1
|
Zheng Y, Gao Z, Wu S, Ruan A. Community Structure, Drivers, and Potential Functions of Different Lifestyle Viruses in Chaohu Lake. Viruses 2024; 16:590. [PMID: 38675931 PMCID: PMC11053968 DOI: 10.3390/v16040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.
Collapse
Affiliation(s)
- Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shuai Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Host Cyanobacteria Killing by Novel Lytic Cyanophage YongM: A Protein Profiling Analysis. Microorganisms 2022; 10:microorganisms10020257. [PMID: 35208712 PMCID: PMC8875764 DOI: 10.3390/microorganisms10020257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cyanobacteria are autotrophic prokaryotes that can proliferate robustly in eutrophic waters through photosynthesis. This can lead to outbreaks of lake “water blooms”, which result in water quality reduction and environmental pollution that seriously affect fisheries and aquaculture. The use of cyanophages to control the growth of cyanobacteria is an important strategy to tackle annual cyanobacterial blooms. YongM is a novel lytic cyanophage with a broad host spectrum and high efficiency in killing its host, cyanobacteria FACHB-596. However, changes in cyanophage protein profile during infestation and killing of the host remains unknown. To characterize the proteins and its regulation networks involved in the killing of host cyanobacteria by YongM and evaluate whether this strain YongM could be used as a chassis for further engineering to be a powerful tool in dealing with cyanobacterial blooms, we herein applied 4D label-free high-throughput quantitative proteomics to analyze differentially expressed proteins (DEPs) involved in cyanobacteria host response infected 1 and 8 h with YongM cyanophage. Metabolic pathways, such as photosynthesis, photosynthesis-antennal protein, oxidative phosphorylation, ribosome, carbon fixation, and glycolysis/glycol-isomerization were significantly altered in the infested host, whereas DEPs were associated with the metabolic processes of photosynthesis, precursor metabolites, energy production, and organic nitrogen compounds. Among these DEPs, key proteins involved in YongM-host interaction may be photosystem I P700 chlorophyll-a apolipoprotein, carbon dioxide concentration mechanism protein, cytochrome B, and some YongM infection lysis-related enzymes. Our results provide comprehensive information of protein profiles during the invasion and killing of host cyanobacteria by its cyanophage, which may shed light on future design and manipulation of artificial cyanophages against water blooms.
Collapse
|
3
|
Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ, Lee SH, Cho JC. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. MICROBIOME 2020; 8:75. [PMID: 32482165 PMCID: PMC7265639 DOI: 10.1186/s40168-020-00863-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. RESULTS We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1 × e-5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended-spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages. CONCLUSION Our results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions. Video abstract.
Collapse
Affiliation(s)
- Kira Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Abstract
Phytoplankton and the viruses that infect them are locked in an evolutionary arms race, the nature of which is presently being revealed. A new study shows that cyanophage-mediated inhibition of CO2 fixation enables the phages to recruit photosynthetically formed redox and ATP to fulfill their nucleotide and metabolic demand.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, 9190401, Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel.
| |
Collapse
|
5
|
Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, Salama F, Bailleul B, Rappaport F, Ziv T, Sharon I, Cornejo-Castillo FM, Philosof A, Dupont CL, Sánchez P, Acinas SG, Rohwer FL, Lindell D, Béjà O. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat Microbiol 2017; 2:1350-1357. [PMID: 28785078 DOI: 10.1038/s41564-017-0002-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/28/2017] [Indexed: 01/27/2023]
Abstract
Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.
Collapse
Affiliation(s)
- Svetlana Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Onit Alalouf
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Oded Liran
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Iftach Yacoby
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Faris Salama
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS and Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS and Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, 11016, Israel.,Tel Hai College, Upper Galilee, 12210, Israel
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Alon Philosof
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Forest L Rohwer
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Debbie Lindell
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
6
|
Gao EB, Huang Y, Ning D. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution. Genes (Basel) 2016; 7:genes7100080. [PMID: 27690109 PMCID: PMC5083919 DOI: 10.3390/genes7100080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.
Collapse
Affiliation(s)
- E-Bin Gao
- School of The Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Haizhu District, Guangzhou 5103401, Guangdong Province, China.
| | - Degang Ning
- ACS Key Laboratory of Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7, Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
7
|
Roitman S, Flores-Uribe J, Philosof A, Knowles B, Rohwer F, Ignacio-Espinoza JC, Sullivan MB, Cornejo-Castillo FM, Sánchez P, Acinas SG, Dupont CL, Béjà O. Closing the gaps on the viral photosystem-I psaDCAB gene organization. Environ Microbiol 2015; 17:5100-8. [PMID: 26310718 PMCID: PMC5019241 DOI: 10.1111/1462-2920.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
Abstract
Marine photosynthesis is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding for photosystem (PS) I and II reaction centre proteins are found in cyanophages and are believed to increase their fitness. Two viral PSI gene arrangements are known, psaJF→C→A→B→K→E→D and psaD→C→A→B. The shared genes between these gene cassettes and their encoded proteins are distinguished by %G + C and protein sequence respectively. The data on the psaD→C→A→B gene organization were reported from only two partial gene cassettes coming from Global Ocean Sampling stations in the Pacific and Indian oceans. Now we have extended our search to 370 marine stations from six metagenomic projects. Genes corresponding to both PSI gene arrangements were detected in the Pacific, Indian and Atlantic oceans, confined to a strip along the equator (30°N and 30°S). In addition, we found that the predicted structure of the viral PsaA protein from the psaD→C→A→B organization contains a lumenal loop conserved in PsaA proteins from Synechococcus, but is completely absent in viral PsaA proteins from the psaJF→C→A→B→K→E→D gene organization and most Prochlorococcus strains. This may indicate a co-evolutionary scenario where cyanophages containing either of these gene organizations infect cyanobacterial ecotypes biogeographically restricted to the 30°N and 30°S equatorial strip.
Collapse
Affiliation(s)
- Sheila Roitman
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alon Philosof
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ben Knowles
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Pablo Sánchez
- Departament of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Silvia G Acinas
- Departament of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Chris L Dupont
- Microbial and Environmental Genomics Group, J Craig Venter Institute, San Diego, CA, USA
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|