1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Montoya L, Escobar-Briones E. Unveiling the significance of prokaryotic composition from ferromanganese crusts regarding the interlink between cobalt and vitamin B 12 in deep-sea ecosystems. Front Microbiol 2025; 16:1524057. [PMID: 40365069 PMCID: PMC12069332 DOI: 10.3389/fmicb.2025.1524057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The intricate relationship between prokaryotic vitamin B12 (cobalamin) producers and metazoans in deep-sea ecosystems, particularly within ferromanganese crusts and polymetallic nodules, is critical for understanding oceanic biogeochemical cycling of cobalt. Microbial communities are key regulators of essential biogeochemical cycles, with cobalt serving as a vital component in the synthesis of cobalamin, a metallocofactor indispensable for numerous metabolic processes. We analyzed the significance of cobalamin biosynthetic pathways confined to prokaryotes and emphasized the ecological importance of auxotrophic organisms that rely on exogenous sources of vitamin B12. Additionally, we recognize recent research regarding the spatial distribution of dissolved cobalt and its consequential effects on cobalamin production and bioavailability, indicating the scarcity of cobalt and cobalamin in marine environments. We propose that cobalt-rich environments may foster unique interactions between prokaryotic and eukaryotic organisms, potentially altering the food web dynamics owing to the localized abundance of this element. By investigating the roles of cobalt and cobalamin in nutrient cycling and interspecies interactions, we outlined key criteria for future research on deep-sea microbial communities and their contributions to the cobalt biogeochemical cycle.
Collapse
Affiliation(s)
- Lilia Montoya
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City, Mexico
| | - Elva Escobar-Briones
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Nilsen T, Pettersen R, Keeley NB, Ray JL, Majaneva S, Stokkan M, Hervik A, Angell IL, Snipen LG, Sundt MØ, Rudi K. Association of Microbial Networks with the Coastal Seafloor Macrofauna Ecological State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7517-7529. [PMID: 40214404 PMCID: PMC12020364 DOI: 10.1021/acs.est.4c12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Recent evidence suggests that there is a major switch in coastal seafloor microbial ecology already at a mildly deteriorated macrofaunal state. This knowledge is of critical value in the management and conservation of the coastal seafloor. We therefore aimed to determine the relationships between seafloor microbiota and macrofauna on a regional scale. We compared prokaryote, macrofauna, chemical, and geographical data from 1546 seafloor samples, which varied in their exposure to aquaculture activities along the Norwegian and Icelandic coasts. We found that the seafloor samples contained either a network centralized by a sulfur oxidizer (42.4% of samples, n = 656) or a network centralized by an archaeal ammonium oxidizer (44.0% of samples, n = 681). Very few samples contained neither network (9.8% of samples, n = 151) or both (3.8% of samples, n = 58). Samples with a sulfur oxidizer network had a 10-fold higher risk of macrofauna loss (odds ratios, 95% CI: 9.5 to 15.6), while those with an ammonium oxidizer network had a 10-fold lower risk (95% CI: 0.068 to 0.11). The sulfur oxidizer network was negatively correlated to distance from Norwegian aquaculture sites (Spearman rho = -0.42, p < 0.01) and was present in all Icelandic samples (n = 274). The ammonium oxidizer network was absent from Icelandic samples and positively correlated to distance from Norwegian aquaculture sites (Spearman rho = 0.67, p < 0.01). Based on 356 high-quality metagenome-assembled genomes (MAGs), we found that bicarbonate-dependent carbon fixation and low-affinity oxygen respiration were associated with the ammonium oxidizer network, while the sulfur oxidizer network was associated with ammonium retention, sulfur metabolism, and high-affinity oxygen respiration. In conclusion, our findings highlight the critical roles of microbial networks centralized by sulfur and ammonium oxidizers in mild macrofauna deterioration, which should be included as an essential part of seafloor surveillance.
Collapse
Affiliation(s)
- Tonje Nilsen
- Norwegian
University of Life Sciences, Ås 1433, Norway
| | | | | | | | | | | | | | | | | | | | - Knut Rudi
- Norwegian
University of Life Sciences, Ås 1433, Norway
| |
Collapse
|
4
|
Lv P, Xiang F, Zhang S, Lei D, Zhou C, Wei G, Yan Z. Valeriana jatamansi jones improves depressive behavior in CUMS mice by modulating vitamin B12-related ileal homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119392. [PMID: 39875065 DOI: 10.1016/j.jep.2025.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Valeriana jatamansi Jones (V. jatamansi) is a traditional Chinese medicine (TCM). It was recorded in Diannan Bencao, Compendium of Materia Medica and some local medical books and was described as useful in treating insomnia, distraction, poor mental health, vomiting and diarrhea. AIM OF THE STUDY To investigate whether the antidepressant effect of V. jatamansi may operate through modulating vitamin B12-related ileal homeostasis using a chronic unpredictable mild stress (CUMS) mouse model. MATERIALS AND METHODS A CUMS-induced depression model was established in mice for five weeks, after which V. jatamansi extracts were administered for three weeks. At week eight, the forced swimming test and novelty-suppressed feeding test were conducted. H&E staining assessed ileal pathology, while 16S rDNA sequencing analyzed changes in ileal microbiota. Additionally, B12 in serum, cubilin (CUBN) and amnionless (AMN) in ileal tissue, methionine synthase (MS) and homocysteine (Hcy) in the hippocampus were measured using ELISA, and the correlations between them and ileal microbiota were explored. RESULTS Mice in the model group exhibited significant depressive behavior. However, after treatment with V. jatamansi, immobility time and feeding latency were improved. H&E staining demonstrated the repairing effect of V. jatamansi on the ileum regarding tissue damage. The alpha and beta diversity of the ileal microbiota were regulated and converged to the normal group. Additionally, V. jatamansi modulated B12, CUBN, AMN, MS, and Hcy levels. Correlation analysis showed that there are certain correlations between a variety of microorganisms and B12-related factors. CONCLUSION These findings suggest that the mechanism of V. jatamansi in treating depression may be through repairing depression-associated intestinal damage. This repair process may affect the intestinal absorption and microbial production of B12. By reversing the reduction of serum B12, V. jatamansi ultimately reduces the infiltration of Hcy into the CNS.
Collapse
Affiliation(s)
- Pengcheng Lv
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Fangrui Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Shengqi Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Dongni Lei
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Chaomeng Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, No.111, North Section 1, Second Ring Road, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
5
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. mSphere 2025; 10:e0060624. [PMID: 39692507 PMCID: PMC11774034 DOI: 10.1128/msphere.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria but are only synthesized by a fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and showed that C. amycolatum produces sufficient cobamides to support Escherichia coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK (precorrin-6X reductase) and cobO (corrinoid adenosyltransferase) and confirm that disruption of cobamide biosynthesis abolishes the support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances. IMPORTANCE The human skin serves as a crucial barrier for the body and hosts a diverse community of microbes known as the skin microbiome. The interactions that occur to maintain a healthy skin microbiome are largely unknown but are thought to be driven in part, by nutrient sharing between species in close association. Here we show that the skin-associated bacteria Corynebacterium amycolatum produces and shares cobalamin, a cofactor essential for survival in organisms across all domains of life. This study provides a unique model to study metabolite sharing by skin microorganisms, which will be critical for understanding the fundamental interactions that occur within the skin microbiome and for developing therapeutic approaches aiming to engineer and manipulate the skin microbiota.
Collapse
Affiliation(s)
- M. H. Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - N. Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J. Handelsman
- Wisconsin Institute for Discovery, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - L. R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Herbold CW, Noell SE, Lee CK, Vickers CJ, Stott MB, Eisen JA, McDonald IR, Cary SC. Nutritional niches of potentially endemic, facultatively anaerobic heterotrophs from an isolated Antarctic terrestrial hydrothermal refugium elucidated through metagenomics. ENVIRONMENTAL MICROBIOME 2024; 19:104. [PMID: 39696719 DOI: 10.1186/s40793-024-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Tramway Ridge, a geothermal Antarctic Specially Protected Area (elevation 3340 m) located near the summit of Mount Erebus, is home to a unique community composed of cosmopolitan surface-associated micro-organisms and abundant, poorly understood subsurface-associated microorganisms. Here, we use shotgun metagenomics to compare the functional capabilities of this community to those found elsewhere on Earth and to infer in situ diversity and metabolic capabilities of abundant subsurface taxa. RESULTS We found that the functional potential in this community is most similar to that found in terrestrial hydrothermal environments (hot springs, sediments) and that the two dominant organisms in the subsurface carry high rates of in situ diversity which was taken as evidence of potential endemicity. They were found to be facultative anaerobic heterotrophs that likely share a pool of nitrogenous organic compounds while specializing in different carbon compounds. CONCLUSIONS Metagenomic insights have provided a detailed understanding of the microbe-based ecosystem found in geothermally heated fumaroles at Tramway Ridge. This approach enabled us to compare Tramway Ridge with other microbial systems, identify potentially endemic taxa and elucidate the key metabolic pathways that may enable specific organisms to dominate the ecosystem.
Collapse
Affiliation(s)
- Craig W Herbold
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand
- International Centre for Terrestrial Antarctic Research, Te Whare Wānanga O Waikato - University of Waikato, Kirikiriroa - Hamilton, New Zealand
- Te Kura Pūtaiao Koiora - School of Biological Sciences, Te Whare Wānanga O Waitaha - University of Canterbury, Ōtautahi - Christchurch, New Zealand
| | - Stephen E Noell
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand
- International Centre for Terrestrial Antarctic Research, Te Whare Wānanga O Waikato - University of Waikato, Kirikiriroa - Hamilton, New Zealand
| | - Charles K Lee
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand
- International Centre for Terrestrial Antarctic Research, Te Whare Wānanga O Waikato - University of Waikato, Kirikiriroa - Hamilton, New Zealand
| | - Chelsea J Vickers
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora - School of Biological Sciences, Te Whare Wānanga O Waitaha - University of Canterbury, Ōtautahi - Christchurch, New Zealand
| | | | - Ian R McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand.
- International Centre for Terrestrial Antarctic Research, Te Whare Wānanga O Waikato - University of Waikato, Kirikiriroa - Hamilton, New Zealand.
| | - S Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga O Waikato - University of Waikato, Private Bag 3105, Kirikiriroa - Hamilton, 3240, New Zealand
- International Centre for Terrestrial Antarctic Research, Te Whare Wānanga O Waikato - University of Waikato, Kirikiriroa - Hamilton, New Zealand
| |
Collapse
|
7
|
Baati H, Siala M, Benali S, Azri C, Dunlap C, Martínez-Espinosa RM, Trigui M. Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant Halobacterium salinarum strains. Heliyon 2024; 10:e40822. [PMID: 39717611 PMCID: PMC11665356 DOI: 10.1016/j.heliyon.2024.e40822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with Halobacterium salinarum, were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy. ATP synthase, various cytochromes and aerobic respiration proteins were encoded. All strains showed fermentation capability through the arginine deiminase pathway and facultative anaerobic respiration using electron acceptors (Dimethyl sulfoxide and trimethylamine N-oxide). Several biosynthesis pathways for many amino acids were identified. Comparative and pangenome analyses between the strains and the well-studied halophilic archaea Halobacterium NRC-1 highlighted a notable dissimilarity. Besides, the strains shared a core genome of 1973 genes and an accessory genome of 767 genes. 129, 94, 67, 15 and 29 unique genes were detected in the AS1, AS2, AS8, AS11 and AS19 genomes, respectively. Most of these unique genes code for hypothetical proteins. The strains displayed plant-growth promoting characteristics under heavy metal stress (Ammonium assimilation, phosphate solubilization, chemotaxis, cell motility and production of indole acetic acid, siderophore and phenazine). Therefore, they could be used as a biofertilizer to promote plant growth. The genomes encoded numerous biotechnologically relevant genes responsible for vitamin biosynthesis, including cobalamin, folate, biotin, pantothenate, riboflavin, thiamine, menaquinone, nicotinate, and nicotinamide. The carotenogenetic pathway of the studied strains was also predicted. Consequently, the findings of this study contribute to a better understanding of the halophilic archaea metabolism providing valuable insights into their ecophysiology as well as relevant biotechnological applications.
Collapse
Affiliation(s)
- Houda Baati
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Mariem Siala
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Souad Benali
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Christopher Dunlap
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Mohamed Trigui
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| |
Collapse
|
8
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591522. [PMID: 38712214 PMCID: PMC11071462 DOI: 10.1101/2024.04.28.591522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria, but are only synthesized by a small fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and show that C. amycolatum produces sufficient cobamides to support E. coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK and cobO and confirm that disruption of cobamide biosynthesis abolishes support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances.
Collapse
Affiliation(s)
- M H Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - N Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - T Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - J Handelsman
- Wisconsin Institute for Discovery, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - L R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CAN
- David Braley Centre for Antibiotic Discovery, Hamilton, ON, CAN
| |
Collapse
|
11
|
Li C, Liao H, Xu L, Wang C, Yao M, Wang J, Li X. Comparative genomics reveals the adaptation of ammonia-oxidising Thaumarchaeota to arid soils. Environ Microbiol 2024; 26:e16601. [PMID: 38454574 DOI: 10.1111/1462-2920.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Thaumarchaeota are predominant in oligotrophic habitats such as deserts and arid soils, but their adaptations to these arid conditions are not well understood. In this study, we assembled 23 Thaumarchaeota genomes from arid and semi-arid soils collected from the Inner Mongolia Steppe and the Qinghai-Tibet Plateau. Using a comparative genomics approach, integrated with 614 Thaumarchaeota genomes from public databases, we identified the traits and evolutionary forces that contribute to their adaptations to aridity. Our results showed that the newly assembled genomes represent an early diverging group within the lineage of ammonia-oxidising Thaumarchaeota. While the genomic functions previously identified in arid soil lineages were conserved across terrestrial, shallow-ocean and deep-ocean lineages, several traits likely contribute to Thaumarchaeota's adaptation to aridity. These include chlorite dismutase, arsenate reductase, V-type ATPase and genes dealing with oxidative stresses. The acquisition and loss of traits at the last common ancestor of arid soil lineages may have facilitated the specialisation of Thaumarchaeota in arid soils. Additionally, the acquisition of unique adaptive traits, such as a urea transporter, Ca2+ :H+ antiporter, mannosyl-3-phosphoglycerate synthase and phosphatase, DNA end-binding protein Ku and phage shock protein A, further distinguishes arid soil Thaumarchaeota. This study provides evidence for the adaptations of Thaumarchaeota to arid soil, enhancing our understanding of the nitrogen and carbon cycling driven by Thaumarchaeota in drylands.
Collapse
Affiliation(s)
- Chaonan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Haijun Liao
- Engineering Research Center of Chuanxibei RHS Construction at Mianyang Normal University of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changting Wang
- Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Wang
- Section of Climate Science, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Bayer B, Liu S, Louie K, Northen TR, Wagner M, Daims H, Carlson CA, Santoro AE. Metabolite release by nitrifiers facilitates metabolic interactions in the ocean. THE ISME JOURNAL 2024; 18:wrae172. [PMID: 39244747 PMCID: PMC11428151 DOI: 10.1093/ismejo/wrae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.
Collapse
Affiliation(s)
- Barbara Bayer
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| | - Shuting Liu
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
- Department of Environmental & Sustainability Sciences,Kean University, 1000 Morris Avenue, Union, NJ 07083, United States
| | - Katherine Louie
- Environmental Genomics and Systems Biology Division and DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division and DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Fredrik Bajers Vej 7H, Aalborg University, 9220 Aalborg, Denmark
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- The Comammox Research Platform, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States
| |
Collapse
|
13
|
Wang J, Zhu YG, Tiedje JM, Ge Y. Global biogeography and ecological implications of cobamide-producing prokaryotes. THE ISME JOURNAL 2024; 18:wrae009. [PMID: 38366262 PMCID: PMC10900890 DOI: 10.1093/ismejo/wrae009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Cobamides, a class of essential coenzymes synthesized only by a subset of prokaryotes, are model nutrients in microbial interaction studies and play significant roles in global ecosystems. Yet, their spatial patterns and functional roles remain poorly understood. Herein, we present an in-depth examination of cobamide-producing microorganisms, drawn from a comprehensive analysis of 2862 marine and 2979 soil metagenomic samples. A total of 1934 nonredundant metagenome-assembled genomes (MAGs) potentially capable of producing cobamides de novo were identified. The cobamide-producing MAGs are taxonomically diverse but habitat specific. They constituted only a fraction of all the recovered MAGs, with the majority of MAGs being potential cobamide users. By mapping the distribution of cobamide producers in marine and soil environments, distinct latitudinal gradients were observed: the marine environment showed peak abundance at the equator, whereas soil environments peaked at mid-latitudes. Importantly, significant and positive links between the abundance of cobamide producers and the diversity and functions of microbial communities were observed, as well as their promotional roles in essential biogeochemical cycles. These associations were more pronounced in marine samples than in soil samples, which suggests a heightened propensity for microorganisms to engage in cobamide sharing in fluid environments relative to the more spatially restricted soil environment. These findings shed light on the global patterns and potential ecological roles of cobamide-producing microorganisms in marine and soil ecosystems, enhancing our understanding of large-scale microbial interactions.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, United States
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Luo ZH, Li Q, Xie YG, Lv AP, Qi YL, Li MM, Qu YN, Liu ZT, Li YX, Rao YZ, Jiao JY, Liu L, Narsing Rao MP, Hedlund BP, Evans PN, Fang Y, Shu WS, Huang LN, Li WJ, Hua ZS. Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria. THE ISME JOURNAL 2024; 18:wrad031. [PMID: 38365241 PMCID: PMC10833072 DOI: 10.1093/ismejo/wrad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000 Talca, Chile
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Yuan Fang
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, PR China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
15
|
Beauvais M, Schatt P, Montiel L, Logares R, Galand PE, Bouget FY. Functional redundancy of seasonal vitamin B 12 biosynthesis pathways in coastal marine microbial communities. Environ Microbiol 2023; 25:3753-3770. [PMID: 38031968 DOI: 10.1111/1462-2920.16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Vitamin B12 (cobalamin) is a major cofactor required by most marine microbes, but only produced by a few prokaryotes in the ocean, which is globally B12 -depleted. Despite the ecological importance of B12 , the seasonality of B12 metabolisms and the organisms involved in its synthesis in the ocean remain poorly known. Here we use metagenomics to assess the monthly dynamics of B12 -related pathways and the functional diversity of associated microbial communities in the coastal NW Mediterranean Sea over 7 years. We show that genes related to potential B12 metabolisms were characterized by an annual succession of different organisms carrying distinct production pathways. During the most productive winter months, archaea (Nitrosopumilus and Nitrosopelagicus) were the main contributors to B12 synthesis potential through the anaerobic pathway (cbi genes). In turn, Alphaproteobacteria (HIMB11, UBA8309, Puniceispirillum) contributed to B12 synthesis potential in spring and summer through the aerobic pathway (cob genes). Cyanobacteria could produce pseudo-cobalamin from spring to autumn. Finally, we show that during years with environmental perturbations, the organisms usually carrying B12 synthesis genes were replaced by others having the same gene, thus maintaining the potential for B12 production. Such ecological insurance could contribute to the long-term functional resilience of marine microbial communities exposed to contrasting inter-annual environmental conditions.
Collapse
Affiliation(s)
- Maxime Beauvais
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Philippe Schatt
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Lidia Montiel
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
16
|
Wu LY, Piedade GJ, Moore RM, Harrison AO, Martins AM, Bidle KD, Polson SW, Sakowski EG, Nissimov JI, Dums JT, Ferrell BD, Wommack KE. Ubiquitous, B 12-dependent virioplankton utilizing ribonucleotide-triphosphate reductase demonstrate interseasonal dynamics and associate with a diverse range of bacterial hosts in the pelagic ocean. ISME COMMUNICATIONS 2023; 3:108. [PMID: 37789093 PMCID: PMC10547690 DOI: 10.1038/s43705-023-00306-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, t'Horntje, The Netherlands
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Amelia O Harrison
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Ana M Martins
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, USA
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Eric G Sakowski
- Department of Earth Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Jacob T Dums
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
- Biotechnology Program, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27695, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
17
|
Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ, Wang F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. SCIENCE ADVANCES 2023; 9:eadf5069. [PMID: 37406125 PMCID: PMC10321748 DOI: 10.1126/sciadv.adf5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth's surface environment.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
18
|
Liu J, Huang F, Liu J, Liu X, Lin R, Zhong X, Austin B, Zhang XH. Phylotype resolved spatial variation and association patterns of planktonic Thaumarchaeota in eastern Chinese marginal seas. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:257-270. [PMID: 37275536 PMCID: PMC10232715 DOI: 10.1007/s42995-023-00169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
The majority of marine ammonia oxidizers belong to Thaumarchaeota, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, Nitrosopumilus-like and Nitrosopelagicus-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living Thaumarchaeota in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached Thaumarchaeota was less clear in surface microlayers than in surface waters. Vertically, the Nitrosopelagicus-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of Thaumarchaeota relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of Thaumarchaeota with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the Nitrosopelagicus-like phylotype is present in shallow shelf waters. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00169-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Fuyan Huang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Jiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaoyue Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Ruiyun Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaosong Zhong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao, 266100 China
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
19
|
Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B 12 is not shared by all marine prototrophic bacteria with their environment. THE ISME JOURNAL 2023; 17:836-845. [PMID: 36914732 DOI: 10.1038/s41396-023-01391-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.
Collapse
Affiliation(s)
- Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129, Oldenburg, Germany.
| |
Collapse
|
20
|
Soto MA, Desai D, Bannon C, LaRoche J, Bertrand EM. Cobalamin producers and prokaryotic consumers in the Northwest Atlantic. Environ Microbiol 2023. [PMID: 36861357 DOI: 10.1111/1462-2920.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Cobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean. Functional and taxonomic annotation of bulk metagenomic reads, combined with analysis of genome bins, were used to identify potential cobalamin sources and sinks. Cobalamin synthesis potential was mainly attributed to Rhodobacteraceae, Thaumarchaeota, and cyanobacteria (Synechococcus and Prochlorococcus). Cobalamin remodelling potential was mainly attributed to Alteromonadales, Pseudomonadales, Rhizobiales, Oceanospirilalles, Rhodobacteraceae, and Verrucomicrobia, while potential cobalamin consumers include Flavobacteriaceae, Actinobacteria, Porticoccaceae, Methylophiliaceae, and Thermoplasmatota. These complementary approaches identified taxa with the potential to be involved in cobalamin cycling on the Scotian Shelf and revealed genomic information required for further characterization. The Cob operon of Rhodobacterales bacterium HTCC2255, a strain with known importance in cobalamin cycling, was similar to a major cobalamin producer bin, suggesting that a related strain may represent a critical cobalamin source in this region. These results enable future inquiries that will enhance our understanding of how cobalamin shapes microbial interdependencies and productivity in this region.
Collapse
Affiliation(s)
- Maria A Soto
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Catherine Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Kim HJ, Jeoung G, Kim KE, Park JS, Kang D, Baek SH, Lee CY, Kim H, Cho S, Lee TK, Jung SW. Co-variance between free-living bacteria and Cochlodinium polykrikoides (Dinophyta) harmful algal blooms, South Korea. HARMFUL ALGAE 2023; 122:102371. [PMID: 36754457 DOI: 10.1016/j.hal.2022.102371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
To understand the co-variance between common free-living bacteria and Cochlodinium polykrikoides harmful algal blooms (HABs) and their metabolic functions, we investigated 110 sampling sites in the Southern Sea of South Korea. These sampling sites were divided into three groups based on environmental factors and phytoplankton data with a similarity of 85% using non-metric multidimensional scaling. One group represented high-severity C. polykrikoides blooms, while the other two represented low-severity or no blooms. In high-severity HABs, inorganic phosphorous and dissolved organic carbon concentrations were strongly correlated with C. polykrikoides density (p < 0.01). This may reflect the changes in biochemical cycling due to inorganic and organic substrates released by HAB cells (or by cell destruction). Furthermore, 88 common bacterial operational taxonomic units (OTUs, with mean relative abundance > 1%) were identified. These included Gammaproteobacteria (36 OTUs), Flavobacteriia (24), Alphaproteobacteria (18), and other taxa (11). When C. polykrikoides blooms intensified, the relative abundances of Gammaproteobacteria also increased. OTU #030 (Flavicella sp., Flavobacteria, 96%) was positively correlated with C. polykrikoides abundance (r = 0.77, p < 0.001). Functional analysis based on the dominant bacterial OTUs revealed that chemoheterotrophy-related functions were more common in high-severity sites of HABs than in other groups. Therefore, the occurrence of HABs highlighted their interactions with bacteria and affected the bacterial community structure and metabolic functions.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Gaeul Jeoung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Donhyug Kang
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Seung Ho Baek
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Chol Young Lee
- Marine Bigdata Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Hansoo Kim
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Sungho Cho
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius. Front Microbiol 2023; 13:1101464. [PMID: 36777031 PMCID: PMC9909488 DOI: 10.3389/fmicb.2022.1101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.
Collapse
|
23
|
Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. Comparative Analysis of Corrinoid Profiles across Host-Associated and Environmental Samples. Biochemistry 2022; 61:2791-2796. [PMID: 36037062 DOI: 10.1021/acs.biochem.2c00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erica C Seth
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kersh Thevasundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Du C, Zhou X, Zhang K, Huang S, Wang X, Zhou S, Chen Y. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep. BMC Microbiol 2022; 22:273. [DOI: 10.1186/s12866-022-02687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Myostatin (MSTN) negatively regulates the muscle growth in animals and MSTN deficient sheep have been widely reported previously. The goal of this study was to explore how MSTN inactivation influences their gut microbiota composition and potential functions.
Results
We compared the slaughter parameters and meat quality of 3 MSTN-edited male sheep and 3 wild-type male sheep, and analyzed the gut microbiome of the MSTN-edited sheep (8 female and 8 male sheep) and wild-type sheep (8 female and 8 male sheep) through metagenomic sequencing. The results showed that the body weight, carcass weight and eye muscle area of MSTN-edited sheep were significantly higher, but there were no significant differences in the meat quality indexes. At the microbial level, the alpha diversity was significantly higher in the MSTN-edited sheep (P < 0.05), and the microbial composition was significantly different by PCoA analysis in the MSTN-edited and wild-type sheep. The abundance of Firmicutes significantly increased and Bacteroidota significantly decreased in the MSTN-edited sheep. At genus level, the abundance of Flavonifractor, Subdoligranulum, Ruthenibacterium, Agathobaculum, Anaerotignum, Oribacterium and Lactobacillus were significantly increased in the MSTN-edited sheep (P < 0.05). Further analysis of functional differences was found that the carotenoid biosynthesis was significantly increased and the peroxisome, apoptosis, ferroptosis, N-glycan biosynthesis, thermogenesis, and adipocytokines pathways were decreased in the MSTN-edited sheep (P < 0.05). Moreover, carbohydrate-active enzymes (CAZymes) results certified the abundance of the GH13_39, GH4, GH137, GH71 and PL17 were upregulated, and the GT41 and CBM20 were downregulated in the MSTN-edited sheep (P < 0.05).
Conclusions
Our study suggested that MSTN inactivation remarkably influenced the composition and potential function of hindgut microbial communities of the sheep, and significantly promoted growth performance without affecting meat quality.
Collapse
|
25
|
Abstract
The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.
Collapse
|
26
|
Pettersen R, Ormaasen I, Angell IL, Keeley NB, Lindseth A, Snipen L, Rudi K. Bimodal distribution of seafloor microbiota diversity and function are associated with marine aquaculture. Mar Genomics 2022; 66:100991. [PMID: 36116403 DOI: 10.1016/j.margen.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
The aim of the current work was to investigate the impact of marine aquaculture on seafloor biogeochemistry and diversity from pristine environments in the northern part of Norway. Our analytical approach included analyses of 182 samples from 16 aquaculture sites using 16S and 18S rRNA, shotgun analyses, visual examination of macro-organisms, in addition to chemical measurements. We observed a clear bimodal distribution of the prokaryote composition and richness, determined by analyses of 16S rRNA gene operational taxonomic units (OTUs). The high OTU richness cluster was associated with non-perturbed environments and farness from the aquaculture sites, while the low OTU richness cluster was associated with perturbed environments and proximity to the aquaculture sites. Similar patterns were also observed for eukaryotes using 18S rRNA gene analyses and visual examination, but without a bimodal distribution of OTU richness. Shotgun sequencing showed the archaeum Nitrosopumilus as dominant for the high OTU richness cluster, and the epsilon protobacterium Sulfurovum as dominant for the low OTU richness cluster. Metabolic reconstruction of Nitrosopumilus indicates nitrification as the main metabolic pathway. Sulfurovum, on the other hand, was associated with sulfur oxidation and denitrification. Changes in nitrogen and sulfur metabolism is proposed as a potential explanation for the difference between the high and low OTU richness clusters. In conclusion, these findings suggest that pollution from elevated loads of organic waste drives the microbiota towards a complete alteration of respiratory routes and species composition, in addition to a collapse in prokaryote OTU richness.
Collapse
Affiliation(s)
| | - I Ormaasen
- Norwegian University of Life Sciences, Ås, Norway
| | - I L Angell
- Norwegian University of Life Sciences, Ås, Norway
| | - N B Keeley
- Institute of Marine Research, Tromsø, Norway
| | | | - L Snipen
- Norwegian University of Life Sciences, Ås, Norway
| | - K Rudi
- Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
27
|
Omega-3 fatty acid and B12 vitamin content in Baltic algae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Lin S, Hu Z, Song X, Gobler CJ, Tang YZ. Vitamin B 12-auxotrophy in dinoflagellates caused by incomplete or absent cobalamin-independent methionine synthase genes ( metE). FUNDAMENTAL RESEARCH 2022; 2:727-737. [PMID: 38933134 PMCID: PMC11197592 DOI: 10.1016/j.fmre.2021.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
Dinoflagellates are responsible for most marine harmful algal blooms (HABs) and play vital roles in many ocean processes. More than 90% of dinoflagellates are vitamin B12 auxotrophs and that B12 availability can control dinoflagellate HABs, yet the genetic basis of B12 auxotrophy in dinoflagellates in the framework of the ecology of dinoflagellates and particularly HABs, which was the objective of this work. Here, we investigated the presence, phylogeny, and transcription of two methionine synthase genes (B12-dependent metH and B12-independent metE) via searching and assembling transcripts and genes from transcriptomic and genomic databases, cloning 38 cDNA isoforms of the two genes from 14 strains of dinoflagellates, measuring the expression at different scenarios of B12, and comprehensive phylogenetic analyses of more than 100 organisms. We found that 1) metH was present in all 58 dinoflagellates accessible and metE was present in 40 of 58 species, 2) all metE genes lacked N-terminal domains, 3) metE of dinoflagellates were phylogenetically distinct from other known metE genes, and 4) expression of metH in dinoflagellates was responsive to exogenous B12 levels while expression of metE was not responding as that of genuine metE genes. We conclude that most, hypothetically all, dinoflagellates have either non-functional metE genes lacking N-terminal domain for most species, or do not possess metE for other species, which provides the genetic basis for the widespread nature of B12 auxotrophy in dinoflagellates. The work elucidated a fundamental aspect of the nutritional ecology of dinoflagellates.
Collapse
Affiliation(s)
- Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Current address: Department of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoying Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
29
|
Ke M, Feng L, Huang S, Lu T, Yu Z, Yang Y, Hu H, Peijnenburg WJGM, Feng L, Qian H. Development of a Potentially New Algaecide for Controlling Harmful Cyanobacteria Blooms Which is Ecologically Safe and Selective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10134-10143. [PMID: 35972278 DOI: 10.1021/acs.jafc.2c02489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Harmful cyanobacterial blooms (HCBs) caused by Microcystis aeruginosa are of great concern as they negatively affect the aquatic environment and human health. Chemical methods could rapidly eradicate HCBs and have been used for many decades. However, many chemical reagents are not recommended to eliminate HCBs in the long term, given the possible destructive and toxic effects of the chemicals employed on non-target aquatic organisms. We developed a new algaecide, 2-((1,3,4-thiadiazol-2-yl)thio)-N-(4-chlorophenyl) acetamide (Q2), to control harmful cyanobacteria while being environmentally friendly and selective. In our study, Q2 effectively inhibited cyanobacterial growth, especially of M. aeruginosa, but did not affect eukaryotic algae in test concentrations. A critical mechanism was revealed by transcriptome and metagenomic results showing that Q2 affects multiple cellular targets of cyanobacteria for HCB control, including the destruction of organelles, damage in the photosynthesis center, as well as inhibition of gas vesicle growth, and these changes can be highly relevant to the decrease of quorum-sensing functional KEGG pathways. Furthermore, Q2 did not affect the microbial composition and could recover the disrupted aquatic functional pathways in a short period. This is different from the impact on ecosystem functioning of the traditionally used harmful algaecide diuron. All these results verified that Q2 could be friendly to the aquatic environment, providing a new directional choice in managing HCBs in the future.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Lan Feng
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Shi Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Zhitao Yu
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Yaohui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden2300 RA, The Netherlands
- Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven3720, The Netherlands
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
30
|
Zhao H, Zhang L. Metagenome-assembled Genomes of Six Novel Ammonia-oxidizing Archaea (AOA) from Agricultural Upland Soil. Microbes Environ 2022; 37. [PMID: 35965098 PMCID: PMC9530722 DOI: 10.1264/jsme2.me22035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA), key players in agricultural upland soil nitrification, convert soil ammonium to nitrite. The microbial oxidation of ammonia to nitrite is an important part of the global biogeochemical nitrogen cycle. In the present study, we recovered six novel AOA metagenome-assembled genomes (MAGs) containing genes for carbon (C) fixation and nitrogen (N) metabolism by using a deep shotgun metagenomic sequencing strategy. We also found that these AOA MAGs possessed cobalamin synthesis genes, suggesting that AOA are vitamin suppliers in agricultural upland soil. Collectively, the present results deepen our understanding of the metabolic potential and phylogeny of AOA in agroecosystems.
Collapse
Affiliation(s)
- Huicheng Zhao
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Linqi Zhang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| |
Collapse
|
31
|
Nef C, Dittami S, Kaas R, Briand E, Noël C, Mairet F, Garnier M. Sharing Vitamin B 12 between Bacteria and Microalgae Does Not Systematically Occur: Case Study of the Haptophyte Tisochrysis lutea. Microorganisms 2022; 10:1337. [PMID: 35889056 PMCID: PMC9323062 DOI: 10.3390/microorganisms10071337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Haptophyte microalgae are key contributors to microbial communities in many environments. It has been proposed recently that members of this group would be virtually all dependent on vitamin B12 (cobalamin), an enzymatic cofactor produced only by some bacteria and archaea. Here, we examined the processes of vitamin B12 acquisition by haptophytes. We tested whether co-cultivating the model species Tisochrysis lutea with B12-producing bacteria in vitamin-deprived conditions would allow the microalga to overcome B12 deprivation. While T. lutea can grow by scavenging vitamin B12 from bacterial extracts, co-culture experiments showed that the algae did not receive B12 from its associated bacteria, despite bacteria/algae ratios supposedly being sufficient to allow enough vitamin production. Since other studies reported mutualistic algae-bacteria interactions for cobalamin, these results question the specificity of such associations. Finally, cultivating T. lutea with a complex bacterial consortium in the absence of the vitamin partially rescued its growth, highlighting the importance of microbial interactions and diversity. This work suggests that direct sharing of vitamin B12 is specific to each species pair and that algae in complex natural communities can acquire it indirectly by other mechanisms (e.g., after bacterial lysis).
Collapse
Affiliation(s)
- Charlotte Nef
- Physiologie et Biotechnologie des Algues, IFREMER, Rue de l’Ile d’Yeu, F-44311 Nantes, France;
| | - Simon Dittami
- Station Biologique de Roscoff, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne University, F-29680 Roscoff, France;
| | - Raymond Kaas
- Physiologie et Biotechnologie des Algues, IFREMER, Rue de l’Ile d’Yeu, F-44311 Nantes, France;
| | - Enora Briand
- GENALG, PHYTOX, IFREMER, F-44000 Nantes, France; (E.B.); (M.G.)
| | - Cyril Noël
- SEBIMER, IRSI, IFREMER, F-29280 Brest, France;
| | | | | |
Collapse
|
32
|
Bacterial Community Assembly, Succession, and Metabolic Function during Outdoor Cultivation of Microchloropsis salina. mSphere 2022; 7:e0023122. [PMID: 35730934 PMCID: PMC9429889 DOI: 10.1128/msphere.00231-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides. IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.
Collapse
|
33
|
Availability of vitamin B 12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. THE ISME JOURNAL 2022; 16:2002-2014. [PMID: 35585186 PMCID: PMC9296465 DOI: 10.1038/s41396-022-01250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/22/2023]
Abstract
Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
Collapse
|
34
|
Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential Use of Microbial Community Genomes in Various Dimensions of Agriculture Productivity and Its Management: A Review. Front Microbiol 2022; 13:708335. [PMID: 35655999 PMCID: PMC9152772 DOI: 10.3389/fmicb.2022.708335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
35
|
Elling FJ, Evans TW, Nathan V, Hemingway JD, Kharbush JJ, Bayer B, Spieck E, Husain F, Summons RE, Pearson A. Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols. GEOBIOLOGY 2022; 20:399-420. [PMID: 35060273 DOI: 10.1111/gbi.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia- and nitrite-oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia-oxidizing (AOB), nitrite-oxidizing (NOB), and complete ammonia-oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen-containing bacteriohopanepolyols were tentatively identified, of which the so called BHP-743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin-Benson-Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
Collapse
Affiliation(s)
- Felix J Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas W Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jordon D Hemingway
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jenan J Kharbush
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Barbara Bayer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Fatima Husain
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. THE ISME JOURNAL 2022; 16:972-982. [PMID: 34743175 PMCID: PMC8940887 DOI: 10.1038/s41396-021-01143-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022]
Abstract
Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.
Collapse
|
37
|
Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, Zhao X, Wang F. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. SCIENCE CHINA. LIFE SCIENCES 2022; 65:818-829. [PMID: 34378142 DOI: 10.1007/s11427-021-1969-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The hypothesis that eukaryotes originated from within the domain Archaea has been strongly supported by recent phylogenomic analyses placing Heimdallarchaeota-Wukongarchaeota branch from the Asgard superphylum as the closest known archaeal sister-group to eukaryotes. However, our understanding is still limited in terms of the relationship between eukaryotes and archaea, as well as the evolution and ecological functions of the Asgard archaea. Here, we describe three previously unknown phylum-level Asgard archaeal lineages, tentatively named Sigyn-, Freyr- and Njordarchaeota. Additional members in Wukongarchaeota and Baldrarchaeota from distinct environments are also reported here, further expanding their ecological roles and metabolic capacities. Comprehensive phylogenomic analyses further supported the origin of eukaryotes within Asgard archaea and a new lineage Njordarchaeota was supposed as the known closest branch with the eukaryotic nuclear host lineage. Metabolic reconstruction suggests that Njordarchaeota may have a heterotrophic lifestyle with capability of peptides and amino acids utilization, while Sigynarchaeota and Freyrarchaeota also have the potentials to fix inorganic carbon via the Wood-Ljungdahl pathway and degrade organic matters. Additionally, the Ack/Pta pathway for homoacetogenesis and de novo anaerobic cobalamin biosynthesis pathway were found in Freyrarchaeota and Wukongrarchaeota, respectively. Some previously unidentified eukaryotic signature proteins for intracellular membrane trafficking system, and the homologue of mu/sigma subunit of adaptor protein complex, were identified in Freyrarchaeota. This study expands the Asgard superphylum, sheds new light on the evolution of eukaryotes and improves our understanding of ecological functions of the Asgard archaea.
Collapse
Affiliation(s)
- Ruize Xie
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haining Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiao Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengping Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
38
|
Jin X, Yang Y, Cao H, Gao B, Zhao Z. Eco-phylogenetic analyses reveal divergent evolution of vitamin B 12 metabolism in the marine bacterial family 'Psychromonadaceae'. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:147-163. [PMID: 34921716 DOI: 10.1111/1758-2229.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Cobalamin (vitamin B12 ) is an essential micronutrient required by both prokaryotes and eukaryotes. Nevertheless, with high genetic and metabolic cost, de novo cobalamin biosynthesis is exclusive to a subset of prokaryotic taxa. Many Cyanobacterial and Archaeal taxa have been implicated in de novo cobalamin biosynthesis in epi- and mesopelagic ocean respectively. However, the contributions of Gammaproteobacteria particularly the family 'Psychromonadaceae' is largely unknown. Through phylo-pangenomic analyses using concatenated single-copy proteins and homologous gene clusters respectively, the phylogenies within 'Psychromonadaceae' recapitulate both their taxonomic delineations and environmental distributions. Moreover, uneven distribution of cobalamin de novo biosynthetic operon and cobalamin-dependent light-responsive regulon were observed, and of which the linkages to the environmental conditions where cobalamin availability and light regime can be varied respectively were discussed, suggesting the impacts of ecological divergence in shaping their disparate cobalamin-related metabolisms. Functional analysis demonstrated a varying degree of cobalamin dependency for both central metabolic processes and cobalamin-mediated light-responsive regulation, and underlying sequence characteristics of cis- and trans-regulatory elements were revealed. Our findings emphasized the potential roles of cobalamin in shaping the ecological distributions and driving the metabolic evolution in the marine bacterial family 'Psychromonadaceae', and have further implications for an improved understanding of nutritional interdependencies and community metabolism modulated by cobalamin.
Collapse
Affiliation(s)
- Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yaofang Yang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Haihang Cao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| |
Collapse
|
39
|
Afoullouss S, Sanchez AR, Jennings LK, Kee Y, Allcock AL, Thomas OP. Unveiling the Chemical Diversity of the Deep-Sea Sponge Characella pachastrelloides. Mar Drugs 2022; 20:md20010052. [PMID: 35049906 PMCID: PMC8779493 DOI: 10.3390/md20010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Sponges are at the forefront of marine natural product research. In the deep sea, extreme conditions have driven secondary metabolite pathway evolution such that we might expect deep-sea sponges to yield a broad range of unique natural products. Here, we investigate the chemodiversity of a deep-sea tetractinellid sponge, Characella pachastrelloides, collected from ~800 m depth in Irish waters. First, we analyzed the MS/MS data obtained from fractions of this sponge on the GNPS public online platform to guide our exploration of its chemodiversity. Novel glycolipopeptides named characellides were previously isolated from the sponge and herein cyanocobalamin, a manufactured form of vitamin B12, not previously found in nature, was isolated in a large amount. We also identified several poecillastrins from the molecular network, a class of polyketide known to exhibit cytotoxicity. Light sensitivity prevented the isolation and characterization of these polyketides, but their presence was confirmed by characteristic NMR and MS signals. Finally, we isolated the new betaine 6-methylhercynine, which contains a unique methylation at C-2 of the imidazole ring. This compound showed potent cytotoxicity towards against HeLa (cervical cancer) cells.
Collapse
Affiliation(s)
- Sam Afoullouss
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
- School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland;
| | - Anthony R. Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA; (A.R.S.); (Y.K.)
| | - Laurence K. Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA; (A.R.S.); (Y.K.)
| | - A. Louise Allcock
- School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland;
| | - Olivier P. Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland; (S.A.); (L.K.J.)
- Correspondence:
| |
Collapse
|
40
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6523362. [DOI: 10.1093/femsec/fiac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
|
41
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
42
|
Microbial Plankton Community Structure and Function Responses to Vitamin B 12 and B 1 Amendments in an Upwelling System. Appl Environ Microbiol 2021; 87:e0152521. [PMID: 34495690 PMCID: PMC8552899 DOI: 10.1128/aem.01525-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B12 and B1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B1 and B12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B12 and B1 uptake, and Pelagibacterales expressed genes involved in vitamin B1 uptake. Interestingly, the relative expression of vitamin B12 and B1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B12 and B1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B12 and B1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
Collapse
|
43
|
Law KP, He W, Tao J, Zhang C. Characterization of the Exometabolome of Nitrosopumilus maritimus SCM1 by Liquid Chromatography-Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:658781. [PMID: 34276593 PMCID: PMC8281238 DOI: 10.3389/fmicb.2021.658781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Marine Thaumarchaeota (formerly known as the marine group I archaea) have received much research interest in recent years since these chemolithoautotrophic organisms are abundant in the subsurface ocean and oxidize ammonium to nitrite, which makes them a major contributor to the marine carbon and nitrogen cycles. However, few studies have investigated the chemical composition of their exometabolome and their contributions to the pool of dissolved organic matter (DOM) in seawater. This study exploits the recent advances in ion mobility mass spectrometry (IM-MS) and integrates this instrumental capability with bioinformatics to reassess the exometabolome of a model ammonia-oxidizing archaeon, Nitrosopumilus maritimus strain SCM1. Our method has several advantages over the conventional approach using an Orbitrap or ion cyclotron resonance mass analyzer and allows assignments or annotations of spectral features to known metabolites confidently and indiscriminately, as well as distinction of biological molecules from background organics. Consistent with the results of a previous report, the SPE-extracted exometabolome of N. maritimus is dominated by biologically active nitrogen-containing metabolites, in addition to peptides secreted extracellularly. Cobalamin and associated intermediates, including α-ribazole and α-ribazole 5'-phosphate, are major components of the SPE-extracted exometabolome of N. maritimus. This supports the proposition that Thaumarchaeota have the capacity of de novo biosynthesizing cobalamin. Other biologically significant metabolites, such as agmatidine and medicagenate, predicted by genome screening are also detected, which indicates that Thaumarchaeota have remarkable metabolic potentials, underlining their importance in driving elemental cycles critical to biological processes in the ocean.
Collapse
Affiliation(s)
- Kai P. Law
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
44
|
Buessecker S, Zamora Z, Sarno AF, Finn DR, Hoyt AM, van Haren J, Urquiza Muñoz JD, Cadillo-Quiroz H. Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin. Front Microbiol 2021; 12:659079. [PMID: 34267733 PMCID: PMC8276178 DOI: 10.3389/fmicb.2021.659079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Tropical peatlands are hotspots of methane (CH4) production but present high variation and emission uncertainties in the Amazon region. This is because the controlling factors of methane production in tropical peats are not yet well documented. Although inhibitory effects of nitrogen oxides (NOx) on methanogenic activity are known from pure culture studies, the role of NOx in the methane cycling of peatlands remains unexplored. Here, we investigated the CH4 content, soil geochemistry and microbial communities along 1-m-soil profiles and assessed the effects of soil NOx and nitrous oxide (N2O) on methanogenic abundance and activity in three peatlands of the Pastaza-Marañón foreland basin. The peatlands were distinct in pH, DOC, nitrate pore water concentrations, C/N ratios of shallow soils, redox potential, and 13C enrichment in dissolved inorganic carbon and CH4 pools, which are primarily contingent on H2-dependent methanogenesis. Molecular 16S rRNA and mcrA gene data revealed diverse and novel methanogens varying across sites. Importantly, we also observed a strong stratification in relative abundances of microbial groups involved in NOx cycling, along with a concordant stratification of methanogens. The higher relative abundance of ammonia-oxidizing archaea (Thaumarchaeota) in acidic oligotrophic peat than ammonia-oxidizing bacteria (Nitrospira) is noteworthy as putative sources of NOx. Experiments testing the interaction of NOx species and methanogenesis found that the latter showed differential sensitivity to nitrite (up to 85% reduction) and N2O (complete inhibition), which would act as an unaccounted CH4 control in these ecosystems. Overall, we present evidence of diverse peatlands likely differently affected by inhibitory effects of nitrogen species on methanogens as another contributor to variable CH4 fluxes.
Collapse
Affiliation(s)
- Steffen Buessecker
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zacary Zamora
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Analissa F Sarno
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Damien Robert Finn
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alison M Hoyt
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Joost van Haren
- Biosphere 2 Institute, University of Arizona, Oracle, AZ, United States.,Honors College, University of Arizona, Tucson, AZ, United States
| | - Jose D Urquiza Muñoz
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.,Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Peru.,School of Forestry, National University of the Peruvian Amazon, Iquitos, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
45
|
Abstract
Cobalamin (vitamin B12; VB12) is an indispensable nutrient for all living entities in the Earth’s biosphere and plays a vital role in both natural and host environments. Currently in the metagenomic era, gene families of interest are extracted and analyzed based on functional profiles by searching shotgun metagenomes against public databases. However, critical issues exist in applying public databases for specific processes such as VB12 biosynthesis pathways. We developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 biosynthesis gene families of microbial communities in complex environments. VB12Path contains a total of 60 VB12 synthesis gene families, 287,731 sequences, and 21,154 homology groups, and it aims to provide accurate functional and taxonomic profiles of VB12 synthesis pathways for shotgun metagenomes and minimize false-positive assignments. VB12Path was applied to characterize cobalamin biosynthesis gene families in human intestines and marine environments. The results demonstrated that ocean and human intestine had dramatically different VB12 synthesis processes and that gene families belonging to salvage and remodeling pathway dominated human intestine but were lowest in the ocean ecosystem. VB12Path is expected to be a useful tool to study cobalamin biosynthesis processes via shotgun metagenome sequencing in both environmental and human microbiome research. IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes. Therefore, this small subset of prokaryotes controls ecosystem stability and host health to some extent. However, critical accuracy and comprehensiveness issues exist in applying public databases to profile VB12 synthetic gene families and taxonomic groups in complex metagenomes. In this study, we developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 communities in complex environments. VB12Path is expected to serve as a valuable tool to uncover the hidden microbial communities producing this precious nutrient on Earth.
Collapse
|
46
|
Shafiee RT, Snow JT, Hester S, Zhang Q, Rickaby REM. Proteomic response of the marine ammonia-oxidising archaeon Nitrosopumilus maritimus to iron limitation reveals strategies to compensate for nutrient scarcity. Environ Microbiol 2021; 24:835-849. [PMID: 33876540 DOI: 10.1111/1462-2920.15491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Dissolved iron (Fe) is vanishingly low in the oceans, with ecological success conferred to microorganisms that can restructure their biochemistry to maintain high growth rates during Fe scarcity. Chemolithoautotrophic ammonia-oxidising archaea (AOA) are highly abundant in the oceans, constituting ~30% of cells below the photic zone. Here we examine the proteomic response of the AOA isolate Nitrosopumilus maritimus to growth-limiting Fe concentrations. Under Fe limitation, we observed a significant reduction in the intensity of Fe-dense ferredoxins associated with respiratory complex I whilst complex III and IV proteins with more central roles in the electron transport chain remain unchanged. We concomitantly observed an increase in the intensity of Fe-free functional alternatives such as flavodoxin and plastocyanin, thioredoxin and alkyl hydroperoxide which are known to mediate electron transport and reactive oxygen species detoxification, respectively. Under Fe limitation, we found a marked increase in the intensity of the ABC phosphonate transport system (Phn), highlighting an intriguing link between Fe and P cycling in N. maritimus. We hypothesise that an elevated uptake of exogenous phosphonates under Fe limitation may either supplement N. maritimus' endogenous methylphosphonate biosynthesis pathway - which requires Fe - or enhance the production of phosphonate-containing exopolysaccharides known to efficiently bind environmental Fe.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Joseph T Snow
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Svenja Hester
- Department of Biochemistry, South Parks Road, University of Oxford, Oxfordshire, OX1 3QU, UK
| | - Qiong Zhang
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK
| |
Collapse
|
47
|
Lambert S, Lozano JC, Bouget FY, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol 2021; 23:2592-2604. [PMID: 33760330 DOI: 10.1111/1462-2920.15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.
Collapse
Affiliation(s)
- Stefan Lambert
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Jean-Claude Lozano
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
48
|
Mueller AJ, Jung MY, Strachan CR, Herbold CW, Kirkegaard RH, Wagner M, Daims H. Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. THE ISME JOURNAL 2021; 15:732-745. [PMID: 33067588 PMCID: PMC8026999 DOI: 10.1038/s41396-020-00809-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. The new strains, tentatively named "Candidatus Nitrohelix vancouverensis" and "Candidatus Nitronauta litoralis", shed light on the niche differentiation and potential ecological roles of Nitrospinae.
Collapse
Affiliation(s)
- Anna J Mueller
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
- Department of Science Education, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Cameron R Strachan
- Department for Farm Animals and Public Health, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- FFoQSI GmbH, Technopark 1C, 3430, Tulln, Austria
| | - Craig W Herbold
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Rasmus H Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
49
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
50
|
Sadaiappan B, PrasannaKumar C, Nambiar VU, Subramanian M, Gauns MU. Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes. Sci Rep 2021; 11:3312. [PMID: 33558540 PMCID: PMC7870966 DOI: 10.1038/s41598-021-82482-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Copepods are the dominant members of the zooplankton community and the most abundant form of life. It is imperative to obtain insights into the copepod-associated bacteriobiomes (CAB) in order to identify specific bacterial taxa associated within a copepod, and to understand how they vary between different copepods. Analysing the potential genes within the CAB may reveal their intrinsic role in biogeochemical cycles. For this, machine-learning models and PICRUSt2 analysis were deployed to analyse 16S rDNA gene sequences (approximately 16 million reads) of CAB belonging to five different copepod genera viz., Acartia spp., Calanus spp., Centropages sp., Pleuromamma spp., and Temora spp.. Overall, we predict 50 sub-OTUs (s-OTUs) (gradient boosting classifiers) to be important in five copepod genera. Among these, 15 s-OTUs were predicted to be important in Calanus spp. and 20 s-OTUs as important in Pleuromamma spp.. Four bacterial s-OTUs Acinetobacter johnsonii, Phaeobacter, Vibrio shilonii and Piscirickettsiaceae were identified as important s-OTUs in Calanus spp., and the s-OTUs Marinobacter, Alteromonas, Desulfovibrio, Limnobacter, Sphingomonas, Methyloversatilis, Enhydrobacter and Coriobacteriaceae were predicted as important s-OTUs in Pleuromamma spp., for the first time. Our meta-analysis revealed that the CAB of Pleuromamma spp. had a high proportion of potential genes responsible for methanogenesis and nitrogen fixation, whereas the CAB of Temora spp. had a high proportion of potential genes involved in assimilatory sulphate reduction, and cyanocobalamin synthesis. The CAB of Pleuromamma spp. and Temora spp. have potential genes accountable for iron transport.
Collapse
Affiliation(s)
- Balamurugan Sadaiappan
- grid.436330.10000 0000 9040 9555Plankton Ecology Lab, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, 403004 India
| | - Chinnamani PrasannaKumar
- grid.436330.10000 0000 9040 9555Plankton Ecology Lab, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, 403004 India
| | - V. Uthara Nambiar
- grid.436330.10000 0000 9040 9555Plankton Ecology Lab, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, 403004 India
| | - Mahendran Subramanian
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, South Kensington, London, SW72AZ UK ,grid.7445.20000 0001 2113 8111Department of Computing, Imperial College London, South Kensington, London, SW72AZ UK ,Faraday-Fleming Laboratory, London, W148TL UK
| | - Manguesh U. Gauns
- grid.436330.10000 0000 9040 9555Plankton Ecology Lab, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa, 403004 India
| |
Collapse
|