each technology, a short description of advances, limitations, and instrumental applications is given. In addition, the review contains examples of successful use of 'omic' technologies in the assessment of biological effects of pollutants in the field conditions.
Collapse
Affiliation(s)
- Polina Yu Volkova
- Institute of Radiology and Agroecology, 249032, Kievskoe shosse, 109 km, Obninsk, Russia.
| | - Stanislav A Geras'kin
- Institute of Radiology and Agroecology, 249032, Kievskoe shosse, 109 km, Obninsk, Russia
| |
Collapse
|
22
|
Macroinvertebrate and soil prokaryote communities in the forest–tundra ecotone of the Subarctic Yukon. Polar Biol 2018. [DOI: 10.1007/s00300-018-2330-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Innocente E, Squizzato S, Visin F, Facca C, Rampazzo G, Bertolini V, Gandolfi I, Franzetti A, Ambrosini R, Bestetti G. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:677-687. [PMID: 28363180 DOI: 10.1016/j.scitotenv.2017.03.199] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 05/26/2023]
Abstract
The integration of chemical and biological data in aerosol studies represents a new challenge in atmospheric science. In this perspective it will be possible to gain a clearer and deeper comprehension of biogeochemical cycles in the atmosphere. In this view, this study aimed to investigate the relationships occurring between bacterial populations and PM chemical composition in one of the most polluted and urbanized areas in Europe: the Po Valley (Italy). Moreover, seasonality, long- and short-range transports were also evaluated to investigate the influence on airborne bacterial communities. PM samples were collected in two cities of the Po Valley (Milan and Venice) characterized by different meteorological conditions and atmospheric pollutant sources. Samples were analysed for water-soluble inorganic ions (WSIIs) and bacterial community structure. Chemical and biological data were jointly processed by using redundancy discriminate analysis (RDA), while the influence of atmospheric circulation was evaluated by using wind ground data and back-trajectories analysis. Results showed strong seasonal shifts of bacterial community structure in both cities, while a different behaviour was observed for air mass circulation at Milan ad Venice sites: long-range transport significantly affected bacterial populations in Milan whereas local ground wind had more influence in the Venice area. Moreover, difference in taxonomic composition can be mostly addressed to the characteristics of sampling sites. This evidence could suggest that, while PM composition is influenced by long-range transport, bacterial populations are affected, besides transport, by other factors (i.e., season and sampling site location). This perspective allow to better understand and explain airborne bacterial community behaviour.
Collapse
Affiliation(s)
- Elena Innocente
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca' Foscari Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy.
| | - Stefania Squizzato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca' Foscari Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy; Center for Air Resources Engineering and Science, Clarkson University, Box 5708, Potsdam, NY 13699-5708, USA
| | - Flavia Visin
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca' Foscari Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy
| | - Chiara Facca
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca' Foscari Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy
| | - Giancarlo Rampazzo
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca' Foscari Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy
| | - Valentina Bertolini
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
24
|
Morgalev YN, Lushchaeva IV, Morgaleva TG, Kolesnichenko LG, Loiko SV, Krickov IV, Lim A, Raudina TV, Volkova II, Shirokova LS, Morgalev SY, Vorobyev SN, Kirpotin SN, Pokrovsky OS. Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia. Polar Biol 2017. [DOI: 10.1007/s00300-017-2088-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Garoutte A, Cardenas E, Tiedje J, Howe A. Methodologies for probing the metatranscriptome of grassland soil. J Microbiol Methods 2016; 131:122-129. [PMID: 27793585 DOI: 10.1016/j.mimet.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Metatranscriptomics provides an opportunity to identify active microbes and expressed genes in complex soil communities in response to particular conditions. Currently, there are a limited number of soil metatranscriptome studies to provide guidance for using this approach in this challenging matrix. Hence, we evaluated the technical challenges of applying soil metatranscriptomics to a highly diverse, low activity natural system. We used a non-targeted rRNA removal approach, duplex nuclease specific (DSN) normalization, to generate a metatranscriptomic library from field collected soil supporting a perennial grass, Miscanthus x giganteus (a biofuel crop), and evaluated its ability to provide insight into its active community members and their expressed protein-coding genes. We also evaluated various bioinformatics approaches for analyzing our soil metatranscriptome, including annotation of unassembled transcripts, de novo assembly, and aligning reads to known genomes. Further, we evaluated various databases for their ability to provide annotations for our metatranscriptome. Overall, our results emphasize that low activity, highly genetically diverse and relatively stable microbiomes, like soil, requires very deep sequencing to sample the transcriptome beyond the common core functions. We identified several key areas that metatranscriptomic analyses will benefit from including increased rRNA removal, assembly of short read transcripts, and more relevant reference bases while providing a priority set of expressed genes for functional assessment.
Collapse
Affiliation(s)
- Aaron Garoutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.
| | - Erick Cardenas
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Tiedje
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Adina Howe
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States; Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
26
|
Peixoto RJM, Miranda KR, Lobo LA, Granato A, de Carvalho Maalouf P, de Jesus HE, Rachid CTCC, Moraes SR, Dos Santos HF, Peixoto RS, Rosado AS, Domingues RMCP. Antarctic strict anaerobic microbiota from Deschampsia antarctica vascular plants rhizosphere reveals high ecology and biotechnology relevance. Extremophiles 2016; 20:875-884. [PMID: 27709303 DOI: 10.1007/s00792-016-0878-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
The Antarctic soil microbial community has a crucial role in the growth and stabilization of higher organisms, such as vascular plants. Analysis of the soil microbiota composition in that extreme environmental condition is crucial to understand the ecological importance and biotechnological potential. We evaluated the efficiency of isolation and abundance of strict anaerobes in the vascular plant Deschampsia antarctica rhizosphere collected in the Antarctic's Admiralty Bay and associated biodiversity to metabolic perspective and enzymatic activity. Using anaerobic cultivation methods, we identified and isolated a range of microbial taxa whose abundance was associated with Plant Growth-Promoting Bacteria (PGPB) and presences were exclusively endemic to the Antarctic continent. Firmicutes was the most abundant phylum (73 %), with the genus Clostridium found as the most isolated taxa. Here, we describe two soil treatments (oxygen gradient and heat shock) and 27 physicochemical culture conditions were able to increase the diversity of anaerobic bacteria isolates. Heat shock treatment allowed to isolate a high percentage of new species (63.63 %), as well as isolation of species with high enzymatic activity (80.77 %), which would have potential industry application. Our findings contribute to the understanding of the role of anaerobic microbes regarding ecology, evolutionary, and biotechnological features essential to the Antarctic ecosystem.
Collapse
Affiliation(s)
- Rafael José Marques Peixoto
- Laboratório de Biologia dos Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373. Ilha do Fundão, CCS, bloco I, IMPG, 2o andar, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Karla Rodrigues Miranda
- Laboratório de Biologia dos Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373. Ilha do Fundão, CCS, bloco I, IMPG, 2o andar, Rio de Janeiro, CEP 21941-902, Brazil
| | - Leandro Araujo Lobo
- Laboratório de Biologia dos Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373. Ilha do Fundão, CCS, bloco I, IMPG, 2o andar, Rio de Janeiro, CEP 21941-902, Brazil
| | - Alessandra Granato
- Laboratório Integrado de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hugo Emiliano de Jesus
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio T C C Rachid
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Saulo Roni Moraes
- Universidade Severino Sombra, Vassouras, Rio de Janeiro, Brazil.,Universidade Veiga de Almeida, Rio de Janeiro, Brazil
| | - Henrique Fragoso Dos Santos
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Maria Cavalcanti Pilotto Domingues
- Laboratório de Biologia dos Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373. Ilha do Fundão, CCS, bloco I, IMPG, 2o andar, Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
27
|
Long XE, Wang J, Huang Y, Yao H. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15483-15494. [PMID: 27117156 DOI: 10.1007/s11356-016-6681-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroResp(TM), phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored L-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils.
Collapse
Affiliation(s)
- Xi-En Long
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China
| | - Juan Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China
| | - Ying Huang
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No. 6 Xianyin South Road, Qixia District, Nanjing, Jiangsu Province, 210046, China
| | - Huaiying Yao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen, 361021, China.
- Ningbo Key Lab of Urban Environment Process and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, No. 88 Zhong Ke Road, Ningbo, 315830, China.
| |
Collapse
|
28
|
Wang L, Liu X, Yu S, Shi X, Wang X, Zhang XH. Bacterial community structure in intertidal sediments of Fildes Peninsula, maritime Antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-016-1958-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CRJ, Graham DW. Microbial Communities in a High Arctic Polar Desert Landscape. Front Microbiol 2016; 7:419. [PMID: 27065980 PMCID: PMC4814466 DOI: 10.3389/fmicb.2016.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.
Collapse
Affiliation(s)
- Clare M McCann
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | - Matthew J Wade
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | | | - Casey R J Hubert
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne, UK; Energy Bioengineering and Geomicrobiology, University of Calgary, CalgaryAB, Canada
| | - David W Graham
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 2016; 20:337-49. [DOI: 10.1007/s00792-016-0825-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
31
|
Chu H, Sun H, Tripathi BM, Adams JM, Huang R, Zhang Y, Shi Y. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environ Microbiol 2016; 18:1523-33. [DOI: 10.1111/1462-2920.13236] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science, Chinese Academy of Sciences; East Beijing Road 71 Nanjing 210008 China
| | - Huaibo Sun
- Novogene Bioinformatics Institute; Beijing 100083 China
| | - Binu M. Tripathi
- Department of Biological Sciences; Seoul National University; Gwanak Seoul 151 South Korea
| | - Jonathan M. Adams
- Department of Biological Sciences; Seoul National University; Gwanak Seoul 151 South Korea
| | - Rong Huang
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science, Chinese Academy of Sciences; East Beijing Road 71 Nanjing 210008 China
| | - Yangjian Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Beijing 100101 China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science, Chinese Academy of Sciences; East Beijing Road 71 Nanjing 210008 China
| |
Collapse
|
32
|
Wang NF, Zhang T, Zhang F, Wang ET, He JF, Ding H, Zhang BT, Liu J, Ran XB, Zang JY. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front Microbiol 2015; 6:1188. [PMID: 26579095 PMCID: PMC4623505 DOI: 10.3389/fmicb.2015.01188] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
This study assessed the diversity and composition of bacterial communities in four different soils (human-, penguin-, seal-colony impacted soils and pristine soil) in the Fildes Region (King George Island, Antarctica) using 454 pyrosequencing with bacterial-specific primers targeting the 16S rRNA gene. Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia were abundant phyla in almost all the soil samples. The four types of soils were significantly different in geochemical properties and bacterial community structure. Thermotogae, Cyanobacteria, Fibrobacteres, Deinococcus-Thermus, and Chlorobi obviously varied in their abundance among the 4 soil types. Considering all the samples together, members of the genera Gaiella, Chloracidobacterium, Nitrospira, Polaromonas, Gemmatimonas, Sphingomonas, and Chthoniobacter were found to predominate, whereas members of the genera Chamaesiphon, Herbaspirillum, Hirschia, Nevskia, Nitrosococcus, Rhodococcus, Rhodomicrobium, and Xanthomonas varied obviously in their abundance among the four soil types. Distance-based redundancy analysis revealed that pH (p < 0.01), phosphate phosphorus (p < 0.01), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the community distribution of soil bacteria. To our knowledge, this is the first study to explore the soil bacterial communities in human-, penguin-, and seal- colony impacted soils from ice-free areas in maritime Antarctica using high-throughput pyrosequencing.
Collapse
Affiliation(s)
- Neng Fei Wang
- Key Lab of Marine Bioactive Substances, The First Institute of Oceanography, State Oceanic Administration Qingdao, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences Beijing, China
| | - Fang Zhang
- Polar Research Institute of China Shanghai, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico, Mexico
| | - Jian Feng He
- Polar Research Institute of China Shanghai, China
| | - Hui Ding
- Chemical Engineering Institute, Qingdao University Qingdao, China
| | - Bo Tao Zhang
- Chemical Engineering Institute, Qingdao University Qingdao, China
| | - Jie Liu
- Department of Bioengineering and Biotechnology, Qingdao University of Science and Technology Qingdao, China
| | - Xiang Bin Ran
- Key Lab of Marine Bioactive Substances, The First Institute of Oceanography, State Oceanic Administration Qingdao, China
| | - Jia Ye Zang
- Key Lab of Marine Bioactive Substances, The First Institute of Oceanography, State Oceanic Administration Qingdao, China
| |
Collapse
|
33
|
Chong CW, Pearce DA, Convey P. Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol 2015; 6:1058. [PMID: 26483777 PMCID: PMC4588704 DOI: 10.3389/fmicb.2015.01058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of “functional redundancy” for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Chun-Wie Chong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur Malaysia ; National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia
| | - David A Pearce
- National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia ; Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne UK ; University Centre in Svalbard, Longyearbyen Norway ; British Antarctic Survey, Cambridge UK
| | - Peter Convey
- National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia ; British Antarctic Survey, Cambridge UK
| |
Collapse
|
34
|
Xing M, Li Z, Wang W, Sun M. Diversity of bacterioplankton in the surface seawaters of Drake Passage near the Chinese Antarctic station. FEMS Microbiol Lett 2015; 362:fnv106. [PMID: 26184094 DOI: 10.1093/femsle/fnv106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 11/12/2022] Open
Abstract
The determination of relative abundances and distribution of different bacterial groups is a critical step toward understanding the functions of various bacteria and its surrounding environment. Few studies focus on the taxonomic composition and functional diversity of microbial communities in Drake Passage. In this study, marine bacterioplankton communities from surface seawaters at five locations in Drake Passage were examined by 16S rRNA gene sequence analyses. The results indicated that psychrophilic bacteria were the most abundant group in Drake Passage, and mainly made up of Bacillus, Aeromonas, Psychrobacter, Pseudomonas and Halomonas. Diversity analysis showed that surface seawater communities had no significant correlation with latitudinal gradient. Additionally, a clear difference among five surface seawater communities was evident, with 1.8% OTUs (only two) belonged to Bacillus consistent across five locations and 71% OTUs (80) existed in only one location. However, the few cosmopolitans had the largest population sizes. Our results support the hypothesis that the dominant bacterial groups appear to be analogous between geographical sites, but significant differences may be detected among rare bacterial groups. The microbial diversity of surface seawaters would be liable to be affected by environmental factors.
Collapse
Affiliation(s)
- Mengxin Xing
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Zhao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Wei Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| |
Collapse
|
35
|
Kim M, Cho A, Lim HS, Hong SG, Kim JH, Lee J, Choi T, Ahn TS, Kim OS. Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica. PLoS One 2015; 10:e0119966. [PMID: 25799273 PMCID: PMC4370865 DOI: 10.1371/journal.pone.0119966] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment.
Collapse
Affiliation(s)
- Mincheol Kim
- Arctic Research Center, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ahnna Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Environmental Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyoun Soo Lim
- Department of Geological Sciences, Pusan National University, Busan, Republic of Korea
| | - Soon Gyu Hong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ji Hee Kim
- Department of New Antarctic Station, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Joohan Lee
- Department of New Antarctic Station, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Taejin Choi
- Division of Climate Change, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae Seok Ahn
- Department of Environmental Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ok-Sun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Hughes KA, Cowan DA, Wilmotte A. Protection of Antarctic microbial communities - 'out of sight, out of mind'. Front Microbiol 2015; 6:151. [PMID: 25762992 PMCID: PMC4340226 DOI: 10.3389/fmicb.2015.00151] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/09/2015] [Indexed: 01/26/2023] Open
Abstract
Recent advances in molecular biology techniques have shown the presence of diverse microbial communities and endemic species in Antarctica. Endemic microbes may be a potential source of novel biotechnologically important compounds, including, for example, new antibiotics. Thus, the scientific and biotechnological value of Antarctic terrestrial microbial habitats can be compromised by human visitation to a greater extent than previously realized. The ever-increasing human footprint in Antarctica makes consideration of this topic more pressing, as the number of locations known to be pristine habitats, where increasingly sophisticated cutting-edge research techniques may be used to their full potential, declines. Examination of the Protected Areas system of the Antarctic Treaty shows that microbial habitats are generally poorly protected. No other continent on Earth is dominated to the same degree by microbial species, and real opportunities exist to develop new ways of conceptualizing and implementing conservation of microbial biogeography on a continental scale. Here we highlight potential threats both to the conservation of terrestrial microbial ecosystems, and to future scientific research requiring their study.
Collapse
Affiliation(s)
- Kevin A. Hughes
- British Antarctic Survey, Natural Environment Research CouncilCambridge, UK
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of PretoriaPretoria, South Africa
| | - Annick Wilmotte
- Bacterial Physiology and Genetics, Centre for Protein Engineering, Department of Life Sciences, University of LiègeLiège, Belgium
| |
Collapse
|
37
|
Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 2014; 9:e106704. [PMID: 25211235 PMCID: PMC4161386 DOI: 10.1371/journal.pone.0106704] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology, and Division of Life Sciences, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Haeyoung Jeong
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Munusamy Madhaiyan
- Department of Agricultural Chemistry, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
| | - Tong-Min Sa
- Department of Agricultural Chemistry, Chungbuk National University, Heungdeok-gu, Cheongju, Republic of Korea
| | - Tae Kwang Oh
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- 21C Frontier Microbial Genomics and Applications Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, and Division of Life Sciences, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Walters SS, Quiros A, Rolston M, Grishina I, Li J, Fenton A, DeSantis TZ, Thai A, Andersen GL, Papathakis P, Nieves R, Prindiville T, Dandekar S. Analysis of Gut Microbiome and Diet Modification in Patients with Crohn's Disease. SOJ MICROBIOLOGY & INFECTIOUS DISEASES 2014; 2:1-13. [PMID: 29756026 PMCID: PMC5944867 DOI: 10.15226/sojmid/2/3/00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The human intestine harbors trillions of commensal microbes that live in homeostasis with the host immune system. Changes in the composition and complexity of gut microbial communities are seen in inflammatory bowel disease (IBD), indicating disruption in host-microbe interactions. Multiple factors including diet and inflammatory conditions alter the microbial complexity. The goal of this study was to develop an optimized methodology for fecal sample processing and to detect changes in the gut microbiota of patients with Crohn's disease receiving specialized diets. DESIGN Fecal samples were obtained from patients with Crohn's disease in a pilot diet crossover trial comparing the effects of a specific carbohydrate diet (SCD) versus a low residue diet (LRD) on the composition and complexity of the gut microbiota and resolution of IBD symptoms. The gut microbiota composition was assessed using a high-density DNA microarray PhyloChip. RESULTS DNA extraction from fecal samples using a column based method provided consistent results. The complexity of the gut microbiome was lower in IBD patients compared to healthy controls. An increased abundance of Bacteroides fragilis (B. fragilis) was observed in fecal samples from IBD positive patients. The temporal response of gut microbiome to the SCD resulted in an increased microbial diversity while the LRD diet was associated with reduced diversity of the microbial communities. CONCLUSION Changes in the composition and complexity of the gut microbiome were identified in response to specialized carbohydrate diet. The SCD was associated with restructuring of the gut microbial communities.
Collapse
Affiliation(s)
| | - Antonio Quiros
- Department of Internal Medicine, University of CA Davis, Sacramento, USA
- Division of Pediatric Gastroenterology MUSC Children’s Hospital, Charleston, SC
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, University of CA Davis, USA
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, University of CA Davis, USA
| | - Jay Li
- Department of Medical Microbiology and Immunology, University of CA Davis, USA
| | - Anne Fenton
- Department of Medical Microbiology and Immunology, University of CA Davis, USA
| | - Todd Z. DeSantis
- Department of Bioinformatics, Second Genome, San Bruno, CA 94066
| | - Anne Thai
- Department of Internal Medicine, University of CA Davis, Sacramento, USA
| | - Gary L Andersen
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Peggy Papathakis
- Department of Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Raquel Nieves
- Department of Pediatrics, David Grant Medical Center, Travis Air Force Base, California, 94535
| | - Thomas Prindiville
- Department of Internal Medicine, University of CA Davis, Sacramento, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of CA Davis, USA
| |
Collapse
|
39
|
Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 2014; 89:347-59. [PMID: 24646164 DOI: 10.1111/1574-6941.12322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022] Open
Abstract
Archaea are the least understood members of the microbial community in Antarctic mineral soils. Although their occurrence in Antarctic coastal soils has been previously documented, little is known about their distribution in soils across the McMurdo Dry Valleys, Victoria Land. In this study, terminal-restriction fragment length polymorphism (t-RFLP) analysis and 454 pyrosequencing were coupled with a detailed analysis of soil physicochemical properties to characterize archaeal diversity and identify environmental factors that might shape and maintain archaeal communities in soils of the three southern most McMurdo Dry Valleys (Garwood, Marshall, and Miers Valley). Archaea were successfully detected in all inland and coastal mineral soils tested, revealing a low overall richness (mean of six operational taxonomic units [OTUs] per sample site). However, OTU richness was higher in some soils and this higher richness was positively correlated with soil water content, indicating water as a main driver of archaeal community richness. In total, 18 archaeal OTUs were detected, predominately Thaumarchaeota affiliated with Marine Group 1.1b (> 80% of all archaeal sequences recovered). Less abundant OTUs (2% of all archaeal sequences) were loosely related to members of the phylum Euryarchaeota. This is the first comprehensive study showing a widespread presence and distribution of Archaea in inland Antarctic soils.
Collapse
Affiliation(s)
- Ingrid Richter
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | | | | |
Collapse
|
40
|
Vishnivetskaya TA, Layton AC, Lau MCY, Chauhan A, Cheng KR, Meyers AJ, Murphy JR, Rogers AW, Saarunya GS, Williams DE, Pfiffner SM, Biggerstaff JP, Stackhouse BT, Phelps TJ, Whyte L, Sayler GS, Onstott TC. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol Ecol 2013; 87:217-30. [PMID: 24102625 DOI: 10.1111/1574-6941.12219] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022] Open
Abstract
The total community genomic DNA (gDNA) from permafrost was extracted using four commercial DNA extraction kits. The gDNAs were compared using quantitative real-time PCR (qPCR) targeting 16S rRNA genes and bacterial diversity analyses obtained via 454 pyrosequencing of the 16S rRNA (V3 region) amplified in single or nested PCR. The FastDNA(®) SPIN (FDS) Kit provided the highest gDNA yields and 16S rRNA gene concentrations, followed by MoBio PowerSoil(®) (PS) and MoBio PowerLyzer™ (PL) kits. The lowest gDNA yields and 16S rRNA gene concentrations were from the Meta-G-Nome™ (MGN) DNA Isolation Kit. Bacterial phyla identified in all DNA extracts were similar to that found in other soils and were dominated by Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Acidobacteria. Weighted UniFrac and statistical analyses indicated that bacterial community compositions derived from FDS, PS, and PL extracts were similar to each other. However, the bacterial community structure from the MGN extracts differed from other kits exhibiting higher proportions of easily lysed β- and γ-Proteobacteria and lower proportions of Actinobacteria and Methylocystaceae important in carbon cycling. These results indicate that gDNA yields differ between the extraction kits, but reproducible bacterial community structure analysis may be accomplished using gDNAs from the three bead-beating lysis extraction kits.
Collapse
|
41
|
Steven B, Lionard M, Kuske CR, Vincent WF. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. PLoS One 2013; 8:e71489. [PMID: 23967218 PMCID: PMC3742766 DOI: 10.1371/journal.pone.0071489] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.
Collapse
Affiliation(s)
- Blaire Steven
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Marie Lionard
- Département de biologie, Université Laval, Québec City, Québec, Canada
- Centre d’Études Nordiques, Université Laval, Québec City, Québec, Canada
| | - Cheryl R. Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Warwick F. Vincent
- Département de biologie, Université Laval, Québec City, Québec, Canada
- Centre d’Études Nordiques, Université Laval, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Teixeira LCRS, Yeargeau E, Balieiro FC, Piccolo MC, Peixoto RS, Greer CW, Rosado AS. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica. PLoS One 2013; 8:e66109. [PMID: 23840411 PMCID: PMC3688718 DOI: 10.1371/journal.pone.0066109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.
Collapse
Affiliation(s)
- Lia C. R. S. Teixeira
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Etienne Yeargeau
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
| | - Fabiano C. Balieiro
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) solos, Rio de Janeiro, RJ, Brasil
| | - Marisa C. Piccolo
- Laboratório de Ciclagem de Nutrientes, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, SP, Brasil
| | - Raquel S. Peixoto
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Charles W. Greer
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
| | - Alexandre S. Rosado
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- * E-mail:
| |
Collapse
|
43
|
Zhang R, Wu Q, Piceno YM, Desantis TZ, Saunders FM, Andersen GL, Liu WT. Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis. FEMS Microbiol Ecol 2013; 86:277-87. [PMID: 23837564 DOI: 10.1111/1574-6941.12160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Tibetan lakes represent a unique microbial environment and are a good ecosystem to investigate the microbial diversity of high mountain lakes and their relationship with environmental factors. The diversity and community structure of bacterioplankton in Tibetan lakes was determined using DNA fingerprinting analysis, high-density 16S rRNA gene microarray (PhyloChip) analysis, and extensive clone library analysis of bacterial 16S rRNA genes. A previously unseen high microbial diversity (1732 operational taxonomic units based on PhyloChip data) and numerous novel bacterial 16S rRNA gene sequences were observed. Abundant SAR11-like sequences retrieved from saline Lake Qinghai demonstrated a unique SAR11 phylogenetic sister clade related to the freshwater LD12 clade. Water chemistry (e.g. salinity) and altitude played important roles in the selection of bacterial taxa (both presence and relative abundance) in Tibetan lakes. The ubiquity and uniqueness of bacterial taxa, as well as the correlation between environmental factors and bacterial taxa, was observed to vary gradually with different phylogenetic levels. Our study suggested high microbial cosmopolitanism and high endemicity observed at higher and lower phylogenetic levels, respectively.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Environmental Science and Engineering, National University of Singapore, Singapore; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left Out in the Cold: Life in Cryoenvironments. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6488-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
45
|
Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. BIOLOGY 2013; 2:533-54. [PMID: 24832797 PMCID: PMC3960893 DOI: 10.3390/biology2020533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/29/2023]
Abstract
Intermicrobial competition is known to occur in many natural environments, and can result from direct conflict between organisms, or from differential rates of growth, colonization, and/or nutrient acquisition. It has been difficult to extensively examine intermicrobial competition in situ, but these interactions may play an important role in the regulation of the many biogeochemical processes that are tied to microbial communities in polar soils. A greater understanding of how competition influences productivity will improve projections of gas and nutrient flux as the poles warm, may provide biotechnological opportunities for increasing the degradation of contaminants in polar soil, and will help to predict changes in communities of higher organisms, such as plants.
Collapse
|
46
|
Korves TM, Piceno YM, Tom LM, DeSantis TZ, Jones BW, Andersen GL, Hwang GM. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. INDOOR AIR 2013; 23:50-61. [PMID: 22563927 PMCID: PMC7201892 DOI: 10.1111/j.1600-0668.2012.00787.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/29/2012] [Indexed: 05/20/2023]
Abstract
UNLABELLED Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. PRACTICAL IMPLICATIONS A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak.
Collapse
Affiliation(s)
- T. M. Korves
- Cognitive Tools and Data Management Department, The MITRE Corporation, Bedford, MA, USA
| | - Y. M. Piceno
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - L. M. Tom
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T. Z. DeSantis
- Department of Bioinformatics, Second Genome, San Bruno, CA, USA
| | - B. W. Jones
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, USA
| | - G. L. Andersen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - G. M. Hwang
- Office of the Chief Engineer, The MITRE Corporation, Woodlawn, MD, USA
| |
Collapse
|
47
|
Bargoma E, La Duc MT, Kwan K, Vaishampayan P, Venkateswaran K. Differential recovery of phylogenetically disparate microbes from spacecraft-qualified metal surfaces. ASTROBIOLOGY 2013; 13:189-202. [PMID: 23421553 DOI: 10.1089/ast.2012.0917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Universal and species-specific quantitative polymerase chain reaction-based methods were employed to compare the effectiveness of four distinct materials used to collect biological samples from metal surfaces. Known cell densities of a model microbial community (MMC) were deposited onto metal surfaces and subsequently collected with cotton and nylon-flocked swabs for small surface areas and biological sampling kits (BiSKits) and polyester wipes for large surface areas. Ribosomal RNA gene-based quantitative PCR (qPCR) analyses revealed that cotton swabs were superior to nylon-flocked swabs for recovering nucleic acids (i.e., DNA) from small surface areas. Similarly, BiSKits outperformed polyester wipes for sampling large surface areas. Species-specific qPCR results show a differential recovery of rRNA genes of the various MMC constituents, seemingly dependent on the type of sampling device employed. Both cotton swabs and BiSKits recovered the rDNA of all nine of the MMC constituent microbes assayed, whereas nylon-flocked swabs and polyester wipes recovered the rDNA of only six and four of these MMC strains, respectively. The findings of this study demonstrate the importance and proficiency of molecular techniques in gauging the effectiveness and efficiency of various modes of biological sample collection from metal surfaces.
Collapse
Affiliation(s)
- E Bargoma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | | | | | | | | |
Collapse
|
48
|
Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. MICROBIAL ECOLOGY 2013; 65:39-49. [PMID: 22864851 DOI: 10.1007/s00248-012-0092-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.
Collapse
Affiliation(s)
- Bram Sercu
- Earth Research Institute, University of California, Santa Barbara, CA 93106-4161, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM. Metagenomic analysis of a southern maritime antarctic soil. Front Microbiol 2012; 3:403. [PMID: 23227023 PMCID: PMC3514609 DOI: 10.3389/fmicb.2012.00403] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of Antarctic soils is derived from direct culture on selective media, biodiversity studies based on clone library construction and analysis, quantitative PCR amplification of specific gene sequences and the application of generic microarrays for microbial community analysis. Here, we investigated the biodiversity and functional potential of a soil community at Mars Oasis on Alexander Island in the southern Maritime Antarctic, by applying 454 pyrosequencing technology to a metagenomic library constructed from soil genomic DNA. The results suggest that the commonly cited range of phylotypes used in clone library construction and analysis of 78–730 OTUs (de-replicated to 30–140) provides low coverage of the major groups present (∼5%). The vast majority of functional genes (>77%) were for structure, carbohydrate metabolism, and DNA/RNA processing and modification. This study suggests that prokaryotic diversity in Antarctic terrestrial environments appears to be limited at the generic level, with Proteobacteria, Actinobacteria being common. Cyanobacteria were surprisingly under-represented at 3.4% of sequences, although ∼1% of the genes identified were involved in CO2 fixation. At the sequence level there appeared to be much greater heterogeneity, and this might be due to high divergence within the relatively restricted lineages which have successfully colonized Antarctic terrestrial environments.
Collapse
Affiliation(s)
- David A Pearce
- Ecosystems Programme, Natural Environment Research Council, British Antarctic Survey Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kenarova A, Encheva M, Chipeva V, Chipev N, Hristova P, Moncheva P. Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol 2012. [DOI: 10.1007/s00300-012-1254-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|