1
|
Amacker N, Gao Z, Jousset ALC, Geisen S, Kowalchuk GA. Identity and timing of protist inoculation affect plant performance largely irrespective of changes in the rhizosphere microbial community. Appl Environ Microbiol 2025; 91:e0024025. [PMID: 40162835 PMCID: PMC12016509 DOI: 10.1128/aem.00240-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Bacterivorous soil protists can have positive impacts on plant performance, making them attractive targets for novel strategies to improve crop production. However, we generally lack the knowledge required to make informed choices regarding the protist species to be used or the optimal conditions for such amendments. Here, we examined how identity, diversity, and timing of inoculation of well-described protists impacted plant development and rhizosphere microbiome assembly. We first studied the impact of individual inoculation of six well-characterized protists on lettuce growth, with Cercomonas sp. S24D2 emerging as the strain with the largest impact on plant growth. In a second step, we created a three-protist species mixture inoculant by adding two protist species (Acanthamoeba sp. C13D2 and a heterolobosean isolate S18D10), based on differences in their feeding patterns. We then inoculated Cercomonas sp. either individually or in the protist mixture to lettuce plants 1 week before, simultaneously with, or 1 week after seedling transfer. We monitored plant growth and nutrient content, as well as impacts on the resident soil and rhizosphere microbiome composition. We found that early protist inoculation provided the greatest increase in aboveground biomass compared to the non-inoculated control. Single- and mixed-species inoculations had similar impacts on plant development and only minor impacts on prokaryotic community composition. While early inoculation seems to be the most promising timing for eliciting the positive effects of protist amendments, further, more systematic studies will be necessary to determine the conditions and ecological interactions that yield consistent and predictable improvements in plant performance. IMPORTANCE The application of microorganisms, including bacterivorous soil protists, has been increasingly suggested as a sustainable agricultural approach. While positive impacts of the presence of predatory protists have been generally reported, the effects of the selected species and amendment conditions are largely unknown. Here, we examined how identity, diversity, and timing of inoculation of well-described protists impacted plant development and rhizosphere microbiome assembly. One species emerged as the one having the strongest impact in our specific system. This result highlights the importance of species selection for optimal outcome, but also suggests a huge potential in the barely investigated protist diversity for targeted application. Furthermore, the application of the inoculants before plant transfer showed the strongest effects on plants, providing some useful and new insights on the optimal time for such amendments.
Collapse
Affiliation(s)
- Nathalie Amacker
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, the Netherlands
| | - Zhilei Gao
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, the Netherlands
- ECOstyle, Oosterwolde, the Netherlands
| | - Alexandre L. C. Jousset
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, the Netherlands
- Blossom Microbial Technologies BV, Utrecht, the Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, the Netherlands
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Xu X, Wang X, Sun T, Liu S, Dong M, Yue Y, Min Y, Jousset A, Xiao X, Liu S, Geisen S, Krashevska V, Shen Q, Scheu S, Li R. Interactions Between Bacterivorous Nematodes and Bacteria Reduce N 2O Emissions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413227. [PMID: 39887670 PMCID: PMC11948072 DOI: 10.1002/advs.202413227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Trophic interactions in micro-food webs, such as those between nematodes and their bacterial prey, affect nitrogen cycling in soils, potentially changing nitrous oxide (N2O) production and consumption. However, how nematode-mediated changes in soil bacterial community composition affect soil N2O emissions is largely unknown. Here, microcosm experiments are performed with the bacterial feeding nematode Protorhabditis to explore the potential of nematodes in regulating microbial communities and thereby soil N2O emissions. Removal of nematodes by defaunation resulted in increased N2O emissions, with the removal of Protorhabditis contributing most to this increase. Further, inoculation with Protorhabditis altered bacterial community composition and increased the relative abundance of Bacillus, and the abundance of the nosZ gene in soil. In vitro experiments indicated that Protorhabditis reinforce the reduction in N2O emissions by Bacillus due to suppressing competitors and producing bacteria growth stimulating substances such as betaine. The results indicate that interactions between nematodes and bacteria modify N2O emissions providing the perspective for the mitigation of greenhouse gas emissions via manipulating trophic interactions in soil.
Collapse
Affiliation(s)
- Xu Xu
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
- JF Blumenbach Institute of Zoology and AnthropologyUniversity of Göttingen37073GöttingenGermany
| | - Xinling Wang
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Ting Sun
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Shanshan Liu
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
- Ecology and Biodiversity GroupInstitute of Environmental BiologyDepartment of BiologyUtrecht UniversityPadualaan 8Utrecht3584 CHThe Netherlands
| | - Menghui Dong
- Department of AgroecologyFaculty of Technical SciencesAarhus UniversityForsøgsvej 1Slagelse4200Denmark
| | - Yang Yue
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Yi Min
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Alexandre Jousset
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Xian Xiao
- School of Environmental and Safety EngineeringChangzhou UniversityChangzhou213164China
| | - Shuwei Liu
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs MitigationCollege of Resources and Environmental SciencesNanjing Agricultural UniversityNanjing210095China
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| | - Valentyna Krashevska
- JF Blumenbach Institute of Zoology and AnthropologyUniversity of Göttingen37073GöttingenGermany
- Senckenberg Biodiversity and Climate Research CentreFunctional Environmental GenomicsSenckenberganlage 2560325FrankfurtGermany
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Stefan Scheu
- JF Blumenbach Institute of Zoology and AnthropologyUniversity of Göttingen37073GöttingenGermany
- Centre of Biodiversity and Sustainable Land Use37073GöttingenGermany
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural UniversityEducational Ministry Engineering Center of Resource‐Saving FertilizersJiangsu Provincial Key Lab for Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingJiangsu210095China
| |
Collapse
|
3
|
Suma HR, Stallforth P. Pleiotropic regulation of bacterial toxin production and Allee effect govern microbial predator-prey interactions. ISME COMMUNICATIONS 2025; 5:ycaf031. [PMID: 40083912 PMCID: PMC11904905 DOI: 10.1093/ismeco/ycaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Bacteria are social organisms, which are constantly exposed to predation by nematodes or amoebae. To counteract these predation pressures, bacteria have evolved a variety of potent antipredator strategies. Bacteria of the genus Pseudomonas, for instance, evade amoebal predation by the secretion of amoebicidal natural products. The soil bacterium Pseudomonas fluorescens HKI0770 produces pyreudione alkaloids that can kill amoebae. Even though the mode of action of the pyreudiones has been elucidated, the spatiotemporal dynamics underlying this predator-prey interaction remain unknown. Using a combination of microscopy and analytical techniques, we elucidated the intricate relationship of this predator-prey association. We used the chromatic bacteria toolbox for intraspecific differentiation of the amoebicide-producing wildtype and the non-producing mutant within microcosms. These allow for variations in nutrient availability and the emergence of predation-evasion strategies of interacting microorganisms. Imaging of the co-cultures revealed that the amoebae initially ingest both the non-producer as well as the toxin-producer cells. The outcomes of predator-prey interactions are governed by the population size and fitness of the interacting partners. We identified that changes in the cell density coupled with alterations in nutrient availability led to a strong Allee effect resulting in the diminished production of pyreudione A. The loss of defense capabilities renders P. fluorescens HKI0770 palatable to amoebae. Such a multifaceted regulation provides the basis for a model by which predator-prey populations are being regulated in specific niches. Our results demonstrate how the spatiotemporal regulation of bacterial toxin production alters the feeding behavior of amoeba.
Collapse
Affiliation(s)
- Harikumar R Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University, Humboldtstrasse 10, 07743 Jena, Germany
| |
Collapse
|
4
|
Gao M, Xiong C, Tsui CKM, Cai L. Pathogen invasion increases the abundance of predatory protists and their prey associations in the plant microbiome. Mol Ecol 2024; 33:e17228. [PMID: 38037712 DOI: 10.1111/mec.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Soil and plant-associated protistan communities play a key role in shaping bacterial and fungal communities, primarily through their function as top-down predators. However, our understanding of how pathogen invasion influences these protistan communities and their relationships with bacterial and fungal communities remains limited. Here, we studied the protistan communities along the soil-plant continuum of healthy chilli peppers and those affected by Fusarium wilt disease (FWD), and integrated bacterial and fungal community data from our previous research. Our research showed that FWD was associated with a significant enrichment of phagotrophic protists in roots, and also increased the proportion and connectivity of these protists (especially Cercozoa and Ciliophora) in both intra- and inter-kingdom networks. Furthermore, the microbiome of diseased plants not only showed a higher relative abundance of functional genes related to bacterial anti-predator responses than healthy plants, but also contained a greater abundance of metagenome-assembled genomes with functional traits involved in this response. The increased microbial inter-kingdom associations between bacteria and protists, coupled with the notable bacterial anti-predator feedback in the microbiome of diseased plants, suggest that FWD may catalyse the associations between protists and their microbial prey. These findings highlight the potential role of predatory protists in influencing microbial assembly and functionality through top-down forces under pathogenic stress.
Collapse
Affiliation(s)
- Min Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Clement K M Tsui
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Guo S, Jiao Z, Yan Z, Yan X, Deng X, Xiong W, Tao C, Liu H, Li R, Shen Q, Kowalchuk GA, Geisen S. Predatory protists reduce bacteria wilt disease incidence in tomato plants. Nat Commun 2024; 15:829. [PMID: 38280866 PMCID: PMC10821857 DOI: 10.1038/s41467-024-45150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Soil organisms are affected by the presence of predatory protists. However, it remains poorly understood how predatory protists can affect plant disease incidence and how fertilization regimes can affect these interactions. Here, we characterise the rhizosphere bacteria, fungi and protists over eleven growing seasons of tomato planting under three fertilization regimes, i.e conventional, organic and bioorganic, and with different bacterial wilt disease incidence levels. We find that predatory protists are negatively associated with disease incidence, especially two ciliophoran Colpoda OTUs, and that bioorganic fertilization enhances the abundance of predatory protists. In glasshouse experiments we find that the predatory protist Colpoda influences disease incidence by directly consuming pathogens and indirectly increasing the presence of pathogen-suppressive microorganisms in the soil. Together, we demonstrate that predatory protists reduce bacterial wilt disease incidence in tomato plants via direct and indirect reductions of pathogens. Our study provides insights on the role that predatory protists play in plant disease, which could be used to design more sustainable agricultural practices.
Collapse
Affiliation(s)
- Sai Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Zixuan Jiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhiguang Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xinyue Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
- Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Liu C, Wang Y, Zhou Z, Wang S, Wei Z, Ravanbakhsh M, Shen Q, Xiong W, Kowalchuk GA, Jousset A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. THE ISME JOURNAL 2024; 18:wrae169. [PMID: 39259188 PMCID: PMC11453101 DOI: 10.1093/ismejo/wrae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Chen Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Yijin Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zeyuan Zhou
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Guo S, Geisen S, Mo Y, Yan X, Huang R, Liu H, Gao Z, Tao C, Deng X, Xiong W, Shen Q, Kowalchuk GA, Li R. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. THE ISME JOURNAL 2024; 18:wrae180. [PMID: 39312488 PMCID: PMC11459550 DOI: 10.1093/ismejo/wrae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Yani Mo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xinyue Yan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Ruoling Huang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Zhilei Gao
- Department of Research and Innovation, EUROstyle BV, Ecomunitypark 1, Oosterwolde 8431 SM, the Netherlands
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| |
Collapse
|
8
|
Vacheron J, Heiman CM, Garneau JR, Kupferschmied P, de Jonge R, Garrido-Sanz D, Keel C. Molecular and evolutionary basis of O-antigenic polysaccharide-driven phage sensitivity in environmental pseudomonads. Microbiol Spectr 2023; 11:e0204923. [PMID: 37800913 PMCID: PMC10715155 DOI: 10.1128/spectrum.02049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Clara M. Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter Kupferschmied
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Nguyen TBA, Bonkowski M, Dumack K, Chen QL, He JZ, Hu HW. Protistan predation selects for antibiotic resistance in soil bacterial communities. THE ISME JOURNAL 2023; 17:2182-2189. [PMID: 37794244 PMCID: PMC10689782 DOI: 10.1038/s41396-023-01524-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Understanding how antibiotic resistance emerges and evolves in natural habitats is critical for predicting and mitigating antibiotic resistance in the context of global change. Bacteria have evolved antibiotic production as a strategy to fight competitors, predators and other stressors, but how predation pressure of their most important consumers (i.e., protists) affects soil antibiotic resistance genes (ARGs) profiles is still poorly understood. To address this gap, we investigated responses of soil resistome to varying levels of protistan predation by inoculating low, medium and high concentrations of indigenous soil protist suspensions in soil microcosms. We found that an increase in protistan predation pressure was strongly associated with higher abundance and diversity of soil ARGs. High protist concentrations significantly enhanced the abundances of ARGs encoding multidrug (oprJ and ttgB genes) and tetracycline (tetV) efflux pump by 608%, 724% and 3052%, respectively. Additionally, we observed an increase in the abundance of numerous bacterial genera under high protistan pressure. Our findings provide empirical evidence that protistan predation significantly promotes antibiotic resistance in soil bacterial communities and advances our understanding of the biological driving forces behind the evolution and development of environmental antibiotic resistance.
Collapse
Affiliation(s)
- Thi Bao-Anh Nguyen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany
| | - Qing-Lin Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Pike VL, Stevens EJ, Griffin AS, King KC. Within- and between-host dynamics of producer and non-producer pathogens. Parasitology 2023; 150:805-812. [PMID: 37394480 PMCID: PMC10478067 DOI: 10.1017/s0031182023000586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023]
Abstract
For infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.
Collapse
Affiliation(s)
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Legionella pneumophila and Free-Living Nematodes: Environmental Co-Occurrence and Trophic Link. Microorganisms 2023; 11:microorganisms11030738. [PMID: 36985310 PMCID: PMC10056204 DOI: 10.3390/microorganisms11030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic L. pneumophila, the causative agent of Legionnaires’ disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of L. pneumophila in cooling towers. Consequently, the nematode species Plectus similis and L. pneumophila were isolated from the same cooling tower biofilm and taken into a monoxenic culture. Using pharyngeal pumping assays, potential feeding relationships between P. similis and different L. pneumophila strains and mutants were examined and compared with Plectus sp., a species isolated from a L. pneumophila-positive thermal source biofilm. The assays showed that bacterial suspensions and supernatants of the L. pneumophila cooling tower isolate KV02 decreased pumping rate and feeding activity in nematodes. However, assays investigating the hypothesized negative impact of Legionella’s major secretory protein ProA on pumping rate revealed opposite effects on nematodes, which points to a species-specific response to ProA. To extend the food chain by a further trophic level, Acanthamoebae castellanii infected with L. pneumphila KV02 were offered to nematodes. The pumping rates of P. similis increased when fed with L. pneumophila-infected A. castellanii, while Plectus sp. pumping rates were similar when fed either infected or non-infected A. castellanii. This study revealed that cooling towers are the main water bodies where L. pneumophila and free-living nematodes coexist and is the first step in elucidating the trophic links between coexisting taxa from that habitat. Investigating the Legionella–nematode–amoebae interactions underlined the importance of amoebae as reservoirs and transmission vehicles of the pathogen for nematode predators.
Collapse
|
12
|
Dumack K, Feng K, Flues S, Sapp M, Schreiter S, Grosch R, Rose LE, Deng Y, Smalla K, Bonkowski M. What Drives the Assembly of Plant-associated Protist Microbiomes? Investigating the Effects of Crop Species, Soil Type and Bacterial Microbiomes. Protist 2022; 173:125913. [PMID: 36257252 DOI: 10.1016/j.protis.2022.125913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
In a field experiment we investigated the influence of the environmental filters soil type (i.e. three contrasting soils) and plant species (i.e. lettuce and potato) identity on rhizosphere community assembly of Cercozoa, a dominant group of mostly bacterivorous soil protists. Plant species (14%) and rhizosphere origin (vs bulk soil) with 13%, together explained four times more variation in cercozoan beta diversity than the three soil types (7% explained variation). Our results clearly confirm the existence of plant species-specific protist communities. Network analyses of bacteria-Cercozoa rhizosphere communities identified scale-free small world topologies, indicating mechanisms of self-organization. While the assembly of rhizosphere bacterial communities is bottom-up controlled through the resource supply from root (secondary) metabolites, our results support the hypothesis that the net effect may depend on the strength of top-down control by protist grazers. Since grazing of protists has a strong impact on the composition and functioning of bacteria communities, protists expand the repertoire of plant genes by functional traits, and should be considered as 'protist microbiomes' in analogy to 'bacterial microbiomes'.
Collapse
Affiliation(s)
- Kenneth Dumack
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany.
| | - Kai Feng
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Flues
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| | - Melanie Sapp
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Population Genetics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Susanne Schreiter
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany; Helmholtz Centre for Environmental Research GmbH (UFZ), Deptartment Soil System Science, Theodor-Lieser-Str.4, 06120 Halle, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Laura E Rose
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Population Genetics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Michael Bonkowski
- University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Str. 47b, 50674 Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| |
Collapse
|
13
|
Guo S, Tao C, Jousset A, Xiong W, Wang Z, Shen Z, Wang B, Xu Z, Gao Z, Liu S, Li R, Ruan Y, Shen Q, Kowalchuk GA, Geisen S. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. THE ISME JOURNAL 2022; 16:1932-1943. [PMID: 35461357 PMCID: PMC9296445 DOI: 10.1038/s41396-022-01244-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
Abstract
Plant health is strongly impacted by beneficial and pathogenic plant microbes, which are themselves structured by resource inputs. Organic fertilizer inputs may thus offer a means of steering soil-borne microbes, thereby affecting plant health. Concurrently, soil microbes are subject to top-down control by predators, particularly protists. However, little is known regarding the impact of microbiome predators on plant health-influencing microbes and the interactive links to plant health. Here, we aimed to decipher the importance of predator-prey interactions in influencing plant health. To achieve this goal, we investigated soil and root-associated microbiomes (bacteria, fungi and protists) over nine years of banana planting under conventional and organic fertilization regimes differing in Fusarium wilt disease incidence. We found that the reduced disease incidence and improved yield associated with organic fertilization could be best explained by higher abundances of protists and pathogen-suppressive bacteria (e.g. Bacillus spp.). The pathogen-suppressive actions of predatory protists and Bacillus spp. were mainly determined by their interactions that increased the relative abundance of secondary metabolite Q genes (e.g. nonribosomal peptide synthetase gene) within the microbiome. In a subsequent microcosm assay, we tested the interactions between predatory protists and pathogen-suppressive Bacillus spp. that showed strong improvements in plant defense. Our study shows how protistan predators stimulate disease-suppressive bacteria in the plant microbiome, ultimately enhancing plant health and yield. Thus, we suggest a new biological model useful for improving sustainable agricultural practices that is based on complex interactions between different domains of life.
Collapse
Affiliation(s)
- Sai Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Alexandre Jousset
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Beibei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou, 570228, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhilei Gao
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Yunze Ruan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou, 570228, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
- Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
14
|
Fang W, Lin M, Shi J, Liang Z, Tu X, He Z, Qiu R, Wang S. Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154386. [PMID: 35331758 DOI: 10.1016/j.scitotenv.2022.154386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With rapid global urbanization, anthropogenic activities alter aquatic biota in urban rivers through inputs of dissolved organic carbon (DOC) and nutrients. Microorganisms-mediated global element cycles provide functions in maintaining microbial ecology stability. The DOC (bottom-up control) and microbial predation (top-down control) may synergistically drive the competition and evolution of aquatic microbial communities, as well as their resistance and resilience, for which experimental evidences remain scarce. In this study, laboratory sediment-water column experiments were employed to mimic the organic carbon-driven water blackening and odorization process in urban rivers and to elucidate the impact of DOC on microbial ecology stability. Results showed that low (25-75 mg/L) and high DOC (100-150 mg/L) changed the aquatic microbial community assemblies in different patterns: (1) the low DOC enriched K-selection microorganisms (e.g., C39, Tolumonas and CR08G) with low biomass and low resilience, as well as high resistance to perturbations in changing microbial community assemblies; (2) the high DOC was associated with r-selection microorganisms (e.g., PSB-M-3 and Clostridium) with high biomass and improved resilience, together with low resistance detrimental to microbial ecology stability. Overall, this study provided new insight into the impact of DOC on aquatic microbial community stability, which may help guide sustainable urban river management.
Collapse
Affiliation(s)
- Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Zhongshan Municipal Ecology and Environment Bureau, Zhongshan, Guangdong 528403, China
| | - Muxing Lin
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China.
| |
Collapse
|
15
|
Xiong W, Delgado-Baquerizo M, Shen Q, Geisen S. Pedogenesis shapes predator-prey relationships within soil microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154405. [PMID: 35276178 DOI: 10.1016/j.scitotenv.2022.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pedogenesis determines soil physicochemical properties and many biodiversity facets, including belowground microbial bacteria and fungi. At the local scale, top-down predation by microbial protists regulates the soil microbiome, while the microbiome also affects protistan communities. However, it remains unknown how pedogenesis affects protistan communities and the potential protist-microbiome predator-prey relationships. With 435 soil samples representing different stages of pedogenesis ranging in soil age from centuries to millennia, we examined the influence of pedogenesis on the main protistan groups, and the interrelationships between protistan predators and microbial prey biomass. We revealed an enrichment in the diversity of total protists across pedogenesis and increasing richness of phototrophic protists in the medium compared with the early stages of pedogenesis. The richness of predatory protists accumulated throughout pedogenesis, which was more strongly determined by microbial biomass than environmental factors. Predator-prey associations were stronger in the young and the medium soils than in the older soils, likely because prey biomass accumulated in the latter and might be no longer limit predators. Together, our work provides evidence that pedogenesis shapes predatory protists differently than their prey, leading to shifts in predator-prey relationships. This knowledge is critical to better understand how soil food webs develop across soil development which might lead to changes in ecosystem functions.
Collapse
Affiliation(s)
- Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| |
Collapse
|
16
|
Yu H, He Z, He Z, Yan Q, Shu L. Soil Amoebae Affect Iron and Chromium Reduction through Preferential Predation between Two Metal-Reducing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9052-9062. [PMID: 35544746 DOI: 10.1021/acs.est.1c08069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil protists are essential but often overlooked in soil and could impact microbially driven element cycling in natural ecosystems. However, how protists influence heavy metal cycling in soil remains poorly understood. In this study, we used a model protist, Dictyostelium discoideum, to explore the effect of interactions between soil amoeba and metal-reducing bacteria on the reduction of soil Fe(III) and Cr(VI). We found that D. discoideum could preferentially prey on the Fe(III)-reducing bacterium Shewanella decolorationis S12 and significantly decrease its biomass. Surprisingly, this predation pressure also stimulated the activity of a single S. decolorationis S12 bacterium to reduce Fe(III) by enhancing the content of electron-transfer protein cyt c, intracellular ATP synthesis, and reactive oxygen species (e.g., H2O2). We also found that D. discoideum could not prey on the Cr(VI)-reducing bacterium Brevibacillus laterosporus. In contrast, B. laterosporus became edible to amoebae in the presence of S. decolorationis S12, and their Cr(VI) reduction ability decreased under amoeba predation pressure. This study provides direct evidence that protists can affect the Cr and Fe cycling via the elective predation pressure on the metal-reducing bacteria, broadening our horizons of predation of protists on soil metal cycling.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
17
|
Nordgaard M, Blake C, Maróti G, Hu G, Wang Y, Strube ML, Kovács ÁT. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience 2022; 25:104406. [PMID: 35663012 PMCID: PMC9157203 DOI: 10.1016/j.isci.2022.104406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacillus subtilis is known to promote plant growth and protect plants against disease. B. subtilis rapidly adapts to Arabidopsis thaliana root colonization, as evidenced by improved root colonizers already after 12 consecutive transfers between seedlings in a hydroponic setup. Re-sequencing of single evolved isolates and endpoint populations revealed mutations in genes related to different bacterial traits, in accordance with evolved isolates displaying increased root colonization associated with robust biofilm formation in response to the plant polysaccharide xylan and impaired motility. Interestingly, evolved isolates suffered a fitness disadvantage in a non-selective environment, demonstrating an evolutionary cost of adaptation to the plant root. Finally, increased root colonization by an evolved isolate was also demonstrated in the presence of resident soil microbes. Our findings highlight how a plant growth-promoting rhizobacterium rapidly adapts to an ecologically relevant environment and reveal evolutionary consequences that are fundamental to consider when evolving strains for biocontrol purposes. Bacillus subtilis shows fast adaptation to Arabidopsis thaliana roots in a hydroponic setup Evolved isolates exhibit robust biofilms in response to xylan and impaired motility Adaptation to A. thaliana roots is accompanied by an evolutionary cost An evolved isolate shows higher root colonization in the presence of soil bacteria
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China.,BGI-Beijing, BGI-Shenzhen, 100101 Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Int Microbiol 2022; 25:679-689. [PMID: 35670867 PMCID: PMC9526686 DOI: 10.1007/s10123-022-00253-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 10/28/2022]
Abstract
The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.
Collapse
|
19
|
Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol 2022; 98:6582216. [PMID: 35524686 PMCID: PMC9126823 DOI: 10.1093/femsec/fiac057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Predatory protists are major consumers of soil micro-organisms. By selectively feeding on their prey, they can shape soil microbiome composition and functions. While different protists are known to show diverging impacts, it remains impossible to predict a priori the effect of a given species. Various protist traits including phylogenetic distance, growth rate and volume have been previously linked to the predatory impact of protists. Closely-related protists,however, also showed distinct prey choices which could mirror specificity in their dietary niche. We, therefore, aimed to estimate the dietary niche breadth and overlap of eight protist isolates on 20 bacterial species in plate assays. To assess the informative value of previously suggested and newly proposed (feeding-related) protist traits, we related them to the impacts of predation of each protist on a protist-free soil bacterial community in a soil microcosm via 16S rRNA gene amplicon sequencing. We could demonstrate that each protist showed a distinct feeding pattern in vitro. Further, the assayed protist feeding patterns and growth rates correlated well with the observed predatory impacts on the structure of soil bacterial communities. We thus conclude that in vitro screening has the potential to inform on the specific predatory impact of selected protists.
Collapse
Affiliation(s)
- Nathalie Amacker
- Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Zhilei Gao
- Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jie Hu
- Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,UMR 6553 Ecobio, CNRS, University of Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Alexandre L C Jousset
- Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, 6700 ES Wageningen, The Netherlands
| |
Collapse
|
20
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Firneno TJ, Ramesh B, Maldonado JA, Hernandez-Briones AI, Emery AH, Roelke CE, Fujita MK. Transcriptomic analysis reveals potential candidate pathways and genes involved in toxin biosynthesis in true toads. J Hered 2022; 113:311-324. [PMID: 35325156 DOI: 10.1093/jhered/esac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesized chemical defenses have broadly evolved across countless taxa and are important in shaping evolutionary and ecological interactions within ecosystems. However, the underlying genomic mechanisms by which these organisms synthesize and utilize their toxins are relatively unknown. Herein, we use comparative transcriptomics to uncover potential toxin synthesizing genes and pathways, as well as interspecific patterns of toxin synthesizing genes across ten species of North American true toads (Bufonidae). Upon assembly and annotation of the ten transcriptomes, we explored patterns of relative gene expression and possible protein-protein interactions across the species to determine what genes and/or pathways may be responsible for toxin synthesis. We also tested our transcriptome dataset for signatures of positive selection to reveal how selection may be acting upon potential toxin producing genes. We assembled high quality transcriptomes of the bufonid parotoid gland, a tissue not often investigated in other bufonid related RNAseq studies. We found several genes involved in metabolic and biosynthetic pathways (e.g. steroid biosynthesis, terpenoid backbone biosynthesis, isoquinoline biosynthesis, glucosinolate biosynthesis) that were functionally enriched and/or relatively expressed across the ten focal species that may be involved in the synthesis of alkaloid and steroid toxins, as well as other small metabolic compounds that cause distastefulness in bufonids. We hope that our study lays a foundation for future studies to explore the genomic underpinnings and specific pathways of toxin synthesis in toads, as well as at the macroevolutionary scale across numerous taxa that produce their own defensive toxins.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Balan Ramesh
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Jose A Maldonado
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | | | - Alyson H Emery
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Corey E Roelke
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| |
Collapse
|
22
|
Vick SHW, Fabian BK, Dawson CJ, Foster C, Asher A, Hassan KA, Midgley DJ, Paulsen IT, Tetu SG. Delving into defence: identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors. Microb Genom 2021; 7. [PMID: 34788213 PMCID: PMC8743541 DOI: 10.1099/mgen.0.000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.
Collapse
Affiliation(s)
- Silas H W Vick
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Belinda K Fabian
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Christie Foster
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Amy Asher
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| |
Collapse
|
23
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Matus-Acuña V, Caballero-Flores G, Martínez-Romero E. The influence of maize genotype on the rhizosphere eukaryotic community. FEMS Microbiol Ecol 2021; 97:6261178. [PMID: 33930111 DOI: 10.1093/femsec/fiab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The microbiota colonizing the rhizosphere contributes to plant growth, productivity, carbon sequestration and phytoremediation. Several studies address plant-associated bacteria; however, few studies analyze the effect of plant genotype on the eukaryotic community. Here, we analyzed the eukaryotic composition of maize rhizosphere from three different plant landraces and one inbred line grown in the same soil (common garden approach). This experimental design, coupled with 18S rDNA gene amplicon sequencing, allowed us to test the influence of maize and its genotype on the rhizosphere's eukaryotic community. We found that plant growth modified the eukaryotic community in soil, as diversity comparisons between maize rhizosphere and unplanted soil revealed significantly different eukaryotic composition. Various genera of nematodes and fungi, predominantly bacterial feeding nematodes and mycorrhizal fungi among other taxa, were increased in the rhizosphere samples. We also observed that maize genotype differentially shaped the relative abundance of the following fungal families in the rhizosphere: Acaulosporaceae, Aspergillaceae, Chaetomiaceae, Claroideoglomeraceae, Corticiaceae, Mortierellaceae, Trichocomaceae and Trichomeriaceae. Thus, plant genotype has a selective influence on establishing fungal communities in the rhizosphere. This study emphasizes the importance of an integrated consideration of plant genetics for future agricultural applications of microbes to crops.
Collapse
Affiliation(s)
- Violeta Matus-Acuña
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
25
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021; 12:3829. [PMID: 34158504 PMCID: PMC8219802 DOI: 10.1038/s41467-021-24005-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Institut für Biologie, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.11486.3a0000000104788040VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| | - Chen Liu
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Ville-Petri Friman
- grid.5685.e0000 0004 1936 9668University of York, Department of Biology, York, UK
| | - Corné M. J. Pieterse
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- grid.5477.10000000120346234Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands
| |
Collapse
|
26
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021. [PMID: 34158504 DOI: 10.1038/s41467-012-24005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
| | - Chen Liu
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | | | - Corné M J Pieterse
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Bonkowski M, Tarkka M, Razavi BS, Schmidt H, Blagodatskaya E, Koller R, Yu P, Knief C, Hochholdinger F, Vetterlein D. Spatiotemporal Dynamics of Maize ( Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Front Microbiol 2021; 12:619499. [PMID: 33815308 PMCID: PMC8010349 DOI: 10.3389/fmicb.2021.619499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots – their “microbiome.” Microbiome assembly is considered as a key process in the self-organization of root systems. A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Using maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.
Collapse
Affiliation(s)
- Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Rüger L, Feng K, Dumack K, Freudenthal J, Chen Y, Sun R, Wilson M, Yu P, Sun B, Deng Y, Hochholdinger F, Vetterlein D, Bonkowski M. Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize ( Zea mays L.). Front Microbiol 2021; 12:614501. [PMID: 33643242 PMCID: PMC7906986 DOI: 10.3389/fmicb.2021.614501] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
It is by now well proven that different plant species within their specific root systems select for distinct subsets of microbiota from bulk soil - their individual rhizosphere microbiomes. In maize, root growth advances several centimeters each day, with the locations, quality and quantity of rhizodeposition changing. We investigated the assembly of communities of prokaryotes (archaea and bacteria) and their protistan predators (Cercozoa, Rhizaria) along the longitudinal root axis of maize (Zea mays L.). We grew maize plants in an agricultural loamy soil and sampled rhizosphere soil at distinct locations along maize roots. We applied high-throughput sequencing, followed by diversity and network analyses in order to track changes in relative abundances, diversity and co-occurrence of rhizosphere microbiota along the root axis. Apart from a reduction of operational taxonomic unit (OTU) richness and a strong shift in community composition between bulk soil and root tips, patterns of microbial community assembly along maize-roots were more complex than expected. High variation in beta diversity at root tips and the root hair zone indicated substantial randomness of community assembly. Root hair zone communities were characterized by massive co-occurrence of microbial taxa, likely fueled by abundant resource supply from rhizodeposition. Further up the root where lateral roots emerged processes of community assembly appeared to be more deterministic (e.g., through competition and predation). This shift toward significance of deterministic processes was revealed by low variability of beta diversity, changes in network topology, and the appearance of regular phylogenetic co-occurrence patterns in bipartite networks between prokaryotes and their potential protistan predators. Such patterns were strongest in regions with fully developed laterals, suggesting that a consistent rhizosphere microbiome finally assembled. For the targeted improvement of microbiome function, such knowledge on the processes of microbiome assembly on roots and its temporal and spatial variability is crucially important.
Collapse
Affiliation(s)
- Lioba Rüger
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Yan Chen
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ruibo Sun
- Microbial Ecology Lab, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Monica Wilson
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Bo Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME JOURNAL 2020; 15:618-621. [PMID: 33005005 DOI: 10.1038/s41396-020-00792-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022]
Abstract
Soil bacteria and fungi are key drivers of carbon released from soils to the atmosphere through decomposition of plant-derived organic carbon sources. This process has important consequences for the global climate. While global change factors, such as increased temperature, are known to affect bacterial- and fungal-mediated decomposition rates, the role of trophic interactions in affecting decomposition remains largely unknown. We designed synthetic microbial communities consisting of eight bacterial and eight fungal species and tested the influence of predation by a model protist, Physarum polycephalum, on litter breakdown at 17 and 21 °C. Protists increased CO2 release and litter mass loss by ~35% at 17 °C lower temperatures, while they only had minor effects on microbial-driven CO2 release and mass loss at 21 °C. We found species-specific differences in predator-prey interactions, which may affect microbial community composition and functioning and thus underlie the impact of protists on litter breakdown. Our findings suggest that microbial predation by fast-growing protists is of under-appreciated functional importance, as it affects decomposition and, as such, may influence global carbon dynamics. Our results indicate that we need to better understand the role of trophic interactions within the microbiome in controlling decomposition processes and carbon cycling.
Collapse
|
30
|
Kramer J, López Carrasco MÁ, Kümmerli R. Positive linkage between bacterial social traits reveals that homogeneous rather than specialised behavioral repertoires prevail in natural Pseudomonas communities. FEMS Microbiol Ecol 2020; 96:5643885. [PMID: 31769782 DOI: 10.1093/femsec/fiz185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. The expression of such 'public good' traits can be interdependent, and studies on laboratory systems have shown that trait linkage affects eco-evolutionary dynamics within bacterial communities. Here, we examine whether linkage among social traits occurs in natural habitats by examining investment levels and correlations between five public goods (biosurfactants, biofilm components, proteases, pyoverdines and toxic compounds) in 315 Pseudomonas isolates from soil and freshwater communities. Our phenotypic assays revealed that (i) social trait expression profiles varied dramatically; (ii) correlations between traits were frequent, exclusively positive and sometimes habitat-specific; and (iii) heterogeneous (specialised) trait repertoires were rarer than homogeneous (unspecialised) repertoires. Our results show that most isolates lie on a continuum between a 'social' type producing multiple public goods, and an 'asocial' type showing low investment into social traits. This segregation could reflect local adaptation to different microhabitats, or emerge from interactions between different social strategies. In the latter case, our findings suggest that the scope for competition among unspecialised isolates exceeds the scope for mutualistic exchange of different public goods between specialised isolates. Overall, our results indicate that complex interdependencies among social traits shape microbial lifestyles in nature.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Miguel Ángel López Carrasco
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Departamento de Biología Celular, Genética y Fisiología, University of Málaga, Bulevar Louis Pasteur 31, 29010 Málaga, Spain
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347-360. [DOI: 10.1099/jmm.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas brassicacearum
is one of over fifty species of bacteria classified into the
P. fluorescens
group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly,
P. brassicacearum
is closely related to
P. corrugata
, which is classified as an opportunistic phytopathogen. Twenty-one
P. brassicacearum
genomes have been sequenced to date. In the current review, genomes of
P. brassicacearum
and strains from the
P. corrugata
clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer.
P. brassicacearum
is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of Caenorhabditis elegans, as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.
Collapse
|
32
|
Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett 2019; 3:610-622. [PMID: 31844554 PMCID: PMC6906993 DOI: 10.1002/evl3.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron‐scavenging siderophores by Pseudomonas bacteria, with many insights gained from this system now being considered as hallmarks of bacterial cooperation. Here, we introduce siderophore secretion by the bacterium Burkholderia cenocepacia H111 as a novel parallel study system, and show that this system behaves differently. For ornibactin, the main siderophore of this species, we discovered a novel mechanism of how cheating can be prevented. Particularly, we found that secreted ornibactin cannot be exploited by ornibactin‐defective mutants because ornibactin receptor and synthesis genes are co‐expressed from the same operon, such that disruptive mutations in synthesis genes compromise receptor availability required for siderophore uptake and cheating. For pyochelin, the secondary siderophore of this species, we found that cheating was possible, but the relative success of cheaters was positive frequency dependent, thus diametrically opposite to the Pseudomonas and other microbial systems. Altogether, our results highlight that expanding our repertoire of microbial study systems leads to new discoveries and suggest that there is an enormous diversity of social interactions out there in nature, and we might have only looked at the tip of the iceberg so far.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol 2019; 32:412-424. [PMID: 30724418 PMCID: PMC6520251 DOI: 10.1111/jeb.13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.
Collapse
Affiliation(s)
- Tobias Wechsler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Kurm V, van der Putten WH, Weidner S, Geisen S, Snoek BL, Bakx T, Hol WHG. Competition and predation as possible causes of bacterial rarity. Environ Microbiol 2019; 21:1356-1368. [PMID: 30803145 PMCID: PMC6850713 DOI: 10.1111/1462-2920.14569] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/21/2019] [Indexed: 12/05/2022]
Abstract
We assembled communities of bacteria and exposed them to different nutrient concentrations with or without predation by protists. Taxa that were rare in the field were less abundant at low nutrient concentrations than common taxa, independent of predation. However, some taxa that were rare in the field became highly abundant in the assembled communities, especially under ample nutrient availability. This high abundance points at a possible competitive advantage of some rare bacterial taxa under nutrient-rich conditions. In contrast, the abundance of most rare bacterial taxa decreased at low resource availability. Since low resource availability will be the prevailing situation in most soils, our data suggests that under those conditions poor competitiveness for limiting resources may contribute to bacterial rarity. Interestingly, taxa that were rare in the field and most successful under predator-free conditions in the lab also tended to be more reduced by predation than common taxa. This suggests that predation contributes to rarity of bacterial taxa in the field. We further discuss whether there may be a trade-off between competitiveness and predation resistance. The substantial variability among taxa in their responses to competition and predation suggests that other factors, for example abiotic conditions and dispersal ability, also influence the local abundance of soil bacteria.
Collapse
Affiliation(s)
- Viola Kurm
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
- Laboratory of NematologyWageningen UniversityP.O. Box 8123, 6700 ES, WageningenThe Netherlands
| | - Simone Weidner
- Institute of Environmental Biology, Ecology and BiodiversityUtrecht UniversityPadualaan 8, 3584 CH, UtrechtThe Netherlands
| | - Stefan Geisen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
| | - Basten L. Snoek
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
- Laboratory of NematologyWageningen UniversityP.O. Box 8123, 6700 ES, WageningenThe Netherlands
- Theoretical Biology and BioinformaticsUtrecht UniversityPadualaan 8, 3584 CH, UtrechtThe Netherlands
| | - Tanja Bakx
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
| | - Wilhelmina H. Gera Hol
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50, 6700 AB, WageningenThe Netherlands
| |
Collapse
|
35
|
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: Puppet Masters of the Rhizosphere Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:165-176. [PMID: 30446306 DOI: 10.1016/j.tplants.2018.10.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
The rhizosphere microbiome is a central determinant of plant performance. Microbiome assembly has traditionally been investigated from a bottom-up perspective, assessing how resources such as root exudates drive microbiome assembly. However, the importance of predation as a driver of microbiome structure has to date largely remained overlooked. Here we review the importance of protists, a paraphyletic group of unicellular eukaryotes, as a key regulator of microbiome assembly. Protists can promote plant-beneficial functions within the microbiome, accelerate nutrient cycling, and remove pathogens. We conclude that protists form an essential component of the rhizosphere microbiome and that accounting for predator-prey interactions would greatly improve our ability to predict and manage microbiome function at the service of plant growth and health.
Collapse
Affiliation(s)
- Zhilei Gao
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; These authors contributed equally
| | - Ida Karlsson
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Dept. of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; These authors contributed equally
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
| | - George Kowalchuk
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
36
|
Rillig MC, Bonkowski M. Microplastic and soil protists: A call for research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1128-1131. [PMID: 30029321 PMCID: PMC6485376 DOI: 10.1016/j.envpol.2018.04.147] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 05/19/2023]
Abstract
Microplastic is an emerging contaminant of concern in soils globally, probably gradually increasing in soil due to slow degradation. Few studies on microplastic effects on soil biota are available, and no study in a microplastic contamination context has specifically addressed soil protists. Soil protists, a phylogenetically and functionally diverse group of eukaryotic, unicellular soil organisms, are major consumers of bacteria in soils and are potentially important vehicles for the delivery of microplastics into the soil food chain. Here we build a case for focusing research on soil protists by drawing on data from previous, older studies of phagocytosis in protist taxa, which have long made use of polystyrene latex beads (microspheres). Various soil-borne taxa, including ciliates, flagellates and amoebae take up microplastic beads in the size range of a few micrometers. This included filter feeders as well as amoebae which engulf their prey. Discrimination in microplastic particle uptake depended on species, physiological state as well as particle size. Based on the results of the studies we review here, there is now a need to study microplastic effects in a pollution ecology context: this means considering a broad range of particle types under realistic conditions in the soil, and exploring longer-term effects on soil protist communities and functions.
Collapse
Affiliation(s)
- Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany.
| | - Michael Bonkowski
- Universität zu Köln, Institut für Zoologie, Zülpicher Str 47b, D-50674, Köln, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
37
|
Ancestral gene acquisition as the key to virulence potential in environmental Vibrio populations. ISME JOURNAL 2018; 12:2954-2966. [PMID: 30072747 PMCID: PMC6246604 DOI: 10.1038/s41396-018-0245-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Diseases of marine animals caused by bacteria of the genus Vibrio are on the rise worldwide. Understanding the eco-evolutionary dynamics of these infectious agents is important for predicting and managing these diseases. Yet, compared to Vibrio infecting humans, knowledge of their role as animal pathogens is scarce. Here we ask how widespread is virulence among ecologically differentiated Vibrio populations, and what is the nature and frequency of virulence genes within these populations? We use a combination of population genomics and molecular genetics to assay hundreds of Vibrio strains for their virulence in the oyster Crassostrea gigas, a unique animal model that allows high-throughput infection assays. We show that within the diverse Splendidus clade, virulence represents an ancestral trait but has been lost from several populations. Two loci are necessary for virulence, the first being widely distributed across the Splendidus clade and consisting of an exported conserved protein (R5.7). The second is a MARTX toxin cluster, which only occurs within V. splendidus and is for the first time associated with virulence in marine invertebrates. Varying frequencies of both loci among populations indicate different selective pressures and alternative ecological roles, based on which we suggest strategies for epidemiological surveys.
Collapse
|
38
|
Lindstedt C, Miettinen A, Freitak D, Ketola T, López-Sepulcre A, Mäntylä E, Pakkanen H. Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly. Proc Biol Sci 2018; 285:rspb.2018.0466. [PMID: 30068673 DOI: 10.1098/rspb.2018.0466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/06/2018] [Indexed: 01/24/2023] Open
Abstract
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooperative defence (high attack intensity) incurred a clear cost by decreasing individual survival and potency of chemical defence. Cooperative behaviour and the magnitude of its costs were further shaped by host plant quality. The number of individuals participating in group defence, immune responses and female growth decreased on a high resin diet under high attack intensity. We also found some benefits of cheating: non-defending males had higher growth rates across treatments. Taken together, these results suggest that ecological interactions can shape the adaptive value of cooperative behaviour and maintain variation in the frequency of cooperation and cheating.
Collapse
Affiliation(s)
- Carita Lindstedt
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Miettinen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Andres López-Sepulcre
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,CNRS UMR 7618, Institute of Ecology and Environmental Sciences of Paris (iEES), Universite Pierre et Marie Curie, Paris, France
| | - Elina Mäntylä
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Hannu Pakkanen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
39
|
Inglis RF, Asikhia O, Ryu E, Queller DC, Strassmann JE. Predator-by-Environment Interactions Mediate Bacterial Competition in the Dictyostelium discoideum Microbiome. Front Microbiol 2018; 9:781. [PMID: 29740414 PMCID: PMC5928206 DOI: 10.3389/fmicb.2018.00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between species and their environment play a key role in the evolution of diverse communities, and numerous studies have emphasized that interactions among microbes and among trophic levels play an important role in maintaining microbial diversity and ecosystem functioning. In this study, we investigate how two of these types of interactions, public goods cooperation through the production of iron scavenging siderophores and predation by the social amoeba Dictyostelium discoideum, mediate competition between two strains of Pseudomonas fluorescens that were co-isolated from D. discoideum. We find that although we are able to generally predict the competitive outcomes between strains based on the presence and absence of either D. discoideum or iron, predator-by-environment interactions result in unexpected competitive outcomes. This suggests that while both cooperation and predation can mediate the competitive abilities and potentially the coexistence of these strains, predicting how combinations of different environments affect even the relatively simple microbiome of D. discoideum remains challenging.
Collapse
Affiliation(s)
- R Fredrik Inglis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Odion Asikhia
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Erica Ryu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
40
|
Liu Y, Wang Z, Bilal M, Hu H, Wang W, Huang X, Peng H, Zhang X. Enhanced Fluorescent Siderophore Biosynthesis and Loss of Phenazine-1-Carboxamide in Phenotypic Variant of Pseudomonas chlororaphis HT66. Front Microbiol 2018; 9:759. [PMID: 29740409 PMCID: PMC5924801 DOI: 10.3389/fmicb.2018.00759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas chlororaphis HT66 is a plant-beneficial bacterium that exhibits wider antagonistic spectrum against a variety of plant pathogenic fungi due to its main secondary metabolite, i.e., phenazine-1-carboxamide (PCN). In the present study, a spontaneous phenotypic variant designated as HT66-FLUO was isolated from the fermentation process of wild-type HT66 strain. The newly isolated phenotypic variant was morphologically distinct from the wild-type strain such as larger cell size, semi-transparent, non-production of PCN (Green or yellow crystals) and enhanced fluorescence under UV light. The whole-genome, RNA-sequencing, and phenotypic assays were performed to identify the reason of phenotypic variation in HT66-FLUO as compared to the HT66. Transcriptomic analysis revealed that 1,418 genes, representing approximately 22% of the 6393 open reading frames (ORFs) had undergone substantial reprogramming of gene expression in the HT66-FLUO. The whole-genome sequence indicated no gene alteration in HT66-FLUO as compared to HT66 according to the known reference sequence. The levels of global regulatory factor gacA and gacS expression were not significantly different between HT66 and HT66-FLUO. It was observed that overexpressing gacS rather than gacA in HT66-FLUO can recover switching of the variant to HT66. The β-galactosidase (LacZ) activity and qRT-PCR results indicate the downregulated expression of rsmX, rsmY, and rsmZ in HT66-FLUO as compared to HT66. Overexpressing three small RNAs in HT66-FLUO can revert switching of colony phenotype toward wild-type HT66 up to a certain degree, restore partial PCN production and reduces the fluorescent siderophores yield. However, the origin of the spontaneous phenotypic variant was difficult to be determined. In conclusion, this study helps to understand the gene regulatory effect in the spontaneous phenotypic variant.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huasong Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 2018; 42:293-323. [DOI: 10.1093/femsre/fuy006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, Neuchâtel 2000, Switzerland
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger Straße, 67663 Kaiserslautern, Germany
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Valentyna Krashevska
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, United States of America
| | - Julia Walochnik
- Molecular Parasitology, Institute of Tropical Medicine, Medical University, 1090 Vienna, Austria
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
42
|
Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME JOURNAL 2018; 12:1263-1272. [PMID: 29374267 DOI: 10.1038/s41396-018-0047-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
Many Proteobacteria use quorum sensing to regulate production of public goods, such as antimicrobials and proteases, that are shared among members of a community. Public goods are vulnerable to exploitation by cheaters, such as quorum sensing-defective mutants. Quorum sensing- regulated private goods, goods that benefit only producing cells, can prevent the emergence of cheaters under certain growth conditions. Previously, we developed a laboratory co-culture model to investigate the importance of quorum-regulated antimicrobials during interspecies competition. In our model, Burkholderia thailandensis and Chromobacterium violaceum each use quorum sensing-controlled antimicrobials to inhibit the other species' growth. Here, we show that C. violaceum uses quorum sensing to increase resistance to bactobolin, a B. thailandensis antibiotic, by increasing transcription of a putative antibiotic efflux pump. We demonstrate conditions where C. violaceum quorum-defective cheaters emerge and show that in these conditions, bactobolin restrains cheaters. We also demonstrate that bactobolin restrains quorum-defective mutants in our co-culture model, and the increase in antimicrobial-producing cooperators drives the C. violaceum population to become more competitive. Our results describe a mechanism of cheater restraint involving quorum control of efflux pumps and demonstrate that interspecies competition can reinforce cooperative behaviors by placing constraints on quorum sensing-defective mutants.
Collapse
|
43
|
Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens. mBio 2018; 9:mBio.01845-17. [PMID: 29339425 PMCID: PMC5770548 DOI: 10.1128/mbio.01845-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.
Collapse
|
44
|
Jiang Y, Liu M, Zhang J, Chen Y, Chen X, Chen L, Li H, Zhang XX, Sun B. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. THE ISME JOURNAL 2017; 11:2705-2717. [PMID: 28742069 PMCID: PMC5702727 DOI: 10.1038/ismej.2017.120] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 11/18/2022]
Abstract
Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.
Collapse
Affiliation(s)
- Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Manqiang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyun Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Auckland, New Zealand
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
45
|
Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 2017; 8:414. [PMID: 28871205 PMCID: PMC5583256 DOI: 10.1038/s41467-017-00509-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/29/2017] [Indexed: 11/17/2022] Open
Abstract
All social organisms experience dilemmas between cooperators performing group-beneficial actions and cheats selfishly exploiting these actions. Although bacteria have become model organisms to study social dilemmas in laboratory systems, we know little about their relevance in natural communities. Here, we show that social interactions mediated by a single shareable compound necessary for growth (the iron-scavenging pyoverdine) have important consequences for competitive dynamics in soil and pond communities of Pseudomonas bacteria. We find that pyoverdine non- and low-producers co-occur in many natural communities. While non-producers have genes coding for multiple pyoverdine receptors and are able to exploit compatible heterologous pyoverdines from other community members, producers differ in the pyoverdine types they secrete, offering protection against exploitation from non-producers with incompatible receptors. Our findings indicate that there is both selection for cheating and cheating resistance, which could drive antagonistic co-evolution and diversification in natural bacterial communities. Lab strains of Pseudomonas are model systems for the evolution of cooperation over public goods (iron-scavenging siderophores). Here, Butaitė et al. add ecological and evolutionary insight into this system by showing that cheating and resistance to cheating both shape competition for iron in natural Pseudomonas communities.
Collapse
|
46
|
Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nat Commun 2017; 8:15707. [PMID: 28580966 PMCID: PMC5465372 DOI: 10.1038/ncomms15707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
The evolution of multicellular life requires cooperation among cells, which can be undermined by intra-group selection for selfishness. Theory predicts that selection to avoid non-cooperators limits social interactions among non-relatives, yet previous evolution experiments suggest that intra-group conflict is an outcome, rather than a driver, of incipient multicellular life cycles. Here we report the evolution of multicellularity via two distinct mechanisms of group formation in the unicellular budding yeast Kluyveromyces lactis. Cells remain permanently attached following mitosis, giving rise to clonal clusters (staying together); clusters then reversibly assemble into social groups (coming together). Coming together amplifies the benefits of multicellularity and allows social clusters to collectively outperform solitary clusters. However, cooperation among non-relatives also permits fast-growing unicellular lineages to 'free-ride' during selection for increased size. Cooperation and competition for the benefits of multicellularity promote the stable coexistence of unicellular and multicellular genotypes, underscoring the importance of social and ecological context during the transition to multicellularity.
Collapse
|
47
|
Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 2017; 6. [PMID: 28262092 PMCID: PMC5395296 DOI: 10.7554/elife.22835] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022] Open
Abstract
Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions. DOI:http://dx.doi.org/10.7554/eLife.22835.001 Bacteria live almost everywhere on Earth and often compete with one another for limited resources, like space or nutrients. Certain bacteria produce molecules that are toxic to other microorganisms to give themselves a competitive advantage. These toxic molecules are more commonly referred as antibiotics, and are perhaps best known for their importance in medicine. Yet, antibiotics benefit the bacteria that produce them in other ways too. Some bacteria, for example, use antibiotics as chemical signals to communicate with one another and coordinate their activities. Some bacteria produce many antibiotics with different toxic and signaling activities. These bacteria often coordinate the production of different antibiotics such that the production of one antibiotic shuts down the production of another. This kind of coordination would allow the bacterium to focus its energy on producing only the antibiotic that gives it a competitive advantage at that time. Yet, in most cases, it was not known how the bacterial cell coordinates the production of two different antibiotics. Pseudomonas protegens is a species of bacteria that lives in soil, and produces many antibiotics that are toxic to other bacteria or fungi. The antibiotics are made via distinct pathways of chemical reactions that are catalyzed by different enzymes. However, the production of two antibiotics, called 2,4-diacetylphloroglucinol and pyoluteorin, is tightly coordinated in some strains of P. protegens. Now, Yan et al. have discovered how P. protegens coordinates the production of these two antibiotics. It turns out that the bacterium produces an enzyme that adds chlorine atoms onto one of the intermediate building blocks used to make 2,4-diacetylphloroglucinol. These “chlorinated derivatives” then activate the genes required to make the second antibiotic, pyoluteorin. The derivatives also signal to other P. protegens cells and trigger them to produce pyoluteorin too. Lastly, Yan et al. confirmed that pyoluteorin could inhibit the growth of another species of bacteria called Erwinia amylovora. These new findings highlight an important role played by chemicals that might have previously been considered as merely stepping stones in other biochemical reactions. An important challenge for the future will be to evaluate if other microbes use chemical intermediates in similar ways. Understanding the natural role of more antibiotics and their intermediates should help us to more wisely use existing antibiotics, and might eventually lead to new treatments for infections in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.22835.002
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, United States
| |
Collapse
|
48
|
Moreau P, Diggle SP, Friman VP. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecol Evol 2017; 7:1936-1941. [PMID: 28331600 PMCID: PMC5355186 DOI: 10.1002/ece3.2818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Pierre Moreau
- Imperial College London, Silwood Park Campus Ascot Berkshire UK
| | - Stephen P Diggle
- School of Life Sciences Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Ville-Petri Friman
- Imperial College London, Silwood Park Campus Ascot Berkshire UK; Department of Biology The University of York York UK
| |
Collapse
|
49
|
Where less may be more: how the rare biosphere pulls ecosystems strings. ISME JOURNAL 2017; 11:853-862. [PMID: 28072420 PMCID: PMC5364357 DOI: 10.1038/ismej.2016.174] [Citation(s) in RCA: 649] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 02/05/2023]
Abstract
Rare species are increasingly recognized as crucial, yet vulnerable components of Earth's ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.
Collapse
|
50
|
Pseudomonas brassicacearum strain DF41 kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms. Appl Environ Microbiol 2016; 82:6889-6898. [PMID: 27637885 DOI: 10.1128/aem.02199-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas brassicacearum DF41 is a biocontrol agent that suppresses disease caused by the fungal pathogen Sclerotinia sclerotiorum A number of exometabolites are produced by DF41 including the lipopeptide sclerosin, hydrogen cyanide (HCN) and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional level by quorum sensing (QS) and the Gac-two component regulatory system. In order to be successful, a biocontrol agent must persist in the environment at levels sufficient for pathogen control. Bacterivorous predators, including nematodes, represent a challenge to the establishment of introduced microorganisms. In the current study, DF41 was investigated for its ability to resist predation by Caenorhabditis elegans. We discovered that this bacterium is capable of killing C. elegans through two different mechanisms: the first involves exposure to toxic metabolites; and the second entails biofilm formation on the nematode head blocking the buccal cavity. Biofilm formation on nematodes, which has only been reported for Yersinia spp. and Xenorhabdus nematophila, is dependent upon the Gac system. Biofilms were not observed when bacteria were grown on NaCl-containing media, and on C. elegans biofilm-resistant mutants. Co-culturing with nematodes lead to increased expression of the pdfRI-rfiA QS genes and hcnA which is under QS control. HCN was the most nematicidal of the exometabolites, suggesting that this bacterium can respond to predator cues and upregulate expression of toxins accordingly. In summary, DF41 is able to respond to the presence of C. elegans and through two distinct mechanisms it can escape predation. IMPORTANCE Pseudomonas brassicacearum DF41 can suppress fungal pathogens through a process known as biocontrol. To be successful, a biocontrol agent must be able to persist in the environment at levels sufficient for pathogen control. Predators including the nematode Caenorhabditis elegans represent a threat to persistence. The aim of the current study was to investigate the DF41-C. elegans interaction. We discovered that DF41 is able to escape predation through two distinct mechanisms. The first involves exposure to toxic bacterial metabolites and the second entails formation of a sticky coating on the nematode head, called a biofilm, which blocks feeding and causes starvation. This is the first report of a pseudomonad forming biofilms on the C. elegans surface. When grown with C. elegans, DF41 exhibits altered gene expression and metabolite production indicating that this bacterium can sense the presence of these predators and adjust its physiology accordingly.
Collapse
|