1
|
Romanowicz KJ, Zhang F, Wang S, Veličković D, Chu RK, Shaked Y, Boiteau RM. Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes. mSystems 2024; 9:e0115224. [PMID: 39315778 PMCID: PMC11501100 DOI: 10.1128/msystems.01152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Trichodesmium, a globally significant N2-fixing marine cyanobacterium, forms extensive surface blooms in nutrient-poor ocean regions. These blooms consist of a dynamic assemblage of Trichodesmium species that form distinct colony morphotypes and are inhabited by diverse microorganisms. Trichodesmium colony morphotypes vary in ecological niche, nutrient uptake, and organic molecule release, differentially impacting ocean carbon and nitrogen biogeochemical cycles. Here, we assessed the poorly studied spatial abundance of metabolites within and between three morphologically distinct Trichodesmium colonies collected from the Red Sea. We also compared these results with two morphotypes of the cultivable Trichodesmium strain IMS101. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) coupled with liquid extraction surface analysis (LESA) tandem mass spectrometry (MS2), we identified and localized a wide range of small metabolites associated with single-colony Trichodesmium morphotypes. Our untargeted MALDI-MSI approach revealed 80 unique features (metabolites) shared between Trichodesmium morphotypes. Discrimination analysis showed spatial variations in 57 shared metabolites, accounting for 62% of the observed variation between morphotypes. The greatest variations in metabolite abundance were observed between the cultured morphotypes compared to the natural colony morphotypes, suggesting substantial differences in metabolite production between the cultivable strain IMS101 and the naturally occurring colony morphotypes that the cultivable strain is meant to represent. This study highlights the variations in metabolite abundance between natural and cultured Trichodesmium morphotypes and provides valuable insights into metabolites common to morphologically distinct Trichodesmium colonies, offering a foundation for future targeted metabolomic investigations.IMPORTANCEThis work demonstrates that the application of spatial mass spectrometry imaging at single-colony resolution can successfully resolve metabolite differences between natural and cultured Trichodesmium morphotypes, shedding light on their distinct biochemical profiles. Understanding the morphological differences between Trichodesmium colonies is crucial because they impact nutrient uptake, organic molecule production, and carbon and nitrogen export, and subsequently influence ocean biogeochemical cycles. As such, our study serves as an important initial assessment of metabolite differences between distinct Trichodesmium colony types, identifying features that can serve as ideal candidates for future targeted metabolomic studies.
Collapse
Affiliation(s)
- Karl J. Romanowicz
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Futing Zhang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Siyuan Wang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yeala Shaked
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Rene M. Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Zhang F, Wang S, Visser AN, Koedooder C, Eichner M, Anderson OR, Dyhrman ST, Shaked Y. Recurrent association between Trichodesmium colonies and calcifying amoebae. ISME COMMUNICATIONS 2024; 4:ycae137. [PMID: 39564584 PMCID: PMC11575492 DOI: 10.1093/ismeco/ycae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Colonies of the N2-fixing cyanobacterium Trichodesmium spp. constitute a consortium with multiple microorganisms that collectively exert ecosystem-level influence on marine carbon and nitrogen cycling, shunting newly fixed nitrogen to low nitrogen systems, and exporting both carbon and nitrogen to the deep sea. Here we identify a seasonally recurrent association between puff colonies and amoebae through a two-year survey involving over 10 000 Trichodesmium colonies in the Red Sea. This association was most commonly found in near-shore populations during spring. Microscopic observations revealed consistent amoebae morphology throughout the study, and both morphological characteristics and 18S rRNA gene sequencing suggested that these amoebae are likely to belong to the species Trichosphaerium micrum, an amoeba that forms a CaCO3 shell. Co-cultures of Trichosphaerium micrum and Trichodesmium grown in the laboratory suggest that the amoebae feed on heterotrophic bacteria and not Trichodesmium, which adds a consumer dynamic to the complex microbial interactions within these colonies. Sinking experiments with fresh colonies indicated that the presence of the CaCO3-shelled amoebae decreased colony buoyancy. As such, this novel association may accelerate Trichodesmium sinking rates and facilitate carbon and nitrogen export to the deep ocean. Amoebae have previously been identified in Trichodesmium colonies in the western North Atlantic (Bermuda and Barbados), suggesting that this type of association may be widespread. This association may add a new critical facet to the microbial interactions underpinning carbon and nitrogen fixation and fate in the present and future ocean.
Collapse
Affiliation(s)
- Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Coral Beach P.O.B 469, Eilat 8810302, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Coral Beach P.O.B 469, Eilat 8810302, Israel
| | - Anna-Neva Visser
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Coral Beach P.O.B 469, Eilat 8810302, Israel
- Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Department Geographie und Geowissenschaften, Erlangen 91054, GeoZentrum Nordbayern, Schlossgarten 5, Germany
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Coral Beach P.O.B 469, Eilat 8810302, Israel
- Israel Limnology and Oceanography Research, Tel-Shikmona P.O.B 8030, Haifa 3108000, Israel
| | - Meri Eichner
- CentreAlgatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, Třeboň 37901, Czech Republic
| | - O Roger Anderson
- Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Sonya T Dyhrman
- Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, United States
- Department of Earth and Environmental Sciences, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, United States
| | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Coral Beach P.O.B 469, Eilat 8810302, Israel
| |
Collapse
|
3
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
4
|
Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. THE ISME JOURNAL 2022; 16:1921-1931. [PMID: 35459792 PMCID: PMC9296519 DOI: 10.1038/s41396-022-01242-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023]
Abstract
The plasticity of bacterial and archaeal genomes makes examining their ecological and evolutionary dynamics both exciting and challenging. The same mechanisms that enable rapid genomic change and adaptation confound current approaches for recovering complete genomes from metagenomes. Here, we use strain-specific patterns of DNA methylation to resolve complex bacterial genomes from long-read metagenomic data of a marine microbial consortium, the “pink berries” of the Sippewissett Marsh (USA). Unique combinations of restriction-modification (RM) systems encoded by the bacteria produced distinctive methylation profiles that were used to accurately bin and classify metagenomic sequences. Using this approach, we finished the largest and most complex circularized bacterial genome ever recovered from a metagenome (7.9 Mb with >600 transposons), the finished genome of Thiohalocapsa sp. PB-PSB1 the dominant bacteria in the consortia. From genomes binned by methylation patterns, we identified instances of horizontal gene transfer between sulfur-cycling symbionts (Thiohalocapsa sp. PB-PSB1 and Desulfofustis sp. PB-SRB1), phage infection, and strain-level structural variation. We also linked the methylation patterns of each metagenome-assembled genome with encoded DNA methyltransferases and discovered new RM defense systems, including novel associations of RM systems with RNase toxins.
Collapse
|
5
|
Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, Smith H. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecol 2020; 96:fiaa115. [PMID: 32520336 PMCID: PMC7609354 DOI: 10.1093/femsec/fiaa115] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/14/2022] Open
Abstract
Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
Collapse
Affiliation(s)
- Winifred M Johnson
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Sciences and Engineering, Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Raven L Bier
- Stroud Water Research Center, 970 Spencer Rd., Avondale, PA 19311, USA
| | - Dan R Miller
- PureMagic LTD, Rambam 67, Yad Rambam 9979300, Israel
| | - Mario E Muscarella
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Heidi Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Shilova IN, Magasin JD, Mills MM, Robidart JC, Turk-Kubo KA, Zehr JP. Phytoplankton transcriptomic and physiological responses to fixed nitrogen in the California current system. PLoS One 2020; 15:e0231771. [PMID: 32310982 PMCID: PMC7170224 DOI: 10.1371/journal.pone.0231771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| | - Jonathan D. Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew M. Mills
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Julie C. Robidart
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, England, United Kingdom
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| |
Collapse
|
7
|
Eichner M, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen Dynamics in Trichodesmium Colonies and Their Potential Role in Mineral Iron Acquisition. Front Microbiol 2019; 10:1565. [PMID: 31354665 PMCID: PMC6636555 DOI: 10.3389/fmicb.2019.01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
N2-fixing cyanobacteria mediate H2 fluxes through the opposing processes of H2 evolution, which is a by-product of the N2 fixation reaction, and H2 uptake, which is driven by uptake hydrogenases. Here, we used microelectrodes to characterize H2 and O2 dynamics in single natural colonies of the globally important N2 fixer Trichodesmium collected from the Gulf of Eilat. We observed gradually changing H2 dynamics over the course of the day, including both net H2 evolution and net H2 uptake, as well as large differences in H2 fluxes between individual colonies. Net H2 uptake was observed in colonies amended with H2 in both light and dark. Net H2 evolution was recorded in the light only, reflecting light-dependent N2 fixation coupled to H2 evolution. Both net H2 evolution and H2 uptake rates were higher before 2 pm than later in the day. These pronounced H2 dynamics in the morning coincided with strong net O2 uptake and the previously reported diel peak in N2 fixation. Later in the afternoon, when photosynthesis rates determined by O2 measurements were highest, and N2 fixation rates decrease according to previous studies, the H2 dynamics were also less pronounced. Thus, the observed diel variations in H2 dynamics reflect diel changes in the rates of O2 consumption and N2 fixation. Remarkably, the presence of H2 strongly stimulated the uptake of mineral iron by natural colonies. The magnitude of this effect was dependent on the time of day, with the strongest response in incubations that started before 2 pm, i.e., the period that covered the time of highest uptake hydrogenase activity. Based on these findings, we propose that by providing an electron source for mineral iron reduction in N2-fixing cells, H2 may contribute to iron uptake in Trichodesmium colonies.
Collapse
Affiliation(s)
- Meri Eichner
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Subhajit Basu
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Martha Gledhill
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yeala Shaked
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
8
|
Loick‐Wilde N, Fernández‐Urruzola I, Eglite E, Liskow I, Nausch M, Schulz‐Bull D, Wodarg D, Wasmund N, Mohrholz V. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. GLOBAL CHANGE BIOLOGY 2019; 25:794-810. [PMID: 30628151 PMCID: PMC6850720 DOI: 10.1111/gcb.14546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 05/19/2023]
Abstract
Changes in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N2 -fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous. Here, we use a set of proxies derived from amino acid nitrogen stable isotopes from two mesozooplankton size fractions to identify changes in the nitrogen source and the planktonic food web structure across different microplankton communities. A transition from herbivory to carnivory in mesozooplankton between more eutrophic, near-coastal sites and more oligotrophic, offshore sites was accompanied by an increasing diversity of microplankton communities with aging filamentous cyanobacterial blooms. Our analyses of 124 biotic and abiotic variables using multivariate statistics confirmed salinity as a major driver for the biomass distribution of non-N2 -fixing microplankton species such as dinoflagellates. However, we provide strong evidence that stratification, N2 fixation, and the stage of the cyanobacterial blooms regulated much of the microplankton diversity and the mean trophic position and size of the metabolic nitrogen pool in mesozooplankton. Our empirical, macroscale data set consistently unifies contrasting results of the dominant feeding mode in mesozooplankton during blooms of unpalatable, filamentous, N2 -fixing cyanobacteria by identifying the at times important role of heterotrophic microbial food webs. Thus, carnivory, rather than herbivory, dominates in mesozooplankton during aging and decaying cyanobacterial blooms with hitherto uncharacterized consequences for the biogeochemical functions of mesozooplankton.
Collapse
Affiliation(s)
| | - Igor Fernández‐Urruzola
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
- Present address:
Millennium Institute of Oceanography (IMO)University of ConcepcionConcepciónChile
| | - Elvita Eglite
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| | - Iris Liskow
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| | - Monika Nausch
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| | | | - Dirk Wodarg
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| | - Norbert Wasmund
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| | - Volker Mohrholz
- Leibniz Institute for Baltic Sea Research WarnemuendeRostockGermany
| |
Collapse
|
9
|
Moisander PH, Shoemaker KM, Daley MC, McCliment E, Larkum J, Altabet MA. Copepod-Associated Gammaproteobacteria Respire Nitrate in the Open Ocean Surface Layers. Front Microbiol 2018; 9:2390. [PMID: 30369912 PMCID: PMC6194322 DOI: 10.3389/fmicb.2018.02390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Microbial dissimilatory nitrate reduction to nitrite, or nitrate respiration, was detected in association with copepods in the oxygenated water column of the North Atlantic subtropical waters. These unexpected rates correspond to up to 0.09 nmol N copepod-1 d-1 and demonstrate a previously unaccounted nitrogen transformation in the oceanic pelagic surface layers. Genes and transcripts for both the periplasmic and membrane associated dissimilatory nitrate reduction pathways (Nap and Nar, respectively) were detected. The napA genes and transcripts were closely related with sequences from several clades of Vibrio sp., while the closest relatives of the narG sequences were Pseudoalteromonas spp. and Alteromonas spp., many of them representing clades only distantly related to previously described cultivated bacteria. The discovered activity demonstrates a novel Gammaproteobacterial respiratory role in copepod association, presumably providing energy for these facultatively anaerobic bacteria, while supporting a reductive path of nitrogen in the oxygenated water column of the open ocean.
Collapse
Affiliation(s)
- Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Katyanne M. Shoemaker
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Meaghan C. Daley
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Elizabeth McCliment
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Jennifer Larkum
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States
| | - Mark A. Altabet
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States
| |
Collapse
|
10
|
Robidart JC, Magasin JD, Shilova IN, Turk-Kubo KA, Wilson ST, Karl DM, Scholin CA, Zehr JP. Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre. ISME JOURNAL 2018; 13:374-387. [PMID: 30254320 DOI: 10.1038/s41396-018-0280-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Abstract
Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which are supplied, in part, by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities. We combined in situ sampling using the Environmental Sample Processor and a small-scale mixing experiment with lower euphotic zone water to determine how individual populations respond to mixing. Transcriptional responses were measured using the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) microarray, which targets all three domains of life and viruses. The experiment showed that mixing substantially affects photosynthetic taxa as expected, but surprisingly also showed that populations respond differently to unfiltered deep water which contains particles (organisms and detritus) compared to filtered deep water that only contains nutrients and viruses, pointing to the impact of biological interactions associated with these events. Comparison between experimental and in situ population transcription patterns indicated that manipulated populations can serve as analogs for natural populations, and that natural populations may be frequently or continuously responding to nutrients from deeper waters. Finally, this study also shows that the microarray approach, which is complementary to metatranscriptomic sequencing, is useful for determining the physiological status of in situ microbial communities.
Collapse
Affiliation(s)
- J C Robidart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.,National Oceanography Centre, Southampton, UK
| | - J D Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - I N Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.,Second Genome, South San Francisco, CA, USA
| | - K A Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - S T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - D M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - C A Scholin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - J P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
11
|
Iron and phosphorus deprivation induce sociality in the marine bloom-forming cyanobacterium Trichodesmium. ISME JOURNAL 2018; 12:1682-1693. [PMID: 29463890 DOI: 10.1038/s41396-018-0073-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 11/09/2022]
Abstract
Trichodesmium spp. are diazotrophic cyanobacteria that exist as single filaments (trichomes) and as macroscopic colonies of varying shapes formed by aggregating trichomes. The causes and dynamics of colony formation and disassociation are not yet elucidated. we demonstrate that limited availability of dissolved phosphorus (P) or iron (Fe) stimulated trichome mobility and induced colony formation in Trichodesmium erythraeum IMS101 cultures. The specific nutrient limitation differentially affected the rate of colony formation and morphology of the colonies. Fe starvation promoted rapid colony formation (10-48 h from depletion) while 5-7 days were required for colonies to form in P-depleted cultures. Video analyses confirmed that the probability of trichomes to cluster increased from 12 to 35% when transferred from nutrient replete to Fe-depleted conditions. Moreover, the probability for Fe-depleted aggregates to remain colonial increased to 50% from only 10% in nutrient replete cultures. These colonies were also characterized by stronger attachment forces between the trichomes. Enrichment of nutrient-depleted cultures with the limited nutrient-stimulated colony dissociation into single trichomes. We postulate that limited P and Fe availability enhance colony formation of Trichodesmium and primarily control the abundance and distribution of its different morphologies in the nutrient-limited surface ocean.
Collapse
|
12
|
Walworth NG, Lee MD, Suffridge C, Qu P, Fu FX, Saito MA, Webb EA, Sañudo-Wilhelmy SA, Hutchins DA. Functional Genomics and Phylogenetic Evidence Suggest Genus-Wide Cobalamin Production by the Globally Distributed Marine Nitrogen Fixer Trichodesmium. Front Microbiol 2018; 9:189. [PMID: 29487583 PMCID: PMC5816740 DOI: 10.3389/fmicb.2018.00189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Only select prokaryotes can biosynthesize vitamin B12 (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to be a major euphotic source of cobalamins, recent studies have highlighted that >95% of cyanobacteria can only produce a cobalamin analog, pseudo-B12, due to the absence of the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required to biosynthesize cobalamins. Pseudo-B12 is substantially less bioavailable to eukaryotic algae, as only certain taxa can intracellularly remodel it to one of the cobalamins. Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis gene, bluB, is of ancient origin, which could have aided in its ecological differentiation from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two genes encoding iron-dependent B12 biosynthetic enzymes (cbiX and isiB), suggesting that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation, but also to B12 inputs by Trichodesmium. These analyses suggest that Trichodesmium contains the genus-wide genomic potential for a previously unrecognized role as a source of cobalamins, which may prove to considerably impact marine biogeochemical cycles.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael D Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Christopher Suffridge
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Pingping Qu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sergio A Sañudo-Wilhelmy
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Frischkorn KR, Haley ST, Dyhrman ST. Coordinated gene expression between Trichodesmium and its microbiome over day-night cycles in the North Pacific Subtropical Gyre. ISME JOURNAL 2018; 12:997-1007. [PMID: 29382945 DOI: 10.1038/s41396-017-0041-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/03/2017] [Accepted: 12/16/2017] [Indexed: 11/09/2022]
Abstract
Trichodesmium is a widespread, N2 fixing marine cyanobacterium that drives inputs of newly fixed nitrogen and carbon into the oligotrophic ecosystems where it occurs. Colonies of Trichodesmium ubiquitously occur with heterotrophic bacteria that make up a diverse microbiome, and interactions within this Trichodesmium holobiont could influence the fate of fixed carbon and nitrogen. Metatranscriptome sequencing was performed on Trichodesmium colonies collected during high-frequency Lagrangian sampling in the North Pacific Subtropical Gyre (NPSG) to identify possible interactions between the Trichodesmium host and microbiome over day-night cycles. Here we show significantly coordinated patterns of gene expression between host and microbiome, many of which had significant day-night periodicity. The functions of the co-expressed genes suggested a suite of interactions within the holobiont linked to key resources including nitrogen, carbon, and iron. Evidence of microbiome reliance on Trichodesmium-derived vitamin B12 was also detected in co-expression patterns, highlighting a dependency that could shape holobiont community structure. Collectively, these patterns of expression suggest that biotic interactions could influence colony cycling of resources like nitrogen and vitamin B12, and decouple activities, like N2 fixation, from typical abiotic drivers of Trichodesmium physiological ecology.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10025, USA.,Lamont-Doherty Earth Observatory, Palisades, NY, 10964, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Palisades, NY, 10964, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10025, USA. .,Lamont-Doherty Earth Observatory, Palisades, NY, 10964, USA.
| |
Collapse
|
14
|
Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, Reinhardt R, Berman-Frank I, Rodriguez-Valera F, Hess WR. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME JOURNAL 2018; 12:981-996. [PMID: 29335641 PMCID: PMC5864184 DOI: 10.1038/s41396-017-0034-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environment.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Ulrike Pfreundt
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany.,ETH Zürich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Stefano-Franscini-Platz 5, CH-8093, Zürich, Switzerland
| | - Natalia Belkin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Kurt Stüber
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany. .,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, D-79104, Freiburg, Germany.
| |
Collapse
|
15
|
Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling. Appl Environ Microbiol 2017; 84:AEM.02026-17. [PMID: 29054872 DOI: 10.1128/aem.02026-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022] Open
Abstract
Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia.IMPORTANCETrichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium.
Collapse
|
16
|
Li DX, Zhang H, Chen XH, Xie ZX, Zhang Y, Zhang SF, Lin L, Chen F, Wang DZ. Metaproteomics reveals major microbial players and their metabolic activities during the blooming period of a marine dinoflagellate Prorocentrum donghaiense. Environ Microbiol 2017; 20:632-644. [PMID: 29124849 DOI: 10.1111/1462-2920.13986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023]
Abstract
Interactions between bacteria and phytoplankton during bloom events are essential for both partners, which impacts their physiology, alters ambient chemistry and shapes ecosystem diversity. Here, we investigated the community structure and metabolic activities of free-living bacterioplankton in different blooming phases of a dinoflagellate Prorocentrum donghaiense using a metaproteomic approach. The Fibrobacteres-Chlorobi-Bacteroidetes group, Rhodobacteraceae, SAR11 and SAR86 clades contributed largely to the bacterial community in the middle-blooming phase while the Pseudoalteromonadaceae exclusively dominated in the late-blooming phase. Transporters and membrane proteins, especially TonB-dependent receptors were highly abundant in both blooming phases. Proteins involved in carbon metabolism, energy metabolism and stress response were frequently detected in the middle-blooming phase while proteins participating in proteolysis and central carbon metabolism were abundant in the late-blooming phase. Beta-glucosidase with putative algicidal capability was identified from the Pseudoalteromonadaceae only in the late-blooming phase, suggesting an active role of this group in lysing P. donghaiense cells. Our results indicated that diverse substrate utilization strategies and different capabilities for environmental adaptation among bacteria shaped their distinct niches in different bloom phases, and certain bacterial species from the Pseudoalteromonadaceae might be crucial for the termination of a dinoflagellate bloom.
Collapse
Affiliation(s)
- Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Coates CJ, Wyman M. A denitrifying community associated with a major, marine nitrogen fixer. Environ Microbiol 2017; 19:4978-4992. [PMID: 29194965 DOI: 10.1111/1462-2920.14007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
The diazotrophic cyanobacterium, Trichodesmium, is an integral component of the marine nitrogen cycle and contributes significant amounts of new nitrogen to oligotrophic, tropical/subtropical ocean surface waters. Trichodesmium forms macroscopic, fusiform (tufts), spherical (puffs) and raft-like colonies that provide a pseudobenthic habitat for a host of other organisms including marine invertebrates, microeukaryotes and numerous other microbes. The diversity and activity of denitrifying bacteria found in association with the colonies was interrogated using a series of molecular-based methodologies targeting the gene encoding the terminal step in the denitrification pathway, nitrous oxide reductase (nosZ). Trichodesmium spp. sampled from geographically isolated ocean provinces (the Atlantic Ocean, the Red Sea and the Indian Ocean) were shown to harbor highly similar, taxonomically related communities of denitrifiers whose members are affiliated with the Roseobacter clade within the Rhodobacteraceae (Alphaproteobacteria). These organisms were actively expressing nosZ in samples taken from the mid-Atlantic Ocean and Red Sea implying that Trichodesmium colonies are potential sites of nitrous oxide consumption and perhaps earlier steps in the denitrification pathway also. It is proposed that coupled nitrification of newly fixed N is the most likely source of nitrogen oxides supporting nitrous oxide cycling within Trichodesmium colonies.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.,Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Michael Wyman
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
18
|
Wilbanks EG, Salman-Carvalho V, Jaekel U, Humphrey PT, Eisen JA, Buckley DH, Zinder SH. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria. Front Microbiol 2017; 8:1623. [PMID: 28928719 PMCID: PMC5591377 DOI: 10.3389/fmicb.2017.01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and "Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes. Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable model system to investigate microbial dynamics within phytoplankton aggregates, a phenomenon of global importance to the flux of particulate organic carbon and nitrogen in surface waters.
Collapse
Affiliation(s)
- Elizabeth G Wilbanks
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa BarbaraCA, United States
| | - Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Ulrike Jaekel
- Department for Microbiology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, United States
| | - Jonathan A Eisen
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, DavisCA, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Stephen H Zinder
- Department of Microbiology, Cornell University, IthacaNY, United States
| |
Collapse
|
19
|
Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. THE ISME JOURNAL 2017; 11:1949-1963. [PMID: 28574490 PMCID: PMC5563950 DOI: 10.1038/ismej.2017.59] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.
Collapse
Affiliation(s)
- Esther Singer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael Wagner
- University of Vienna, Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
20
|
Frischkorn KR, Rouco M, Van Mooy BAS, Dyhrman ST. Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. THE ISME JOURNAL 2017; 11:2090-2101. [PMID: 28534879 PMCID: PMC5563961 DOI: 10.1038/ismej.2017.74] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 01/21/2023]
Abstract
Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting 'new' nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Mónica Rouco
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| |
Collapse
|
21
|
Gradoville MR, Crump BC, Letelier RM, Church MJ, White AE. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre. Front Microbiol 2017; 8:1122. [PMID: 28729854 PMCID: PMC5498550 DOI: 10.3389/fmicb.2017.01122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C) and dinitrogen (N2) fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG). The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99%) from Trichodesmium Clade I (i.e., T. thiebautii), which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme) identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S rRNA gene sequence analyses suggested that lineages typically associated with a copiotrophic lifestyle comprised a large fraction of colony-associated epibionts, in contrast to the streamlined genomes typical of bacterioplankton in these oligotrophic waters. Additionally, epibiont metagenomes were enriched in specific genes involved in phosphate and iron acquisition and denitrification pathways relative to surface seawater metagenomes. We propose that the unique microbial consortium inhabiting colonies has a significant impact on the biogeochemical functioning of Trichodesmium colonies in pelagic environments.
Collapse
Affiliation(s)
- Mary R Gradoville
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Byron C Crump
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Ricardo M Letelier
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Matthew J Church
- Flathead Lake Biological Station, University of MontanaMT, United States
| | - Angelicque E White
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| |
Collapse
|
22
|
Lee MD, Walworth NG, McParland EL, Fu FX, Mincer TJ, Levine NM, Hutchins DA, Webb EA. The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions. ISME JOURNAL 2017; 11:1813-1824. [PMID: 28440800 DOI: 10.1038/ismej.2017.49] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/31/2016] [Accepted: 02/16/2017] [Indexed: 11/09/2022]
Abstract
The nitrogen (N)-fixing cyanobacterium Trichodesmium is globally distributed in warm, oligotrophic oceans, where it contributes a substantial proportion of new N and fuels primary production. These photoautotrophs form macroscopic colonies that serve as relatively nutrient-rich substrates that are colonized by many other organisms. The nature of these associations may modulate ocean N and carbon (C) cycling, and can offer insights into marine co-evolutionary mechanisms. Here we integrate multiple omics-based and experimental approaches to investigate Trichodesmium-associated bacterial consortia in both laboratory cultures and natural environmental samples. These efforts have identified the conserved presence of a species of Gammaproteobacteria (Alteromonas macleodii), and enabled the assembly of a near-complete, representative genome. Interorganismal comparative genomics between A. macleodii and Trichodesmium reveal potential interactions that may contribute to the maintenance of this association involving iron and phosphorus acquisition, vitamin B12 exchange, small C compound catabolism, and detoxification of reactive oxygen species. These results identify what may be a keystone organism within Trichodesmium consortia and support the idea that functional selection has a major role in structuring associated microbial communities. These interactions, along with likely many others, may facilitate Trichodesmium's unique open-ocean lifestyle, and could have broad implications for oligotrophic ecosystems and elemental cycling.
Collapse
Affiliation(s)
- Michael D Lee
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nathan G Walworth
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Erin L McParland
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fei-Xue Fu
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Tracy J Mincer
- Woods Hole Oceanographic Institute, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Naomi M Levine
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Hutchins
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Eric A Webb
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Eichner MJ, Klawonn I, Wilson ST, Littmann S, Whitehouse MJ, Church MJ, Kuypers MM, Karl DM, Ploug H. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO 2. ISME JOURNAL 2017; 11:1305-1317. [PMID: 28398346 PMCID: PMC5437350 DOI: 10.1038/ismej.2017.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.
Collapse
Affiliation(s)
- Meri J Eichner
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Isabell Klawonn
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, Sweden
| | - Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Marcel Mm Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Pfreundt U, Spungin D, Hou S, Voß B, Berman-Frank I, Hess WR. Genome of a giant bacteriophage from a decaying Trichodesmium bloom. Mar Genomics 2017; 33:21-25. [PMID: 28237778 DOI: 10.1016/j.margen.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
De-novo assembly of a metagenomic dataset obtained from a decaying cyanobacterial Trichodesmium bloom from the New Caledonian lagoon resulted in a complete giant phage genome of 257,908bp, obtained independently with multiple assembly tools. Noteworthy, gammaproteobacteria were an abundant fraction in the sequenced samples. Mapping of the raw reads with 99% accuracy to the giant phage genome resulted in an average coverage of 262X. The closest sequenced relatives, albeit still distant, are the Pseudomonas phages PaBG from Lake Baikal and Lu11 isolated from a soil sample from the Philippines. The phage reported here might belong to the same family within the Myoviridae as PaBG and Lu11 and would thus be its first marine member, indicating a more widespread occurrence of this group. We named this phage NCTB (New Caledonia Trichodesmium Bloom) after its origin.
Collapse
Affiliation(s)
- Ulrike Pfreundt
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Dina Spungin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Björn Voß
- Computational Biology, Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
25
|
Sargent EC, Hitchcock A, Johansson SA, Langlois R, Moore CM, LaRoche J, Poulton AJ, Bibby TS. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol Lett 2016; 363:fnw244. [PMID: 27797867 DOI: 10.1093/femsle/fnw244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/31/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and >600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N2-fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience.
Collapse
Affiliation(s)
- Elizabeth C Sargent
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - Andrew Hitchcock
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - S Andreas Johansson
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - Rebecca Langlois
- Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - C Mark Moore
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - Julie LaRoche
- Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Alex J Poulton
- Ocean Biogeochemistry and Ecosystems, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| |
Collapse
|
26
|
Rouco M, Haley ST, Dyhrman ST. Microbial diversity within theTrichodesmiumholobiont. Environ Microbiol 2016; 18:5151-5160. [DOI: 10.1111/1462-2920.13513] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Mónica Rouco
- Biology and Paleo Environment Division; Lamont-Doherty Earth Observatory Columbia University; NY USA
- Department of Earth and Environmental Sciences; Columbia University; NY USA
| | - Sheean T. Haley
- Biology and Paleo Environment Division; Lamont-Doherty Earth Observatory Columbia University; NY USA
| | - Sonya T. Dyhrman
- Biology and Paleo Environment Division; Lamont-Doherty Earth Observatory Columbia University; NY USA
- Department of Earth and Environmental Sciences; Columbia University; NY USA
| |
Collapse
|
27
|
Rees AP, Tait K, Widdicombe CE, Quartly GD, McEvoy AJ, Al-Moosawi L. Metabolically active, non-nitrogen fixing, Trichodesmium in UK coastal waters during winter. JOURNAL OF PLANKTON RESEARCH 2016; 38:673-678. [PMID: 27274100 PMCID: PMC4892227 DOI: 10.1093/plankt/fbv123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.
Collapse
|
28
|
Sacilotto Detoni AM, Fonseca Costa LD, Pacheco LA, Yunes JS. Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean. Toxicon 2016; 110:51-5. [DOI: 10.1016/j.toxicon.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023]
|
29
|
Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS. Phosphite utilization by the globally important marine diazotroph Trichodesmium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:824-30. [PMID: 26081517 DOI: 10.1111/1758-2229.12308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 05/15/2023]
Abstract
Species belonging to the filamentous cyanobacterial genus Trichodesmium are responsible for a significant fraction of oceanic nitrogen fixation. The availability of phosphorus (P) likely constrains the growth of Trichodesmium in certain regions of the ocean. Moreover, Trichodesmium species have recently been shown to play a role in an emerging oceanic phosphorus redox cycle, further highlighting the key role these microbes play in many biogeochemical processes in the contemporary ocean. Here, we show that Trichodesmium erythraeum IMS101 can grow on the reduced inorganic compound phosphite as its sole source of P. The components responsible for phosphite utilization are identified through heterologous expression of the T. erythraeum IMS101 Tery_0365-0368 genes, encoding a putative adenosine triphosphate (ATP)-binding cassette transporter and nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, in the model cyanobacteria Synechocystis sp. PCC6803. We demonstrate that only combined expression of both the transporter and the dehydrogenase enables Synechocystis to utilize phosphite, confirming the function of Tery_0365-0367 as a phosphite uptake system (PtxABC) and Tery_0368 as a phosphite dehydrogenase (PtxD). Our findings suggest that reported uptake of phosphite by Trichodesmium consortia in the field likely reflects an active biological process by Trichodesmium. These results highlight the diversity of phosphorus sources available to Trichodesmium in a resource-limited ocean.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Andrew Hitchcock
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alison J Baylay
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - C Mark Moore
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Thomas S Bibby
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
30
|
Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. THE ISME JOURNAL 2015. [PMID: 26151644 DOI: 10.1038/ismej.2015.85.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.
Collapse
|
31
|
Saunders JK, Rocap G. Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. ISME JOURNAL 2015; 10:197-209. [PMID: 26151644 DOI: 10.1038/ismej.2015.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/25/2015] [Accepted: 04/03/2015] [Indexed: 11/09/2022]
Abstract
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.
Collapse
Affiliation(s)
| | - Gabrielle Rocap
- University of Washington, School of Oceanography, Seattle, WA, USA
| |
Collapse
|
32
|
Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. Proc Natl Acad Sci U S A 2015; 112:4251-6. [PMID: 25831533 DOI: 10.1073/pnas.1422332112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% of the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual "inflation" of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.
Collapse
|
33
|
Momper LM, Reese BK, Carvalho G, Lee P, Webb EA. A novel cohabitation between two diazotrophic cyanobacteria in the oligotrophic ocean. ISME JOURNAL 2015; 9:882-93. [PMID: 25343510 DOI: 10.1038/ismej.2014.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 11/09/2022]
Abstract
The cyanobacterial genus Trichodesmium is biogeochemically significant because of its dual role in nitrogen and carbon fixation in the oligotrophic ocean. Trichodesmium species form colonies that can be easily enriched from the water column and used for shipboard rate measurements to estimate their contribution to oceanic carbon and nitrogen budgets. During a July 2010 cruise near the Hawaiian Islands in the oligotrophic North Pacific Subtropical Gyre, a specific morphology of Trichodesmium puff-form colonies were examined under epifluorescent microscopy and found to harbor a colonial endobiont, morphologically identified as the heterocystous diazotrophic cyanobacterium Calothrix. Using unialgal enrichments obtained from this cruise, we show that these Calothrix-like heterocystous cyanobionts (hetDA for 'Trichodesmium-associated heterocystous diazotroph') fix nitrogen on a diurnal cycle (maximally in the middle of the light cycle with a detectable minimum in the dark). Gene sequencing of nifH from the enrichments revealed that this genus was likely not quantified using currently described quantitative PCR (qPCR) primers. Guided by the sequence from the isolate, new hetDA-specific primers were designed and subsequent qPCR of environmental samples detected this diazotroph from surface water to a depth of 150 m, reaching densities up to ∼ 9 × 10(3) l(-1). Based on phylogenetic relatedness of nifH and 16S rRNA gene sequences, it is predicted that the distribution of this cyanobiont is not limited to subtropical North Pacific but likely reaches to the South Pacific and Atlantic Oceans. Therefore, this previously unrecognized cohabitation, if it reaches beyond the oligotrophic North Pacific, could potentially influence Trichodesmium-derived nitrogen fixation budgets in the world ocean.
Collapse
Affiliation(s)
- Lily M Momper
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Brandi Kiel Reese
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Gustavo Carvalho
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Patrick Lee
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Hilton JA, Satinsky BM, Doherty M, Zielinski B, Zehr JP. Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume. ISME JOURNAL 2014; 9:1557-69. [PMID: 25514535 DOI: 10.1038/ismej.2014.240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities.
Collapse
Affiliation(s)
- Jason A Hilton
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | | | - Mary Doherty
- Department of Biology, Rhodes College, Memphis, TN, USA
| | - Brian Zielinski
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
35
|
Alberti A, Belser C, Engelen S, Bertrand L, Orvain C, Brinas L, Cruaud C, Giraut L, Da Silva C, Firmo C, Aury JM, Wincker P. Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data. BMC Genomics 2014; 15:912. [PMID: 25331572 PMCID: PMC4213505 DOI: 10.1186/1471-2164-15-912] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metatranscriptomics is rapidly expanding our knowledge of gene expression patterns and pathway dynamics in natural microbial communities. However, to cope with the challenges of environmental sampling, various rRNA removal and cDNA synthesis methods have been applied in published microbial metatranscriptomic studies, making comparisons arduous. Whereas efficiency and biases introduced by rRNA removal methods have been relatively well explored, the impact of cDNA synthesis and library preparation on transcript abundance remains poorly characterized. The evaluation of potential biases introduced at this step is challenging for metatranscriptomic samples, where data analyses are complex, for example because of the lack of reference genomes. RESULTS Herein, we tested four cDNA synthesis and Illumina library preparation protocols on a simplified mixture of total RNA extracted from four bacterial species. In parallel, RNA from each microbe was tested individually. cDNA synthesis was performed on rRNA depleted samples using the TruSeq Stranded Total RNA Library Preparation, the SMARTer Stranded RNA-Seq, or the Ovation RNA-Seq V2 System. A fourth experiment was made directly from total RNA using the Encore Complete Prokaryotic RNA-Seq. The obtained sequencing data were analyzed for: library complexity and reproducibility; rRNA removal efficiency and bias; the number of genes detected; coverage uniformity; and the impact of protocols on expression biases. Significant variations, especially in organism representation and gene expression patterns, were observed among the four methods. TruSeq generally performed best, but is limited by its requirement of hundreds of nanograms of total RNA. The SMARTer method appears the best solution for smaller amounts of input RNA. For very low amounts of RNA, the Ovation System provides the only option; however, the observed biases emphasized its limitations for quantitative analyses. CONCLUSIONS cDNA and library preparation methods may affect the outcome and interpretation of metatranscriptomic data. The most appropriate method should be chosen based on the available quantity of input RNA and the quantitative or non-quantitative objectives of the study. When low amounts of RNA are available, as in most metatranscriptomic studies, the SMARTer method seems to be the best compromise to obtain reliable results. This study emphasized the difficulty in comparing metatranscriptomic studies performed using different methods.
Collapse
Affiliation(s)
- Adriana Alberti
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Caroline Belser
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Stéfan Engelen
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laurie Bertrand
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Céline Orvain
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laura Brinas
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Corinne Cruaud
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Laurène Giraut
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Corinne Da Silva
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Cyril Firmo
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Jean-Marc Aury
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
| | - Patrick Wincker
- />CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706 F-91057, Evry Cedex, France
- />Université d’Evry, UMR 8030, CP5706 Evry, France
- />Centre National de la Recherche Scientifique (CNRS), UMR 8030, CP5706 Evry, France
| |
Collapse
|
36
|
Pascault N, Loux V, Derozier S, Martin V, Debroas D, Maloufi S, Humbert JF, Leloup J. Technical challenges in metatranscriptomic studies applied to the bacterial communities of freshwater ecosystems. Genetica 2014; 143:157-67. [DOI: 10.1007/s10709-014-9783-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/09/2014] [Indexed: 11/28/2022]
|
37
|
Klindworth A, Mann AJ, Huang S, Wichels A, Quast C, Waldmann J, Teeling H, Glöckner FO. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar Genomics 2014; 18 Pt B:185-92. [PMID: 25211053 DOI: 10.1016/j.margen.2014.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 11/16/2022]
Abstract
A recent investigation of bacterioplankton communities in the German Bight towards the end of a diatom-dominated spring phytoplankton bloom revealed pronounced successions of distinct bacterial clades. A combination of metagenomics and metaproteomics indicated that these clades had distinct substrate spectra and consumed different algal substrates. In this study we re-analyzed samples from the initial study by total community RNA (metatranscriptomics) and 16S rRNA gene amplicon sequencing. This complementary approach provided new insights into the community composition and expressed genes as well as the assessment of metabolic activity levels of distinct clades. Flavobacteria (genera Ulvibacter, Formosa, and Polaribacter), Alphaproteobacteria (SAR11 clade and Rhodobacteraceae) and Gammaproteobacteria (genus Reinekea and SAR92 clade) were the most abundant taxa. Mapping of the metatranscriptome data on assembled and taxonomically classified metagenome data of the same samples substantiated that Formosa and Polaribacter acted as major algal polymer degraders, whereas Rhodobacteraceae and Reinekea spp. exhibited less specialized substrate spectra. In addition, we found that members of the Rhodobacteraceae and SAR92 clade showed high metabolic activity levels, which suggests that these clades played a more important role during the bloom event as indicated by their in situ abundances.
Collapse
Affiliation(s)
- Anna Klindworth
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstraße 1, 28359 Bremen, Germany; Jacobs University gGmbH Bremen, School of Engineering and Sciences, Campusring 1, 28759 Bremen, Germany.
| | - Alexander J Mann
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstraße 1, 28359 Bremen, Germany; Jacobs University gGmbH Bremen, School of Engineering and Sciences, Campusring 1, 28759 Bremen, Germany
| | - Sixing Huang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Antje Wichels
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27483 Helgoland, Germany
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstraße 1, 28359 Bremen, Germany
| | - Jost Waldmann
- Ribocon GmbH, Fahrenheitstraße 1, 28359 Bremen, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Molecular Ecology Group, Celsiusstraße 1, 28359 Bremen, Germany
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Microbial Genomics and Bioinformatics Research Group, Celsiusstraße 1, 28359 Bremen, Germany; Jacobs University gGmbH Bremen, School of Engineering and Sciences, Campusring 1, 28759 Bremen, Germany
| |
Collapse
|
38
|
Abstract
The direct retrieval and sequencing of environmental RNA is emerging as a powerful technique to elucidate the in situ activities of microbial communities. Here we provide a metatranscriptomic protocol describing environmental sample collection, rRNA depletion, mRNA amplification, cDNA synthesis, and bioinformatic analysis. In addition, the preparation of internal RNA standards and their addition to the sample are discussed, providing a method by which transcript numbers can be expressed as absolute abundances in the environment and more readily compared to other biogeochemical and ecological measurements.
Collapse
Affiliation(s)
- Scott Gifford
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
39
|
Thompson AW, Zehr JP. Cellular interactions: lessons from the nitrogen-fixing cyanobacteria. JOURNAL OF PHYCOLOGY 2013; 49:1024-1035. [PMID: 27007623 DOI: 10.1111/jpy.12117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/17/2013] [Indexed: 06/05/2023]
Abstract
Marine nitrogen-fixing cyanobacteria play a central role in the open-ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2 ) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2 -fixing cyanobacteria in the open ocean are more diverse, include several previously unknown symbionts, and are geographically more widespread than expected. The next challenge is to understand the ecological implications of this genetic and phenotypic diversity for global oceanic N cycling. One intriguing aspect of the cyanobacterial N2 fixers ecology is the range of cellular interactions they engage in, either with cells of their own species or with photosynthetic protists. From organelle-like integration with the host cell to a free-living existence, N2 -fixing cyanobacteria represent the range of types of interactions that occur among microbes in the open ocean. Here, we review what is known about the cellular interactions carried out by marine N2 -fixing cyanobacteria and where future work can help. Discoveries related to the functional roles of these specialized cells in food webs and the microbial community will improve how we interpret their distribution and abundance patterns and contributions to global N and carbon (C) cycles.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Ocean Sciences, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
40
|
Bar-Zeev E, Avishay I, Bidle KD, Berman-Frank I. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export. ISME JOURNAL 2013; 7:2340-8. [PMID: 23887173 DOI: 10.1038/ismej.2013.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/10/2013] [Accepted: 06/15/2013] [Indexed: 12/31/2022]
Abstract
The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2-3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans.
Collapse
Affiliation(s)
- Edo Bar-Zeev
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
41
|
Brown JM, LaBarre BA, Hewson I. Characterization of Trichodesmium-associated viral communities in the eastern Gulf of Mexico. FEMS Microbiol Ecol 2013; 84:603-13. [PMID: 23398591 DOI: 10.1111/1574-6941.12088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/28/2012] [Accepted: 02/03/2013] [Indexed: 11/30/2022] Open
Abstract
Trichodesmium surface aggregations shape the co-occurring microbial community by providing organic carbon and nitrogen and surfaces on which microorganisms can aggregate. Rapid collapse of Trichodesmium aggregations leads to drastic changes in the chemical and physical properties of surrounding waters, eliciting a response from the microbial community and their associated viruses. Three viral metagenomes were constructed from experimentally lysed Trichodesmium collected from two locations in the eastern Gulf of Mexico. Trichodesmium were either treated with mitomycin C to induce potential lysogens or incubated in the absence of mitomycin C. Comparative analyses of viral contiguous sequences indicated that viral composition was responsive to treatment type. Cyanophages were more represented within incubations treated with mitomycin C, while gammaproteobacterial phages were more represented within the untreated incubation. The detection of latent bacteriophage integrases in both the chemically treated and untreated incubations suggests that Trichodesmium death may lead to prophage induction within associated microorganisms. While no single cyanophage-like genotype associated with Trichodesmium lysis could be identified that might point to an infectious Trichodesmium phage, reads resembling Trichodesmium were recovered. These data reveal a diverse consortium of lytic and temperate phages associated with Trichodesmium whose patterns of representation within treated and untreated libraries offer insights into the activities of host and viral communities during Trichodesmium aggregation collapse.
Collapse
Affiliation(s)
- Julia M Brown
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
42
|
Denitrifying alphaproteobacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Appl Environ Microbiol 2013; 79:2670-81. [PMID: 23396348 DOI: 10.1128/aem.03705-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine ecosystems are significant sources of the powerful greenhouse gas nitrous oxide (N2O). A by-product of nitrification and an intermediate in the denitrification pathway, N2O is formed primarily in oxygen-deficient waters and sediments. We describe the isolation of a group of alphaproteobacteria from the suboxic waters of the Arabian Sea that are phylogenetically affiliated with Labrenzia spp. and other denitrifiers. Quantitative PCR assays revealed that these organisms were very broadly distributed in this semienclosed ocean basin. Their biogeographical range extended from the productive, upwelling region off the Omani shelf to the clear, oligotrophic waters that are found much further south and also included the mesotrophic waters overlying the oxygen minimum zone (OMZ) in the northeastern sector of the Arabian Sea. These organisms actively expressed NosZ (N2O reductase, the terminal step in the denitrification pathway) within the OMZ, an established region of pelagic denitrification. They were found in greatest numbers outside the OMZ, however, and nosZ mRNAs were also readily detected near the base of the upper mixed layer in nutrient-poor, oxic regions. Our findings provide firm molecular evidence of a potential sink for N2O within well-ventilated, oceanic surface waters in this biogeochemically important region. We show that the Labrenzia-like denitrifiers and their close relatives are habitual colonizers of the pseudobenthic environment provided by Trichodesmium spp. We develop the conjecture that the O2-depleted microzones that occur within the colonies of these filamentous, diazotrophic cyanobacteria might provide unexpected niches for the reduction of nitrogen oxides in tropical and subtropical surface waters.
Collapse
|
43
|
Stewart FJ. Preparation of Microbial Community cDNA for Metatranscriptomic Analysis in Marine Plankton. Methods Enzymol 2013; 531:187-218. [DOI: 10.1016/b978-0-12-407863-5.00010-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 2012; 37:286-302. [PMID: 22928644 PMCID: PMC3655545 DOI: 10.1111/j.1574-6976.2012.00352.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 12/03/2022] Open
Abstract
The last several decades have witnessed dramatic advances in unfolding the diversity and commonality of oceanic diazotrophs and their N2-fixing potential. More recently, substantial progress in diazotrophic cell biology has provided a wealth of information on processes and mechanisms involved. The substantial contribution by the diazotrophic cyanobacterial genus Trichodesmium to the nitrogen influx of the global marine ecosystem is by now undisputable and of paramount ecological importance, while the underlying cellular and molecular regulatory physiology has only recently started to unfold. Here, we explore and summarize current knowledge, related to the optimization of its diazotrophic capacity, from genomics to ecophysiological processes, via, for example, cellular differentiation (diazocytes) and temporal regulations, and suggest cellular research avenues that now ought to be explored.
Collapse
|
45
|
Expression patterns reveal niche diversification in a marine microbial assemblage. ISME JOURNAL 2012; 7:281-98. [PMID: 22931830 DOI: 10.1038/ismej.2012.96] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies.
Collapse
|
46
|
The transcriptome of Bathymodiolus azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria. Mar Drugs 2012; 10:1765-1783. [PMID: 23015773 PMCID: PMC3447338 DOI: 10.3390/md10081765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022] Open
Abstract
Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans in the last 40 years. The deep-sea Lucky Strike hydrothermal vent field, located in the Mid Atlantic Ridge, is home to large vent mussel communities where Bathymodiolus azoricus represents the dominant faunal biomass, owing its survival to symbiotic associations with methylotrophic or methanotrophic and thiotrophic bacteria. The recent transcriptome sequencing and analysis of gill tissues from B. azoricus revealed a number of genes of bacterial origin, hereby analyzed to provide a functional insight into the gill microbial community. The transcripts supported a metabolically active microbiome and a variety of mechanisms and pathways, evidencing also the sulfur and methane metabolisms. Taxonomic affiliation of transcripts and 16S rRNA community profiling revealed a microbial community dominated by thiotrophic and methanotrophic endosymbionts of B. azoricus and the presence of a Sulfurovum-like epsilonbacterium.
Collapse
|
47
|
Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME JOURNAL 2012; 7:13-27. [PMID: 22791238 DOI: 10.1038/ismej.2012.75] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The residence of dinoflagellate algae (genus: Symbiodinium) within scleractinian corals is critical to the construction and persistence of tropical reefs. In recent decades, however, acute and chronic environmental stressors have frequently destabilized this symbiosis, ultimately leading to coral mortality and reef decline. Viral infection has been suggested as a trigger of coral-Symbiodinium dissociation; knowledge of the diversity and hosts of coral-associated viruses is critical to evaluating this hypothesis. Here, we present the first genomic evidence of viruses associated with Symbiodinium, based on the presence of transcribed +ss (single-stranded) RNA and ds (double-stranded) DNA virus-like genes in complementary DNA viromes of the coral Montastraea cavernosa and expressed sequence tag (EST) libraries generated from Symbiodinium cultures. The M. cavernosa viromes contained divergent viral sequences similar to the major capsid protein of the dinoflagellate-infecting +ssRNA Heterocapsa circularisquama virus, suggesting a highly novel dinornavirus could infect Symbiodinium. Further, similarities to dsDNA viruses dominated (∼69%) eukaryotic viral similarities in the M. cavernosa viromes. Transcripts highly similar to eukaryotic algae-infecting phycodnaviruses were identified in the viromes, and homologs to these sequences were found in two independently generated Symbiodinium EST libraries. Phylogenetic reconstructions substantiate that these transcripts are undescribed and distinct members of the nucleocytoplasmic large DNA virus (NCLDVs) group. Based on a preponderance of evidence, we infer that the novel NCLDVs and RNA virus described here are associated with the algal endosymbionts of corals. If such viruses disrupt Symbiodinium, they are likely to impact the flexibility and/or stability of coral-algal symbioses, and thus long-term reef health and resilience.
Collapse
|
48
|
Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic. PLoS One 2012; 7:e35571. [PMID: 22563465 PMCID: PMC3341377 DOI: 10.1371/journal.pone.0035571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean.
Collapse
|
49
|
Hynes AM, Webb EA, Doney SC, Waterbury JB. COMPARISON OF CULTURED TRICHODESMIUM (CYANOPHYCEAE) WITH SPECIES CHARACTERIZED FROM THE FIELD(1). JOURNAL OF PHYCOLOGY 2012; 48:196-210. [PMID: 27009664 DOI: 10.1111/j.1529-8817.2011.01096.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The filamentous, colonial cyanobacterium Trichodesmium has six well-described species, but many more names. Traditional classification was based on field samples using morphological characteristics such as cell width and length, gas vesicle distribution, and colony morphology. We used the Woods Hole Trichodesmium culture collection to identify 21 cultured strains to species using cell morphology; phycobiliprotein absorption spectra; and sequences of the 16S rRNA gene, the 16S-23S internal transcribed spacer (ITS), and the heterocyst differentiation gene hetR. We compared our results to previous studies of field specimens and found similar clades, though not all phylogenetic groups were represented in culture. Our culture collection represented two of the four major clades of Trichodesmium: clade I, made up of Trichodesmium thiebautii Gomont, Trichodesmium tenue Wille, Katagnymene spiralis Lemmerm., and Trichodesmium hildebrandtii Gomont; and clade III, consisting of Trichodesmium erythraeum Ehrenb. and Trichodesmium contortum Wille. These clades were genetically coherent with similar phycobiliprotein composition, but morphologically diverse. In the continual revision of cyanobacterial taxonomy, genetic and biochemical information is useful and informative complements to morphology for the development of a functional classification scheme.
Collapse
Affiliation(s)
- Annette M Hynes
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole, Massachusetts, USA Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biological Sciences, University of Southern California, 3616 Trousdale Parkway AHF 331, Los Angeles, California 90089, USADepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USA
| | - Eric A Webb
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole, Massachusetts, USA Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biological Sciences, University of Southern California, 3616 Trousdale Parkway AHF 331, Los Angeles, California 90089, USADepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USA
| | - Scott C Doney
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole, Massachusetts, USA Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biological Sciences, University of Southern California, 3616 Trousdale Parkway AHF 331, Los Angeles, California 90089, USADepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USA
| | - John B Waterbury
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole, Massachusetts, USA Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biological Sciences, University of Southern California, 3616 Trousdale Parkway AHF 331, Los Angeles, California 90089, USADepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USADepartment of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
50
|
Van Mooy BAS, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, Heithoff A, Webb EA, Momper L, Mincer TJ. Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME JOURNAL 2011; 6:422-9. [PMID: 21900966 DOI: 10.1038/ismej.2011.115] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO(2) and N(2), have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibiotic heterotrophic bacteria, and yet, the regulation of nutrient acquisition by these epibionts is poorly understood. We present evidence that epibiotic bacteria in Trichodesmium consortia use quorum sensing (QS) to regulate the activity of alkaline phosphatases (APases), enzymes used by epibionts in the acquisition of phosphate from dissolved-organic phosphorus molecules. A class of QS molecules, acylated homoserine lactones (AHLs), were produced by cultivated epibionts, and adding these AHLs to wild Trichodesmium colonies collected at sea led to a consistent doubling of APase activity. By contrast, amendments of (S)-4,5-dihydroxy-2,3-pentanedione (DPD)-the precursor to the autoinducer-2 (AI-2) family of universal interspecies signaling molecules-led to the attenuation of APase activity. In addition, colonies collected at sea were found by high performance liquid chromatography/mass spectrometry to contain both AHLs and AI-2. Both types of molecules turned over rapidly, an observation we ascribe to quorum quenching. Our results reveal a complex chemical interplay among epibionts using AHLs and AI-2 to control access to phosphate in dissolved-organic phosphorus.
Collapse
Affiliation(s)
- Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|