1
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
2
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Li T, Feng K, Wang S, Yang X, Peng X, Tu Q, Deng Y. Beyond water and soil: Air emerges as a major reservoir of human pathogens. ENVIRONMENT INTERNATIONAL 2024; 190:108869. [PMID: 38968831 DOI: 10.1016/j.envint.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.
Collapse
Affiliation(s)
- Tong Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang C, Yin X, Xu X, Wang D, Liu L, Zhang X, Yang C, Zhang X, Zhang T. Metagenomic absolute quantification of antibiotic resistance genes and virulence factor genes-carrying bacterial genomes in anaerobic digesters. WATER RESEARCH 2024; 253:121258. [PMID: 38359594 DOI: 10.1016/j.watres.2024.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xuanwei Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
5
|
Fang GY, Liu XQ, Jiang YJ, Mu XJ, Huang BW. Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168908. [PMID: 38013098 DOI: 10.1016/j.scitotenv.2023.168908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bing-Wen Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
6
|
Zou Y, Xiao Z, Wang L, Wang Y, Yin H, Li Y. Prevalence of antibiotic resistance genes and virulence factors in the sediment of WWTP effluent-dominated rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165441. [PMID: 37437635 DOI: 10.1016/j.scitotenv.2023.165441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In the context of increasing aridity due to climate changes, effluent from wastewater treatment plants (WWTPs) became dominant in some rivers. However, the prevalence of antibiotic resistance genes (ARGs) and virulence factors (VFs) in effluent-dominated rivers was rarely investigated. In this study, the profiles of ARGs and VFs in the sediment of two effluent-dominated rivers were revealed through the metagenomic sequencing technique. In each river, samples from the effluent discharge point (P site) and approximately 500 m downstream (D site) were collected. Results showed that the abundances of ARGs and VFs were both higher in D sites than those in P sites, indicating higher risks in the downstream areas. The compositions of ARGs were similar in the P sites of two rivers while being distinct in the D sites. The same was true for changes in the VFs compositions. Microbial community structure variations were the main driver for the changes in ARGs and VFs. Network analysis revealed that the interaction of ARGs and VF genes (VFGs) in sediment was intense. Two VFGs and eleven ARGs were identified to play important roles in the network. Metagenome-assembled genomes (MAGs) were generated to evaluate the coexistence of ARGs and VFGs at the single genome level. It was found that 38.4 % of the MAGs contained both ARGs and VFGs, and two MAGs were from pathogenic genera. These results suggested that high microbiological risks existed in effluent-dominated rivers, and necessary measures should be taken to prevent the potential threat to public health.
Collapse
Affiliation(s)
- Yina Zou
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Zijian Xiao
- The National Key Laboratory of Water Disaster Prevention, Dayu College, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yutao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haojie Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
7
|
Lin X, Ma J, Zhou Z, Qiao B, Li Y, Zheng W, Tian Y. Oil-contaminated sites act as high-risk pathogen reservoirs previously overlooked in coastal zones. WATER RESEARCH 2023; 242:120225. [PMID: 37329716 DOI: 10.1016/j.watres.2023.120225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In addition to the organic pollutants and disturbance to the microbial, plant and animal systems, oil contamination can also enrich opportunistic pathogens. But little is known about whether and how the most common coastal oil-contaminated water bodies act as reservoirs for pathogens. Here, we delved into the characteristics of pathogenic bacteria in coastal zones by constructing seawater-based microcosms with diesel oil as a pollutant. 16S rRNA gene full-length sequencing and genomic exploration revealed that pathogenic bacteria with genes involved in alkane or aromatic degradation were significantly enriched under oil contamination, providing a genetic basis for them to thrive in oil-contaminated seawater. Moreover, high-throughput qPCR assays showed an increased abundance of the virulence gene and enrichment in antibiotics resistance genes (ARGs), especially those related to multidrug resistance efflux pumps, and their high relevance to Pseudomonas, enabling this genus to achieve high levels of pathogenicity and environmental adaptation. More importantly, infection experiments with a culturable P. aeruginosa strain isolated from an oil-contaminated microcosm provided clear evidence that the environmental strain was pathogenic to grass carp (Ctenopharyngodon idellus), and the highest lethality rate was found in the oil pollutant treatment, demonstrating the synergistic effect of toxic oil pollutants and pathogens on infected fish. A global genomic investigation then revealed that diverse environmental pathogenic bacteria with oil degradation potential are widely distributed in marine environments, especially in coastal zones, suggesting extensive pathogenic reservoir risks in oil-contaminated sites. Overall, the study uncovered a hidden microbial risk, showing that oil-contaminated seawater could be a high-risk pathogen reservoir, and provides new insights and potential targets for environmental risk assessment and control.
Collapse
Affiliation(s)
- Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxin Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | | | - Baoyi Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yixin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Xie ST, Ding LJ, Huang FY, Zhao Y, An XL, Su JQ, Sun GX, Song YQ, Zhu YG. VFG-Chip: A high-throughput qPCR microarray for profiling virulence factor genes from the environment. ENVIRONMENT INTERNATIONAL 2023; 172:107761. [PMID: 36682204 DOI: 10.1016/j.envint.2023.107761] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
As zoonotic pathogens are threatening public health globally, the virulence factor genes (VFGs) they carry underlie latent risk in the environment. However, profiling VFGs in the environment is still in its infancy due to lack of efficient and reliable quantification tools. Here, we developed a novel high-throughput qPCR (HT-qPCR) chip, termed as VFG-Chip, to comprehensively quantify the abundances of targeted VFGs in the environment. A total of 96 VFGs from four bacterial pathogens including Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Salmonella enterica were targeted by 120 primer pairs, which were involved in encoding five types of virulence factors (VFs) like toxin, adherence, secretion system, immune evasion/invasion, and iron uptake. The specificity of VFG-Chip was both verified computationally and experimentally, with high identity of amplicon sequencing and melting curves analysis proving its robust capability. The VFG-Chip also displayed high sensitivity (by plasmid serial dilution test) and amplification efficiency averaging 97.7%. We successfully applied the VFG-Chip to profile the distribution of VFGs along a wastewater treatment system with 69 VFGs detected in total. Overall, the VFG-Chip provides a robust tool for comprehensively quantifying VFGs in the environment, and thus provides novel information in assessing the health risks of zoonotic pathogens in the environment.
Collapse
Affiliation(s)
- Shu-Ting Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- School of Water Resources and Environment, China, University of Geosciences (Beijing), Beijing 100083, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jian-Qiang Su
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
9
|
Zhang L, Ju Z, Su Z, Fu Y, Zhao B, Song Y, Wen D, Zhao Y, Cui J. The antibiotic resistance and risk heterogeneity between urban and rural rivers in a pharmaceutical industry dominated city in China: The importance of social-economic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158530. [PMID: 36063953 DOI: 10.1016/j.scitotenv.2022.158530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Rivers are important environmental sources of human exposure to antibiotic resistance. Many factors can change antibiotic resistance in rivers, including bacterial communities, human activities, and environmental factors. However, the systematic comparison of the differences in antibiotics resistance and risks between urban rivers (URs) and rural rivers (RRs) in a pharmaceutical industry dominated city is still rare. In this study, Shijiazhuang City (China) was selected as an example to compare the differences in antibiotics resistance and risks between URs and RRs. The results showed higher concentrations of total quinolones (QNs) antibiotics in both water and sediment samples collected from URs than those from RRs. The subtypes and abundances of antibiotic resistance genes (ARGs) in URs were significantly higher than those in RRs, and most emerging ARGs (including OXA-type, GES-type, MCR-type, and tet(X)) were only detected in URs. The ARGs were mainly influenced by QNs in URs and social-economic factors (SEs) in RRs. The composition of the bacterial community was significantly different between URs and RRs. The abundance of antibiotic-resistant pathogenic bacteria (ARPBs) and virulence factors (VFs) were higher in URs than those in RRs. Therein, 371 and 326 pathogen types were detected in URs and RRs, respectively. Most emerging ARGs showed a significantly positive correlation with priority ARPBs. Variance partitioning analysis revealed that SEs were the main driving factors of ARGs (80 %) and microbial communities (92 %) both in URs and RRs. Structural equation models indicated that antibiotics (QNs) and microbial communities were the most direct influence of ARGs in URs and RRs, respectively. The cumulative resistance risk of QNs was high in URs, but relatively low in RRs. Enrofloxacin and flumequine posed the highest risk in water and sediment, respectively. This study could help us to better manage and control the risk of antibiotic resistance in different rivers.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China; College of Environmental Science and Engineering, Peking University, 100871 Beijing, China.
| | - Zejia Ju
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Zhiguo Su
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Fu
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Bo Zhao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Donghui Wen
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| |
Collapse
|
10
|
Djemiel C, Dequiedt S, Karimi B, Cottin A, Horrigue W, Bailly A, Boutaleb A, Sadet-Bourgeteau S, Maron PA, Chemidlin Prévost-Bouré N, Ranjard L, Terrat S. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front Microbiol 2022; 13:889788. [PMID: 35847063 PMCID: PMC9280627 DOI: 10.3389/fmicb.2022.889788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Soils are fundamental resources for agricultural production and play an essential role in food security. They represent the keystone of the food value chain because they harbor a large fraction of biodiversity-the backbone of the regulation of ecosystem services and "soil health" maintenance. In the face of the numerous causes of soil degradation such as unsustainable soil management practices, pollution, waste disposal, or the increasing number of extreme weather events, it has become clear that (i) preserving the soil biodiversity is key to food security, and (ii) biodiversity-based solutions for environmental monitoring have to be developed. Within the soil biodiversity reservoir, microbial diversity including Archaea, Bacteria, Fungi and protists is essential for ecosystem functioning and resilience. Microbial communities are also sensitive to various environmental drivers and to management practices; as a result, they are ideal candidates for monitoring soil quality assessment. The emergence of meta-omics approaches based on recent advances in high-throughput sequencing and bioinformatics has remarkably improved our ability to characterize microbial diversity and its potential functions. This revolution has substantially filled the knowledge gap about soil microbial diversity regulation and ecology, but also provided new and robust indicators of agricultural soil quality. We reviewed how meta-omics approaches replaced traditional methods and allowed developing modern microbial indicators of the soil biological quality. Each meta-omics approach is described in its general principles, methodologies, specificities, strengths and drawbacks, and illustrated with concrete applications for soil monitoring. The development of metabarcoding approaches in the last 20 years has led to a collection of microbial indicators that are now operational and available for the farming sector. Our review shows that despite the recent huge advances, some meta-omics approaches (e.g., metatranscriptomics or meta-proteomics) still need developments to be operational for environmental bio-monitoring. As regards prospects, we outline the importance of building up repositories of soil quality indicators. These are essential for objective and robust diagnosis, to help actors and stakeholders improve soil management, with a view to or to contribute to combining the food and environmental quality of next-generation farming systems in the context of the agroecological transition.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Samuel Dequiedt
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Battle Karimi
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Novasol Experts, Dijon, France
| | - Aurélien Cottin
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Walid Horrigue
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Arthur Bailly
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Ali Boutaleb
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sophie Sadet-Bourgeteau
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Lionel Ranjard
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Matsumoto H, Qian Y, Fan X, Chen S, Nie Y, Qiao K, Xiang D, Zhang X, Li M, Guo B, Shen P, Wang Q, Yu Y, Cernava T, Wang M. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. FUNDAMENTAL RESEARCH 2022; 2:198-207. [PMID: 38933150 PMCID: PMC11197535 DOI: 10.1016/j.fmre.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria equipped with virulence systems based on highly bioactive small molecules can circumvent their host's defense mechanisms. Pathogens employing this strategy are currently threatening global rice production. In the present study, variations in the virulence of the highly destructive Burkholderia plantarii were observed in different rice-producing regions. The environment-linked variation was not attributable to any known host-related or external factors. Co-occurrence analyses indicated a connection between reduced virulence and 5-Amino-1,3,4-thiadiazole-2-thiol (ATT), a non-bactericidal organic compound. ATT, which accumulates in rice plants during metabolization of specific agrochemicals, was found to reduce virulence factor secretion by B. plantarii up to 88.8% and inhibit pathogen virulence by hijacking an upstream signaling cascade. Detailed assessment of the newly discovered virulence inhibitor resulted in mechanistic insights into positive effects of ATT accumulation in plant tissues. Mechanisms of virulence alleviation were deciphered by integrating high-throughput data, gene knockout mutants, and molecular interaction assays. TroK, a histidine protein kinase in a two-component system that regulates virulence factor secretion, is likely the molecular target antagonized by ATT. Our findings provide novel insights into virulence modulation in an important plant-pathogen system that relies on the host's metabolic activity and subsequent signaling interference.
Collapse
Affiliation(s)
- Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuan Qian
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Bo Guo
- Shanghai International Studies University, Shanghai 200083, China
| | - Peilin Shen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Xiaoshan Agricultural Comprehensive Development Zone & Management Committee, Hangzhou 311200, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
12
|
Djemiel C, Maron PA, Terrat S, Dequiedt S, Cottin A, Ranjard L. Inferring microbiota functions from taxonomic genes: a review. Gigascience 2022; 11:giab090. [PMID: 35022702 PMCID: PMC8756179 DOI: 10.1093/gigascience/giab090] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information. This cheaper approach in every aspect serves as an alternative to shotgun sequencing. Although these tools are increasingly used by ecologists, an objective evaluation of their modularity, portability, and robustness is lacking. Here, we reviewed 100 scientific papers on functional inference and ecological trait assignment to rank the advantages, specificities, and drawbacks of these tools, using a scientific benchmarking. To date, inference tools have been mainly devoted to bacterial functions, and ecological trait assignment tools, to fungal functions. A major limitation is the lack of reference genomes-compared with the human microbiota-especially for complex ecosystems such as soils. Finally, we explore applied research prospects. These tools are promising and already provide relevant information on ecosystem functioning, but standardized indicators and corresponding repositories are still lacking that would enable them to be used for operational diagnosis.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Samuel Dequiedt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Aurélien Cottin
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lionel Ranjard
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
13
|
Al-Ansari MM, AlMalki RH, Dahabiyeh LA, Abdel Rahman AM. Metabolomics-Microbiome Crosstalk in the Breast Cancer Microenvironment. Metabolites 2021; 11:metabo11110758. [PMID: 34822416 PMCID: PMC8619468 DOI: 10.3390/metabo11110758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer, the most frequent cancer diagnosed among females, is associated with a high mortality rate worldwide. Alterations in the microbiota have been linked with breast cancer development, suggesting the possibility of discovering disease biomarkers. Metabolomics has emerged as an advanced promising analytical approach for profiling metabolic features associated with breast cancer subtypes, disease progression, and response to treatment. The microenvironment compromises non-cancerous cells such as fibroblasts and influences cancer progression with apparent phenotypes. This review discusses the role of metabolomics in studying metabolic dysregulation in breast cancer caused by the effect of the tumor microenvironment on multiple cells such as immune cells, fibroblasts, adipocytes, etc. Breast tumor cells have a unique metabolic profile through the elevation of glycolysis and the tricarboxylic acid cycle metabolism. This metabolic profile is highly sensitive to microbiota activity in the breast tissue microenvironment. Metabolomics shows great potential as a tool for monitoring metabolic dysregulation in tissue and associating the findings with microbiome expression.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (R.H.A.)
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Reem H. AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (R.H.A.)
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Correspondence:
| |
Collapse
|
14
|
Cheng X, Xu J, Smith G, Nirmalakhandan N, Zhang Y. Metagenomic profiling of antibiotic resistance and virulence removal: Activated sludge vs. algal wastewater treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113129. [PMID: 34182338 PMCID: PMC8338905 DOI: 10.1016/j.jenvman.2021.113129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Conventional activated sludge-based (CAS) wastewater treatment plants are known to be a source of antibiotic resistance genes (ARGs) and virulence genes (VGs). As an alternative, a single-step mixotrophic algal wastewater treatment (A-WWT) system is proposed here to effectively reduce ARGs and VGs in the final effluent while meeting all the discharge standards. In this study, we applied the metagenomic profiling approach to compare the A-WWT system against the CAS system in terms of removal efficacy of ARG and VGs. A total of 111 ARG and 93 VG subtypes belonging to 10 antibiotic resistant classes and 19 virulence classes were detected in this study. Although the CAS system reduced the relative abundance of most classes of ARGs (7 of 10) and VGs (11 of 19), 3 ARG classes and 7 VG classes had increased abundances. On the other hand, the A-WWT system reduced the relative abundance of all classes of ARGs and VGs, and effectively eliminated most subtypes of ARGs and VGs. In the CAS system, the bacterial genera carrying ARGs and VGs was expanded, and the diversity index was increased greatly, suggesting the occurrence of horizontal gene transfer (HGT). In contrast, the A-WWT system narrowed down the potential host range and decreased their diversity substantially. Results of this study highlight the potential risk of ARGs and VGs in CAS system and demonstrate the feasibility of the algal-based system in removing ARGs and VGs.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Geoffrey Smith
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
15
|
Liu S, Wang P, Wang C, Wang X, Chen J. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. WATER RESEARCH 2021; 202:117447. [PMID: 34325101 DOI: 10.1016/j.watres.2021.117447] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Human activities can accelerate the antibiotic resistome prevalence and pose threats to ecological safety and public health globally. However, antibiotic resistance gene (ARG) mobility and dissemination into bacterial pathogens under anthropogenic disturbances are still poorly understood. Here, we used a metagenomic approach to profile the biogeography of ARGs and pathogenic antibiotic resistant bacteria (PARB) under anthropogenic disturbances along the Yarlung Tsangpo River. Results showed the ARGs was dominated by bacA gene along the Yarlung Tsangpo River on the Tibetan Plateau. The ARG composition was differently impacted by rapid urbanization and dam construction, which urbanization could promote ARGs resistant to sulfonamide and tetracycline, whereas dam construction could elevate the resistance to chloramphenicol and aminoglycoside. Land use pattern was identified as a critical factor influencing ARG composition under anthropogenic disturbances, as it could directly reflect the land degradation level and indicate the inputs of ARG-selective chemicals of different human activities. Moreover, despite of the lack of variation in ARG relative abundance, PARB were highly promoted by anthropogenic activities, indicating increasing ARG dissemination to pathogen. We found that human-impacted environments harbored high proportion of mobile genetic elements (MGEs), and the MGE carrying ARGs also increased under anthropogenic disturbances in the pathogenic hosts, which confirmed that anthropogenic activities could promote ARG horizontal gene transfer. Furthermore, anthropogenic activities could influence PARB assembly processes. Basically, stochastic processes dominated PARB assembly along the river, and with increasing level of anthropogenic activities, these processes shifted from undominated stochastic processes to dispersal limitation. In summary, this study provides useful strategies in watershed resistome management and reduction of ARG dissemination to pathogens, which should consider the mode and intensity of human activity and its potential influence on horizontal gene transfer and assembly processes.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
16
|
Zhang H, Zhang Q, Song J, Zhang Z, Chen S, Long Z, Wang M, Yu Y, Fang H. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122618. [PMID: 32298867 DOI: 10.1016/j.jhazmat.2020.122618] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/29/2020] [Accepted: 03/29/2020] [Indexed: 05/03/2023]
Abstract
Organic manure has been implicated as an important source of antibiotic resistance genes (ARGs) in agricultural soils. However, the profiles of biocide resistance genes (BRGs), metal resistance genes (MRGs) and virulence genes (VGs) and their bacterial hosts in manure-amended soils remain largely unknown. Herein, a systematic metagenome-based survey was conducted to comprehensively explore the changes in resistomes, VGs and their bacterial hosts, mobile genetic elements (MGEs), and pathogenic bacteria in manure-amended greenhouse soils. Many manure-borne ARGs, BRGs, MRGs, VGs, and bacterial pathogens could be transferred into soils by applying manures, and their abundance and diversity were markedly positively correlated with greenhouse planting years (manure amendment years). The main ARGs transferred from manures to soils conferred resistance to tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin. Both statistical analysis and gene arrangements showed a good positive co-occurrence pattern of ARGs/BRGs/MRGs/VGs and MGEs. Furthermore, bacterial hosts of resistomes and VGs were significantly changed in the greenhouse soils in comparison with the field soils. Our findings confirmed the migration and dissemination of resistomes, VGs, and bacterial pathogens, and their accumulation and persistence were correlated with the continuous application of manures.
Collapse
Affiliation(s)
- Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianke Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zihan Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Diversity and Structure of Soil Fungal Communities across Experimental Everglades Tree Islands. DIVERSITY 2020. [DOI: 10.3390/d12090324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands.
Collapse
|
18
|
Zhang B, Sun C, Xia Y, Hu M, Wen X. Profiles of antibiotic resistance genes and virulence genes and their temporal interactions in the membrane bioreactor and oxidation ditch. ENVIRONMENT INTERNATIONAL 2019; 131:104980. [PMID: 31295641 DOI: 10.1016/j.envint.2019.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) and virulence genes (VGs) in wastewater treatment plants (WWTPs) may pose a potential threat to public health if without proper treatment. In this study, GeoChip was used to reveal the differences in ARG/VG diversity between a membrane bioreactor (MBR) and an oxidation ditch (OD) and the temporal co-occurrence patterns between ARGs and VGs. Results showed that the diversity of ARGs and VGs was lower in MBR than that in OD in the short term due to the better disinfection capability of MBR. However, the differences in diversity between two reactors disappeared in the long term because of the great variation of temperature. Instead, time-decay relationship was observed and overall turnover rate was -0.0105. Co-occurrence patterns indicate that direct connections between ARGs and VGs reduced sharply with time increasing due to the different responses of ARGs and VGs to environmental variation.
Collapse
Affiliation(s)
- Bing Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, PR China
| | - Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, PR China
| | - Yu Xia
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, PR China
| | - Man Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, PR China
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084 Beijing, PR China.
| |
Collapse
|
19
|
Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019; 4:4/4/e00296-19. [PMID: 31213523 PMCID: PMC6581690 DOI: 10.1128/msystems.00296-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities. While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions. IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.
Collapse
|
20
|
Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang SI, Park J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J Environ Sci (China) 2017; 51:234-247. [PMID: 28115135 DOI: 10.1016/j.jes.2016.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 05/21/2023]
Abstract
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea; Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, South Korea
| | - Eun Joo Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, South Korea
| | - Jihoon Yang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Sudheer Kumar Shukla
- Department of Built and Natural Environment, Caledonian College of Engineering, Sultanate of Oman
| | - Sang-Il Hwang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
21
|
Su JQ, Cui L, Chen QL, An XL, Zhu YG. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Ann N Y Acad Sci 2016; 1388:121-135. [DOI: 10.1111/nyas.13296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
22
|
The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants. PLoS One 2016; 11:e0167422. [PMID: 27907117 PMCID: PMC5132249 DOI: 10.1371/journal.pone.0167422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.
Collapse
|
23
|
Barišić I, Petzka J, Schoenthaler S, Vierlinger K, Noehammer C, Wiesinger-Mayr H. Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. J Med Microbiol 2016; 65:48-55. [PMID: 26489938 DOI: 10.1099/jmm.0.000192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.
Collapse
Affiliation(s)
- Ivan Barišić
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1190 Vienna, Austria
| | - Josefine Petzka
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1190 Vienna, Austria
| | - Silvia Schoenthaler
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1190 Vienna, Austria
| | - Klemens Vierlinger
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1190 Vienna, Austria
| | - Christa Noehammer
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1190 Vienna, Austria
| | | |
Collapse
|
24
|
Multi-omics analysis of niche specificity provides new insights into ecological adaptation in bacteria. ISME JOURNAL 2016; 10:2072-5. [PMID: 26859773 DOI: 10.1038/ismej.2015.251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Different lifestyles, ranging from a saprophyte to a pathogen, have been reported in bacteria of one species. Here, we performed genome-wide survey of the ecological adaptation in four Burkholderia seminalis strains, distinguished by their origin as part of the saprophytic microbial community of soil or water but also including human and plant pathogens. The results indicated that each strain is separated from the others by increased fitness in medium simulating its original niche corresponding to the difference between strains in metabolic capacities. Furthermore, strain-specific metabolism and niche survival was generally linked with genomic variants and niche-dependent differential expression of the corresponding genes. In particular, the importance of iron, trehalose and d-arabitol utilization was highlighted by the involvement of DNA-methylation and horizontal gene transfer in niche-adapted regulation of the corresponding operons based on the integrated analysis of our multi-omics data. Overall, our results provided insights of niche-specific adaptation in bacteria.
Collapse
|
25
|
Li X, Harwood VJ, Nayak B, Staley C, Sadowsky MJ, Weidhaas J. A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7319-7329. [PMID: 25970344 DOI: 10.1021/acs.est.5b00980] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pathogen detection and the identification of fecal contamination sources are challenging in environmental waters. Factors including pathogen diversity and ubiquity of fecal indicator bacteria hamper risk assessment and remediation of contamination sources. A custom microarray targeting pathogens (viruses, bacteria, protozoa), microbial source tracking (MST) markers, and antibiotic resistance genes was tested against DNA obtained from whole genome amplification (WGA) of RNA and DNA from sewage and animal (avian, cattle, poultry, and swine) feces. Perfect and mismatch probes established the specificity of the microarray in sewage, and fluorescence decrease of positive probes over a 1:10 dilution series demonstrated semiquantitative measurement. Pathogens, including norovirus, Campylobacter fetus, Helicobacter pylori, Salmonella enterica, and Giardia lamblia were detected in sewage, as well as MST markers and resistance genes to aminoglycosides, beta-lactams, and tetracycline. Sensitivity (percentage true positives) of MST results in sewage and animal waste samples (21-33%) was lower than specificity (83-90%, percentage of true negatives). Next generation DNA sequencing revealed two dominant bacterial families that were common to all sample types: Ruminococcaceae and Lachnospiraceae. Five dominant phyla and 15 dominant families comprised 97% and 74%, respectively, of sequences from all fecal sources. Phyla and families not represented on the microarray are possible candidates for inclusion in subsequent array designs.
Collapse
Affiliation(s)
- Xiang Li
- †Department of Civil and Environmental Engineering, West Virginia University, P.O. Box 6103, Morgantown, West Virginia 26506, United States
| | - Valerie J Harwood
- ‡Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Bina Nayak
- ‡Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Christopher Staley
- §BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Michael J Sadowsky
- ∥Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jennifer Weidhaas
- †Department of Civil and Environmental Engineering, West Virginia University, P.O. Box 6103, Morgantown, West Virginia 26506, United States
| |
Collapse
|
26
|
High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 2015; 6:mBio.02288-14. [PMID: 25626903 PMCID: PMC4324309 DOI: 10.1128/mbio.02288-14] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.
Collapse
|
27
|
Søborg DA, Hendriksen NB, Kroer N. Occurrence and expression of bacterial human virulence gene homologues in natural soil bacteria. FEMS Microbiol Ecol 2014; 90:520-32. [PMID: 25118010 DOI: 10.1111/1574-6941.12413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/03/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023] Open
Abstract
The presence and in vitro expression of homologues to 22 bacterial human virulence determinants amongst culturable soil bacteria were investigated. About 25% of the bacterial isolates contained virulence gene homologues representing toxin (hblA, cytK2), adhesin (fimH), regulator (phoQ) and resistance (yfbI) determinants in pathogenic bacteria. The homologues of the toxin genes were found in Actinobacteria and Firmicutes (hblA), and in Firmicutes and Alpha- and Gammaproteobacteria (cytK2). The homologues to the type 1 fimbrial adhesin gene, fimH, and the L-Ara4N transferase gene, yfbI, were observed in Actinobacteria, Firmicutes and Gammaproteobacteria. The regulator gene, phoQ, was only found in Gammaproteobacteria. The presence of cytK2 in Alpha- and Gammaproteobacteria, fimH in Actinobacteria and Firmicutes, and hblA in Actinobacteria has not previously been described. A close sequence similarity (84-100%) was observed between the genes of environmental and clinical isolates, and expression assays suggested that the genes in some cases were expressed in vitro. The presence of functional virulence gene homologues underpins their importance for the survival of environmental bacteria. Furthermore, the high degree of sequence conservation to clinical sequences indicates that natural environments may be 'evolutionary cribs' of emerging pathogens.
Collapse
Affiliation(s)
- Ditte A Søborg
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | |
Collapse
|
28
|
Tu Q, He Z, Li Y, Chen Y, Deng Y, Lin L, Hemme CL, Yuan T, Van Nostrand JD, Wu L, Zhou X, Shi W, Li L, Xu J, Zhou J. Development of HuMiChip for functional profiling of human microbiomes. PLoS One 2014; 9:e90546. [PMID: 24595026 PMCID: PMC3942451 DOI: 10.1371/journal.pone.0090546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/01/2014] [Indexed: 02/05/2023] Open
Abstract
Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but challenging due to the high diversity of the human microbiome. Here we have developed a functional gene-based microarray for profiling human microbiomes (HuMiChip) with 36,802 probes targeting 50,007 protein coding sequences for 139 key functional gene families. Computational evaluation suggested all probes included are highly specific to their target sequences. HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. Obvious shifts of microbial functional structure and composition were observed for both patients with dental caries and periodontitis from moderate to advanced stages, suggesting a progressive change of microbial communities in response to the diseases. Consistent gene family profiles were observed by both HuMiChip and next generation sequencing technologies. Additionally, HuMiChip was able to detect gene families at as low as 0.001% relative abundance. The results indicate that the developed HuMiChip is a useful and effective tool for functional profiling of human microbiomes.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Zhili He
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Yan Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ye Deng
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Lu Lin
- Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, Shandong, China
| | - Christopher L. Hemme
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Tong Yuan
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Joy D. Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyuan Shi
- UCLA School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, Shandong, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, United States of America
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|