1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Li Y, Qin W, Xin X, Tang C, Huang Y, He X, Chen L, Yu G, Yu F. Dynamic impact of polyethylene terephthalate nanoplastics on antibiotic resistance and microplastics degradation genes in the rhizosphere of Oryza sativa L. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137173. [PMID: 39799674 DOI: 10.1016/j.jhazmat.2025.137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments. High-dose PET treatments markedly increased the abundance and dissemination of ARGs, primarily via resistance mechanisms such as antibiotic efflux and target alteration. By providing additional carbon sources and surfaces for microbial attachment, PET stimulated the growth of microorganisms harboring MDGs, resulting in an increase in MDGs abundance. The elevated expression of MDGs facilitated the propagation of ARGs, with overlapping host microorganisms suggesting that certain microbial groups exhibit dual metabolic capabilities, enabling them to endure both antibiotic and microplastic pressures. Toxic byproducts of microplastic degradation, such as mono-ethylhexyl phthalate, further promoted ARGs dissemination by increasing horizontal gene transfer frequency. Structural equation modeling revealed that PET indirectly influenced ARGs and MDGs expression by altering soil C/N ratio, available phosphorus, and enzyme activities. Thus, nanoscale PET exacerbates ecological risks to soil microbial communities by driving co-propagation of ARGs and MDGs, highlighting the persistent threat of composite pollution to agroecosystems.
Collapse
Affiliation(s)
- Yi Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Weiwei Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xiaomin Xin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Chijian Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Yueying Huang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xinying He
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Lixing Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Fangming Yu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Jeon Y, Struewing I, Clauson K, Reetz N, Fairchild N, Goeres-Priest L, Dreher TW, Labiosa R, Carpenter KD, Rosen BH, Villegas EN, Lu J. Dominant Dolichospermum and microcystin production in Detroit Lake (Oregon, USA). HARMFUL ALGAE 2025; 142:102802. [PMID: 39947845 PMCID: PMC11864590 DOI: 10.1016/j.hal.2025.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The excessive growth of harmful cyanobacteria, including Dolichospermum (formerly known as Anabaena), in freshwater bodies has become a pressing global concern. However, detailed information about the role of Dolichospermum in shaping bloom dynamics and producing cyanotoxins is limited. In this study, a bloom event dominated by Dolichospermum spp. at Detroit Lake (Oregon, USA) was examined from 2019 to 2021. In 2019, early summer cyanobacterial community succession reached up to 8.7 % of total phytoplankton abundance. Dolichospermum was the major microcystin (MC)-producing genus, with peak MC levels of 7.34 μg L-1. The presence of MCs was strongly correlated with the abundance of Dolichospermum (r = 0.84, p < 0.05) and MC synthetase gene, mcyE-Ana (r = 0.63, p < 0.05). Metabolic analyses further showed that the presence of nif/pst genes linked to nitrogen and phosphorus metabolism was dominated by Dolichospermum from the bloom onset until September. In addition, the abundance of Dolichospermum was significantly correlated with the abundance of nitrogen-fixing nif-Ana gene (r = 0.62, p < 0.05). As the lake experienced a longer N and P scarcity period (May to September), the N2-fixing Dolichospermum was able to dominate over other non-fixing cyanobacteria present, including Microcystis and Planktothrix. Overall, our results facilitate a better understanding of the organism and will help working toward managing/predicting future blooms.
Collapse
Affiliation(s)
- Youchul Jeon
- U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, FL, USA
| | - Ian Struewing
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Kale Clauson
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | - Nathan Reetz
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | - Ned Fairchild
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | | | - Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Rochelle Labiosa
- U.S. Environmental Protection Agency, Region 10, Seattle, WA, USA
| | - Kurt D Carpenter
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Barry H Rosen
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Ft. Myers, FL, USA
| | - Eric N Villegas
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jingrang Lu
- U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, FL, USA.
| |
Collapse
|
4
|
Yu H, Liu S, Zhang D, Hu R, Chen P, Liu H, Zhou Q, Tan W, Hu N, He Z, Ding D, Yan Q. Specific Enrichment of arsM-Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1647-1660. [PMID: 39810418 DOI: 10.1021/acs.est.4c10242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, arsM gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of Vetiveria zizanioides, a potential As hyperaccumulator. V. zizanioides was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment. Results showed that the content of dimethylarsinic acid in the rhizosphere was significantly positively correlated with the rate of N fixation and the activity of nitrite reductase. The As-methylating species (e.g., Flavisolibacter and Paraflavitalea) were significantly enriched in the root-associated compartments in the second generation of MS and AS. Notably, higher abundance of genes involved in N fixation (nifD, nifK) and dissimilatory nitrate reduction to ammonium (narG/H, nirB/D/K/S) was detected in the second generation of MS than in the first generation. The metabolic pathway analysis further demonstrated that N fixing-stimulative and DNRA-stimulative As-methylating species could provide ammonium to enhance the synthesis of S-adenosyl-l-methionine, serving as methyl donors for soil As methylation. This study highlights two important N conversion-stimulative As-methylating pathways and has important implications for enhancing phytoremediation in As-contaminated soils.
Collapse
Affiliation(s)
- Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Shengwei Liu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pubo Chen
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture 416000, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
5
|
Hu W, Huo X, Ma T, Li Z, Yang T, Yang H, Feng S. Insights into the role of cyclopropane fatty acid synthase (CfaS) from extreme acidophile in bacterial defense against environmental acid stress. Extremophiles 2024; 29:1. [PMID: 39549088 DOI: 10.1007/s00792-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The cell membrane remodeling mediated by cyclopropane fatty acid synthase (CfaS) plays a crucial role in microbial physiological processes resisting various environmental stressors, including acid. Herein, we found a relatively high proportion (24.8%-28.3%) of cyclopropane fatty acid (CFA) Cy-19:0 in the cell membrane of a newly isolated extreme acidophile, Acidithiobacillus caldus CCTCC AB 2019256, under extreme acid stress. Overexpression of the CfaS encoding gene cfaS2 in Escherichia coli conferred enhanced acid resistance. GC-MS analysis revealed a 3.52-fold increase in the relative proportion of Cy-19:0 in the cell membrane of the overexpression strain compared to the control. Correspondingly, membrane fluidity, permeability and cell surface hydrophobicity were reduced to varying degrees. Additionally, HPLC analysis indicated that the overexpression strain had 1.54-, 1.42-, 1.85-, 1.20- and 1.05-fold higher levels of intracellular glutamic acid, arginine, aspartic acid, methionine and alanine, respectively, compared to the control. Overall, our findings shed light on the role of CfaS derived from extreme acidophile in bacterial defense against environmental acid stress, potentially facilitating its application in the design and development of industrial microbial chassis cells for organic acid production.
Collapse
Affiliation(s)
- Wenbo Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingyu Huo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Tengfei Ma
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhigang Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Tianyou Yang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
6
|
Li X, Yuan SJ, Ren FF, Dong B, Xu ZX. A novelty strategy for AMD prevention by biogas slurry: Acetate acid inhibition effect on chalcopyrite biooxidation and leachate. ENVIRONMENTAL RESEARCH 2024; 261:119687. [PMID: 39068972 DOI: 10.1016/j.envres.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
With the widespread application of anaerobic digestion technology, biogas slurry become the main source of organic amendments in practice. Comprehensive studies into the inhibitory effects of low molecular weight (LMW) organic acids, essential components in biogas slurry, on the sulfide minerals biooxidation and its bioleaching (AMD) have been lacking. In this study, acetic acid (AA) served as a representative of LMW organic acids in biogas slurry to investigate its impact on the inhibition of chalcopyrite biooxidation by Acidithiobacillus ferrooxidans (A. ferrooxidans). It was shown that AA could slow down the chalcopyrite biooxidation and inhibit the jarosite formation on the mineral surface. Compared with the control group (0 ppm AA), the sulfate increment in the leachate of the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 36.4%, 66.8%, and 69.0%, respectively. AA treatment (≥50 ppm) could reduce the oxidation of ferrous ions in the leachate by one order of magnitude. At the same time, the bacterial concentration of the leachate in the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 70%, 93%, and 94%, respectively. These findings provide a scientific basis for new strategies to utilize biogas slurry for mine remediation and contribute to an enhanced comprehension of organic amendments to prevent AMD in situ in mining soil remediation.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Shi-Jie Yuan
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Fei-Fan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zu-Xin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
7
|
Liu A, Wang J, Zhou A, Yang F, Pan X, She Z, Yue Z. Interaction between acid-tolerant alga Graesiella sp. MA1 and schwertmannite under long-term acidic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174017. [PMID: 38897455 DOI: 10.1016/j.scitotenv.2024.174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Schwertmannite (Sch), a typical Fe(III)-oxyhydroxysulphate mineral, is the precipitation reservoir of toxic elements in acid mine drainage (AMD). Acid-tolerant microbes in AMD can participate in the microbe-mediated transformation of Sch, while Sch affects the physiological characteristics of these acid-tolerant microbes. Based on our discovery of algae and Sch enrichment in a contaminated acid mine pit lake, we predicted the interaction between algae and Sch when incubated together. The acid-tolerant alga Graesiella sp. MA1 was isolated from the pit-lake surface water of an acidic mine and incubated with different contents of Sch. Sch was detected as the main product at the end of 81 d; however, there was a weak transformation. The presence of dissolved Fe(II) could be largely attributed to the photoreduction dissolution of Sch, which was promoted by Graesiella sp. MA1. The adaptation and growth phases of Graesiella sp. MA1 differed under Sch stress. The photosynthetic and metabolic activities increased and decreased at the adaptation and growth phases, respectively. The MDA contents and antioxidant activity of SOD, APX, and GSH in algal cells gradually enhanced as the Sch treatment content increased, indicating a defense strategy of Graesiella sp. MA1. Metabolomic analysis revealed that Sch affected the expression of significant differential metabolites in Graesiella sp. MA1. Organic carboxylic acid substances were essentially up-regulated in response to Sch stress. They were abundant in the medium-Sch system with the highest Fe(III) reduction, capable of complexing Fe(III), and underwent photochemical reactions via photo-induced charge transfer. The significant up-regulation of reducing sugars revealed the high energy requirement of Graesiella sp. MA1 under Sch stress. And first enriched KEGG pathway demonstrated the importance of sugar metabolism in Graesiella sp. MA1. Data acquired in this study provide novel insights into extreme acid stress adaptation of acid-tolerant algae and Sch, contributing to furthering understanding of AMD environments.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
8
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
10
|
Wang C, Wei W, Wu L, Wang Y, Dai X, Ni BJ. A Novel Sustainable and Self-Sufficient Biotechnological Strategy for Directly Transforming Sewage Sludge into High-Value Liquid Biochemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12520-12531. [PMID: 38953238 DOI: 10.1021/acs.est.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.
Collapse
Affiliation(s)
- Chen Wang
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
12
|
Sharma D, Chetri PB, Ranga V, Sen S, Sarmah BK, Barooah M. Genomic analysis of acid tolerance genes and deciphering the function of ydaG gene in mitigating acid tolerance in Priestia megaterium. Front Microbiol 2024; 15:1414777. [PMID: 38966390 PMCID: PMC11222612 DOI: 10.3389/fmicb.2024.1414777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Adverse environmental conditions, such as acid stress, induce bacteria to employ several strategies to overcome these stressors. These strategies include forming biofilms and activating specific molecular pathways, such as the general stress response (GSR). The genome of Priestia megaterium strain G18 was sequenced using the Illumina NextSeq 500 system, resulting in a de novo assembly of 80 scaffolds. The scaffolded genome comprises 5,367,956 bp with a GC content of 37.89%, and was compared to related strains using the MiGA web server, revealing high similarity to P. megaterium NBRC 15308 and P. aryabhattai B8W22 with ANI scores of 95.4%. Phylogenetic and ribosomal multilocus sequence typing (rMLST) analyses, based on the 16S rRNA and ribosomal protein-encoding alleles, confirmed close relationships within the P. megaterium species. Functional annotation identified 5,484 protein-coding genes, with 72.31% classified into 22 COG categories, highlighting roles in amino acid transport, transcription, carbohydrate metabolism, and ribosomal structure. An in-depth genome analysis of P. megaterium G18 revealed several key genes associated with acid tolerance. Targeted inactivation of the ydaG gene from SigB regulon, a general stress response gene, significantly reduced growth under acidic conditions compared to the wild type. qRT-PCR analysis showed increased ydaG expression in acidic conditions, further supporting its role in acid stress response. Microscopic analysis revealed no morphological differences between wild-type and mutant cells, suggesting that ydaG is not involved in maintaining cellular morphology but in facilitating acid tolerance through stress protein production. This research contributes to understanding the molecular mechanisms underlying acid tolerance in soil bacteria, P. megaterium, shedding light on potential applications in agriculture and industry.
Collapse
Affiliation(s)
- Darshana Sharma
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Purna Bahadur Chetri
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Vipin Ranga
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Subhajit Sen
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- DBT—North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
13
|
Wang Y, Wang C, Feng R, Li Y, Zhang Z, Guo S. A review of passive acid mine drainage treatment by PRB and LPB: From design, testing, to construction. ENVIRONMENTAL RESEARCH 2024; 251:118545. [PMID: 38431067 DOI: 10.1016/j.envres.2024.118545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiqiang Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Saisai Guo
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
14
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Halema AA, El-Beltagi HS, Al-Dossary O, Alsubaie B, Henawy AR, Rezk AA, Almutairi HH, Mohamed AA, Elarabi NI, Abdelhadi AA. Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World J Microbiol Biotechnol 2024; 40:193. [PMID: 38709343 DOI: 10.1007/s11274-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The rapid industrial revolution significantly increased heavy metal pollution, becoming a major global environmental concern. This pollution is considered as one of the most harmful and toxic threats to all environmental components (air, soil, water, animals, and plants until reaching to human). Therefore, scientists try to find a promising and eco-friendly technique to solve this problem i.e., bacterial bioremediation. Various heavy metal resistance mechanisms were reported. Omics technologies can significantly improve our understanding of heavy metal resistant bacteria and their communities. They are a potent tool for investigating the adaptation processes of microbes in severe conditions. These omics methods provide unique benefits for investigating metabolic alterations, microbial diversity, and mechanisms of resistance of individual strains or communities to harsh conditions. Starting with genome sequencing which provides us with complete and comprehensive insight into the resistance mechanism of heavy metal resistant bacteria. Moreover, genome sequencing facilitates the opportunities to identify specific metal resistance genes, operons, and regulatory elements in the genomes of individual bacteria, understand the genetic mechanisms and variations responsible for heavy metal resistance within and between bacterial species in addition to the transcriptome, proteome that obtain the real expressed genes. Moreover, at the community level, metagenome, meta transcriptome and meta proteome participate in understanding the microbial interactive network potentially novel metabolic pathways, enzymes and gene species can all be found using these methods. This review presents the state of the art and anticipated developments in the use of omics technologies in the investigation of microbes used for heavy metal bioremediation.
Collapse
Affiliation(s)
- Asmaa A Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Othman Al-Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bader Alsubaie
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed R Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Adel A Rezk
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Plant Virology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amal A Mohamed
- Chemistry Dept, Al-Leith University College, Umm Al-Qura University, P.O. Box 6725- 21955, Makkah, Saudi Arabia
| | - Nagwa I Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
16
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
17
|
Nyambo K, Tapfuma KI, Adu-Amankwaah F, Julius L, Baatjies L, Niang IS, Smith L, Govender KK, Ngxande M, Watson DJ, Wiesner L, Mavumengwana V. Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria. Sci Rep 2024; 14:6794. [PMID: 38514663 PMCID: PMC10957976 DOI: 10.1038/s41598-024-57124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.
Collapse
Affiliation(s)
- Kudakwashe Nyambo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Kudzanai Ian Tapfuma
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lauren Julius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lucinda Baatjies
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Idah Sithole Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, B064, Mount Pleasant, Harare, Zimbabwe
| | - Liezel Smith
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Krishna Kuben Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Daniel J Watson
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
| |
Collapse
|
18
|
Liu J, Pei S, Zheng Q, Li J, Liu X, Ruan Y, Luo B, Ma L, Chen R, Hu W, Niu J, Tian T. Heavy metal contamination impacts the structure and co-occurrence patterns of bacterial communities in agricultural soils. J Basic Microbiol 2024; 64:e2300435. [PMID: 38150647 DOI: 10.1002/jobm.202300435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Heavy metal (HM) contamination caused by mining and smelting activities can be harmful to soil microbiota, which are highly sensitive to HM stress. Here, we explore the effects of HM contamination on the taxonomic composition, predicted function, and co-occurrence patterns of soil bacterial communities in two agricultural fields with contrasting levels of soil HMs (i.e., contaminated and uncontaminated natural areas). Our results indicate that HM contamination does not significantly influence soil bacterial α diversity but changes the bacterial community composition by enriching the phyla Gemmatimonadetes, Planctomycetes, and Parcubacteria and reducing the relative abundance of Actinobacteria. Our results further demonstrate that HM contamination can strengthen the complexity and modularity of the bacterial co-occurrence network but weaken positive interactions between keystone taxa, leading to the gradual disappearance of some taxa that originally played an important role in healthy soil, thereby possibly reducing the resistance of bacterial communities to HM toxicity. The predicted functions of bacterial communities are related to membrane transport, amino acid metabolism, energy metabolism, and carbohydrate metabolism. Among these, functions related to HM detoxification and antioxidation are enriched in uncontaminated soils, while HM contamination enriches functions related to metal resistance. This study demonstrated that microorganisms adapt to the stress of HM pollution by adjusting their composition and enhancing their network complexity and potential ecological functions.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| |
Collapse
|
19
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
20
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
21
|
Liu JL, Yao J, Zhou DL, Liu B, Liu H, Li M, Zhao C, Sunahara G, Duran R. Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104753-104766. [PMID: 37707732 DOI: 10.1007/s11356-023-29203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
Management of tailings at metal mine smelter sites can reduce the potential hazards associated with exposure to toxic metal(loid)s and residual organic flotation reagents. In addition, microbes in the tailings harboring multi-resistance genes (e.g., tolerance to multiple antimicrobial agents) can cause high rates of morbidity and global economic problems. The potential co-selection mechanisms of antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) during tailings sulfate-reducing bacteria (SRB) treatment have been poorly investigated. Samples were collected from a nonferrous metal mine tailing site treated with an established SRB protocol and were analyzed for selected geochemical properties and high throughput sequencing of 16S rRNA gene barcoding. Based on the shotgun metagenomic analysis, the bacterial domain was dominant in nonferrous metal(loid)-rich tailings treated with SRB for 12 months. KEGGs related to ARGs and MRGs were detected. Thiobacillus and Sphingomonas were the main genera carrying the bacA and mexEF resistance operons, along with Sulfuricella which were also found as the main genera carrying MRGs. The SRB treatment may mediate the distribution of numerous resistance genes. KOs based on the metagenomic database indicated that ARGs (mexNW, merD, sul, and bla) and MRGs (czcABCR and copRS genes) were found on the same contig. The SRB strains (Desulfosporosinus and Desulfotomaculum), and the acidophilic strain Acidiphilium significantly contributed to the distribution of sul genes. The functional metabolic pathways related to siderophores metabolism were largely from anaerobic genera of Streptomyces and Microbacterium. The presence of arsenate reductase, metal efflux pump, and Fe transport genes indicated that SRB treatment plays a key role in the metal(loid)s transformation. Overall, our findings show that bio-treatment is an effective tool for managing ARGs/MRGs and metals in tailings that contain numerous metal(loid) contaminants.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - De-Liang Zhou
- Beijing Zhongdianyida Technology Co., Ltd, Beijing, 100190, China
| | - Bang Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Houquan Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
22
|
Huanca-Juarez J, Nascimento-Silva EA, Silva NH, Silva-Rocha R, Guazzaroni ME. Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Front Microbiol 2023; 14:1268315. [PMID: 37840709 PMCID: PMC10568318 DOI: 10.3389/fmicb.2023.1268315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance.
Collapse
Affiliation(s)
- Joshelin Huanca-Juarez
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Edson Alexandre Nascimento-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Ninna Hirata Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
| | | | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
23
|
Jones S, Santini JM. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Essays Biochem 2023; 67:685-699. [PMID: 37449416 PMCID: PMC10427800 DOI: 10.1042/ebc20220257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Bioleaching offers a low-input method of extracting valuable metals from sulfide minerals, which works by exploiting the sulfur and iron metabolisms of microorganisms to break down the ore. Bioleaching microbes generate energy by oxidising iron and/or sulfur, consequently generating oxidants that attack sulfide mineral surfaces, releasing target metals. As sulfuric acid is generated during the process, bioleaching organisms are typically acidophiles, and indeed the technique is based on natural processes that occur at acid mine drainage sites. While the overall concept of bioleaching appears straightforward, a series of enzymes is required to mediate the complex sulfur oxidation process. This review explores the mechanisms underlying bioleaching, summarising current knowledge on the enzymes driving microbial sulfur and iron oxidation in acidophiles. Up-to-date models are provided of the two mineral-defined pathways of sulfide mineral bioleaching: the thiosulfate and the polysulfide pathway.
Collapse
Affiliation(s)
- Sarah Jones
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, U.K
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
| |
Collapse
|
24
|
Shu W, Li F, Zhang Q, Li Z, Qiao Y, Audet J, Chen G. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131221. [PMID: 36934702 DOI: 10.1016/j.jhazmat.2023.131221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China; Sino-Danish Centre for Education and Research, 101408 Beijing, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| |
Collapse
|
25
|
Huang Q, Liu Z, Guo Y, Li B, Yang Z, Liu X, Ni J, Li X, Zhang X, Zhou N, Yin H, Jiang C, Hao L. Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162330. [PMID: 36813198 DOI: 10.1016/j.scitotenv.2023.162330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenghua Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianmei Ni
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
26
|
Whaley-Martin KJ, Chen LX, Nelson TC, Gordon J, Kantor R, Twible LE, Marshall S, McGarry S, Rossi L, Bessette B, Baron C, Apte S, Banfield JF, Warren LA. O 2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters. Nat Commun 2023; 14:2006. [PMID: 37037821 PMCID: PMC10086054 DOI: 10.1038/s41467-023-37426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
The acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. The microbial community is consistently dominated by neutrophilic, chemolithoautotrophic SOB (relative abundances of ~76% in 2015, ~55% in 2016/2017 and ~60% in 2018). Results reveal two SOB strategies alternately dominate across the four years, influencing acid generation and sulfur speciation. Under oxic conditions, novel Halothiobacillus drive lower pH conditions (as low as 4.3) and lower [S2O32-] via the complete Sox pathway coupled to O2. Under anoxic conditions, Thiobacillus spp. dominate in activity, via the incomplete Sox and rDSR pathways coupled to NO3-, resulting in higher [S2O32-] and no net significant acidity generation. This study provides genomic evidence explaining acidity generation and thiosulfate accumulation patterns in a circumneutral mine tailing impoundment and has significant environmental applications in preventing the discharge of sulfur compounds that can impact downstream environments. These insights illuminate opportunities for in situ biotreatment of reduced sulfur compounds and prediction of acidification events using gene-based monitoring and in situ RNA detection.
Collapse
Affiliation(s)
- Kelly J Whaley-Martin
- University of Toronto, Toronto, ON, Canada
- Environmental Resources management (ERM), Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | | | - Rose Kantor
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | - Stephanie Marshall
- Environmental Resources management (ERM), Toronto, ON, Canada
- McMaster University, Hamilton, ON, Canada
| | - Sam McGarry
- Glencore, Sudbury Integrated Nickel Operations, Sudbury, ON, Canada
| | | | | | | | - Simon Apte
- CSIRO Land and Water, Clayton, NSW, Australia
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
27
|
Luo ZH, Li Q, Chen N, Tang LY, Liao B, Yang TT, Huang LN. Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified, AMD overlaying mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130774. [PMID: 36641850 DOI: 10.1016/j.jhazmat.2023.130774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling-Yun Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao-Tao Yang
- Guangdong Heavy Metal Mine Ecological Restoration Engineering Technology Research Center, Shaoguan, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Li D, Ren Z, Zhou Y, Jiang L, Zheng M, Liu G. Comammox Nitrospira and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Appl Environ Microbiol 2023; 89:e0004723. [PMID: 36912626 PMCID: PMC10056971 DOI: 10.1128/aem.00047-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exploring nitrifiers in extreme environments is vital to expanding our understanding of nitrogen cycle and microbial diversity. This study presents that complete ammonia oxidation (comammox) Nitrospira, together with acidophilic ammonia-oxidizing archaea (AOA), dominate in the nitrifying guild in sediments of an acid mine lake (AML). The lake water was characterized by acidic pH below 5 with a high ammonium concentration of 175 mg-N/liter, which is rare on the earth. Nitrification was active in sediments with a maximum nitrate production potential of 70.5 μg-N/(g-dry weight [dw] day) for mixed sediments. Quantitative PCR assays determined that in AML sediments, comammox Nitrospira and AOA amoA genes had relative abundances of 52% and 41%, respectively, among the total amoA genes. Further assays with 16S rRNA and amoA gene amplicon sequencing and metagenomics confirmed their dominance and revealed that the comammox Nitrospira found in sediments belonged to comammox Nitrospira clade A.2. Metagenomic binning retrieved a metagenome-assembled genome (MAG) of the comammox Nitrospira from sediments (completeness = 96.76%), and phylogenomic analysis suggested that it was a novel comammox Nitrospira. Comparative genomic investigation revealed that this comammox Nitrospira contained diverse metal resistance genes and an acidophile-affiliated F-type ATPase. Moreover, it had a more diverse genomic characteristic on nitrogen metabolism than the AOA in sediments and canonical AOB did. The results suggest that comammox Nitrospira is a versatile nitrifier that can adapt to acidic environments even with high ammonium concentrations. IMPORTANCE Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox) Nitrospira was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter. In combination with average nucleotide identity analysis, phylogenomic analysis suggested it is a novel strain of comammox Nitrospira. Moreover, the adaption of comammox Nitrospira to the acidic lake had been comprehensively investigated based on genome-centric metagenomic approaches. The outcomes of this study significantly expand our understanding of the diversity and adaptability of ammonia oxidizers in the acidic environments.
Collapse
Affiliation(s)
- Deyong Li
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhichang Ren
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangqi Zhou
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Lugao Jiang
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Guoqiang Liu
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
29
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
30
|
Jroundi F, Povedano-Priego C, Pinel-Cabello M, Descostes M, Grizard P, Purevsan B, Merroun ML. Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160636. [PMID: 36464038 DOI: 10.1016/j.scitotenv.2022.160636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Cristina Povedano-Priego
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - María Pinel-Cabello
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Michael Descostes
- ORANO Mining, 125 Avenue de Paris, 92330 Châtillon, France; Centre de Géosciences, MINES ParisTech, PSL University, 35 rue St Honoré, 77300 Fontainebleau, France
| | - Pierre Grizard
- ORANO Mining, 125 Avenue de Paris, 92330 Châtillon, France
| | - Bayaarma Purevsan
- Badrakh Energy LLC, Jamyan Gun Avenue - 9, Sukhbaatar district, 1st khoroo, UB-14240, Mongolia
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
31
|
Xiang X, Wang H, Man B, Xu Y, Gong L, Tian W, Yang H. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. MICROBIAL ECOLOGY 2023; 85:557-571. [PMID: 35332366 DOI: 10.1007/s00248-022-01990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bathyarchaeota are believed to have roles in the carbon cycle in marine systems. However, the ecological knowledge of Bathyarchaeota is limited in peatland ecosystems. Here, we investigated the vertical distribution of Bathyarchaeota community structure using quantitative PCR and high-throughput sequencing technology of ribosomal 16S rRNA gene integrated with detailed chemical profiling in the Dajiuhu Peatland, central China. Eight archaeal phyla were observed in peat samples, which mainly composed of Bathyarchaeota with a mean relative abundance about 88%, followed by Thaumarchaeota (9%). Bathyarchaeota were further split into 17 subgroups, and some subgroups showed habitat specificity to peat horizons with distinct lithological and physicochemical properties, for example, Bathy-6 and Bathy-15 had preference for the acrotelm, Bathy-5b, Bathy-16, and Bathy-19 were enriched in the catotelm, Bathy-5a, Bathy-8, and Bathy-11 were specific for the clay horizon. This spatial distribution pattern of archaeal communities along peat profile was mainly influenced by water content as indicated by RDA ordination and permutational MANOVA, whereas organic matter content exclusively affected Bathyarchaeota distribution along the peat profile significantly. The abundance of archaeal 16S rRNA genes ranged from 105 to 107 copies per gram dry sediment, and the highest archaeal biomass was observed in the periodically oxic mesotelm horizon with more dynamic archaeal interaction relationship as indicated by the network analysis. Bathyarchaeota dominated the archaeal interaction network with 82% nodes, 96% edges, and 71% keystone species. Our results provide an overview of the archaeal population, community structure, and relationship with environmental factors that affect the vertical distribution of archaeal communities and emphasize the ecology of bathyarchaeotal lineages in terrestrial peatland ecosystems.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Linfeng Gong
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, SOA, Xiamen, 361005, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
32
|
Zárate A, Molina V, Valdés J, Icaza G, Vega SE, Castillo A, Ugalde JA, Dorador C. Spatial co-occurrence patterns of benthic microbial assemblage in response to trace metals in the Atacama Desert Coastline. Front Microbiol 2023; 13:1020491. [PMID: 36726571 PMCID: PMC9885135 DOI: 10.3389/fmicb.2022.1020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023] Open
Abstract
Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Biotecnología en Ambientes Extremos, Centro de Excelencia en Medicina Traslacional, Universidad de la Frontera, Temuco, Chile,*Correspondence: Ana Zárate, ✉
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile,Verónica Molina, ✉
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Facultad de Ciencias del Mar y de Recursos Biológicos, Instituto de Ciencias Naturales A. von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | | | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule, Vicerrectoría de Investigación de Investigación y Posgrado, Universidad Católica del Maule, Campus San Miguel, Talca, Chile,J’EAI CHARISMA (IRD-France, UMNG-Colombia, UA-Chile, UCM-Chile, UCH-Chile, IGP-Peru, UPCH-Peru) and Nucleo Milenio UPWELL, Concepción, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile,Cristina Dorador, ✉
| |
Collapse
|
33
|
She Z, Pan X, Yue Z, Shi X, Gao Y, Wang S, Chuai X, Wang J. Contrasting prokaryotic and eukaryotic community assembly and species coexistence in acid mine drainage-polluted waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158954. [PMID: 36179830 DOI: 10.1016/j.scitotenv.2022.158954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) is characterized by high acidity and high-concentration metals and sulfate, representing an extreme environment to life as well as environmental challenge worldwide. Microorganisms thriving in AMD habitats have evolved with distinct mechanisms in response to multiple stresses. Compared with microbial prokaryotes, our understanding regarding eukaryotic occurrence and role in AMD habitats remain limited. Here we examined microbial diversity and co-occurrence pattern within all domains of life in five lakes with varying degrees of AMD contamination ranging from extremely acidic to neutral. We demonstrated that AMD pollution reduced both eukaryotic and prokaryotic diversity in the lakes. In lakes with serious AMD pollution, chemoautotrophs including Ferrovum, Acidithiobacillus, and Leptospirillum showed significantly higher abundance, whereas with the macroscopic growths of photosynthetic microalgae (e.g., Coccomyxa and Chlamydomonas), heterotrophic or mixotrophic prokaryotes (e.g., Acidiphilium, Thiomonas, and Alicyclobacillus) increased in less polluted lakes. In the further improved ecosystems, Ochromonas, Rotifer, Ciliophora and other microeukaryotes appeared. Combined with a public dataset focusing on the microbes along an AMD-contaminated stream, we further demonstrated that acidity-dominated environmental selection served as the primary driver of both eukaryotic and prokaryotic community assemblies, and to a greater extent for eukaryotes. Furthermore, specific prokaryotic and eukaryotic taxa (e.g., Proteobacteria and Chlorophyta) exhibited wide taxonomic and functional associations in these AMD-polluted waters. These findings expand our knowledge on the eukaryotic diversity in AMD habitats, and provide insights into the ecological processes underlying microbial communities in response to AMD contamination.
Collapse
Affiliation(s)
- Zhixiang She
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiufeng Shi
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yijun Gao
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui 243000, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
34
|
Wang P, Yuan Q, Wang X, Hu B, Wang C. Metagenomic insight into the distribution of metal resistance genes within cascade reservoir waters: Synergic impacts of geographic variation and anthropogenic pollution. ENVIRONMENTAL RESEARCH 2023; 216:114682. [PMID: 36330877 DOI: 10.1016/j.envres.2022.114682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Metal resistance genes (MRGs) are potential bio-indicators to diagnose contamination stress on riverine ecosystems. Within reservoir systems, river damming weakens hydrodynamic condition and enriches metal contaminants. But, little is known about the synergic impacts of geographic variation and anthropogenic pollution on MRGs. In this study, the abundance, composition and microbes of MRGs in four cascade reservoirs along the Jinsha River, southwestern China were investigated via high-throughput metagenomics. The results showed significant enrichment of chromium, cadmium and lead in Ludila and Xiluodu reservoirs with moderate ecological risks based on the criteria of drinking water quality and aquatic life protection. Nevertheless, at watershed scale, these metals played little role in up-regulating MRGs abundance owing to the limited toxic stress on microbes. Accordingly, geographic variation showed stronger impacts on MRGs composition than metals as revealed by the distance-decay relationship (Pearson correlation, rgeo = 0.24-0.57, rmetal = 0.10-0.41) and co-occurrence network (Node degree to MRGs subtype, ngeo = 180, nmetal = 6). River damming, as an artificial isolation of geographic space, significantly affected MRGs composition. The longer operation history, smaller storage capacity and higher regulation frequency caused the higher dissimilarity of MRGs composition between the reservoir's upstream and downstream areas. In conclusion, the metal pollution level is a prerequisite regulating MRGs; while under the lowly-polluted conditions, geographic variation had stronger impacts on MRGs than metal pollution via altered assembly of microbial communities. This study provides an important guidance for the future environmental management and ecological protection of river-reservoir ecosystems.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
35
|
Qi R, Xue N, Wang S, Zhou X, Zhao L, Song W, Yang Y. Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. ENVIRONMENTAL RESEARCH 2022; 214:113749. [PMID: 35760114 DOI: 10.1016/j.envres.2022.113749] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Gold mining can create serious environmental problems, such as soil pollution by heavy metal (loid)s. In this study, we assessed the ecological risk of Hatu gold mining activities and synchronously investigated the bacterial community structure, distribution of soil nutrient-element cycling genes (CNPS) and heavy metal resistance genes (MRG) in adjacent desert grassland soil. The study area was above the moderate risk level, with the ecological risk index (RI) of each sampling site greater than 150. Arsenic, mercury and copper were the main pollutants. Proteobacteria, Actinobacteria and Firmicutes dominated the phyla of the bacterial communities. Species turnover rather than nestedness accounted for the significant differences in community structure among various regions in the mining area. In addition, the bioavailable heavy metal (loid)s (AHM) content had a strong correlation with beta diversity and species turnover of the bacterial community (p < 0.05). No clear difference was found in the total abundance of CNPS genes among various functional regions, but eight specific functional genes were identified from downwind grasslands with lower pollution levels. Among the MRGs, Hg MRG had the highest average total relative abundance, followed by Cu, Co/Zn/Cd and As. The mercury resistance gene subtype hgcAB was positively related to the diversity of the bacterial community, and the bacterial community of grassland soil showed congruency with the MRGs in the Hatu mining area. Total Hg (THg) showed the highest influence affecting the bacterial community, while NH4+-N had the greatest effect on CNPS genes and MRGs. These results highlighted the role of heavy metal (loid)s in shaping the bacterial community and functional genes in arid and semiarid desert grassland soil in gold mining regions.
Collapse
Affiliation(s)
- Ran Qi
- Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China; Command Center of Integrated Survey of Natural Resources, China Geological Survey, Beijing, 100055, China
| | - Nana Xue
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shuzhi Wang
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaobing Zhou
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Li Zhao
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenjuan Song
- Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Yuyi Yang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
36
|
Hu R, Liu S, Huang W, Nan Q, Strong PJ, Saleem M, Zhou Z, Luo Z, Shu F, Yan Q, He Z, Wang C. Evidence for Assimilatory Nitrate Reduction as a Previously Overlooked Pathway of Reactive Nitrogen Transformation in Estuarine Suspended Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14852-14866. [PMID: 36098560 DOI: 10.1021/acs.est.2c04390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suspended particulate matter (SPM) contributes to the loss of reactive nitrogen (Nr) in estuarine ecosystems. Although denitrification and anaerobic ammonium oxidation in SPM compensate for the current imbalance of global nitrogen (N) inputs and sinks, it is largely unclear whether other pathways for Nr transformation exist in SPM. Here, we combined stable isotope measurements with metagenomics and metatranscriptomics to verify the occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in the SPM of the Pearl River Estuary (PRE). Surprisingly, the conventional functional genes of DNRA (nirBD) were abundant and highly expressed in SPM, which was inconsistent with a low potential rate. Through taxonomic and comparative genomic analyses, we demonstrated that nitrite reductase (NirBD) in conjunction with assimilatory nitrate reductase (NasA) performed assimilatory nitrate reduction (ANR) in SPM, and diverse alpha- and gamma-proteobacterial lineages were identified as key active heterotrophic ANR bacteria. Moreover, ANR was predicted to have a relative higher occurrence than denitrification and DNRA in a survey of Nr transformation pathways in SPM across the PRE spanning 65 km. Collectively, this study characterizes a previously overlooked pathway of Nr transformation mediated by heterotrophic ANR bacteria in SPM and has important implications for our understanding of N cycling in estuaries.
Collapse
Affiliation(s)
- Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Weiming Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Qiong Nan
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- Institute of Environmental Science and Technology, College of Environment and Resource Science, Zhejiang University, Hangzhou310029, PR China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy.Queensland University of Technology, BrisbaneQLD 4001, Australia
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama36104, United States
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Fangqi Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
37
|
Chen Z, Fei YH, Liu WS, Ding K, Lu J, Cai X, Cui T, Tang YT, Wang S, Chao Y, Qiu R. Untangling microbial diversity and assembly patterns in rare earth element mine drainage in South China. WATER RESEARCH 2022; 225:119172. [PMID: 36191530 DOI: 10.1016/j.watres.2022.119172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; National-level Nanchang Economic and Technical Development Zone, Nanchang 330000, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tuantuan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Ramos-Perez D, Alcántara-Hernández RJ, Romero FM, González-Chávez JL. Changes in the prokaryotic diversity in response to hydrochemical variations during an acid mine drainage passive treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156629. [PMID: 35691343 DOI: 10.1016/j.scitotenv.2022.156629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) causes major environmental problems and consequently, several treatments are proposed, favoring the passive systems because of their many advantages. The main goal of these procedures is the neutralization and removal of potentially toxic elements (PTE), yet little is known about the changes in the microbial assemblages in response to the hydrochemical variations during the treatments. Therefore, the main objective of this research was to determine the changes in the diversity and structure of the prokaryotic assemblages in a hybrid abiotic and biological (wetland) passive treatment system. The 16S rRNA gene survey showed that the AMD coming from the mine (pH 2.6) was mainly composed of acidophilic genera such as Acidithiobacillus, Leptospirillum, Ferritrophicum, and Cuniculiplasma (up to 76 % relative abundance). In the abiotic treatment, Acidiphilium was dominant in the sections with limestone filters (pH 2.2-4.8), followed by Limnobacter in the subsequent dolomite/limestone and phosphoric rock filters (pH 5.2-5.8). In these abiotic passive treatment sections, the microbial assemblage showed a limited diversity and richness. However, when the treated AMD reached the two final wetlands (pH ~6.8), the microbial diversity and richness increased, suggesting that further bioattenuation mechanisms might be occurring. Limnobacter and Novosphingobium were the main bacterial genera in the water samples of the wetland sections (Arundo donax). These changes in the composition of the microbial assemblages were highly correlated with the pH and Eh values during the treatment (p-value <0.001); however, the concentration of metal(loid)s such as Al, Cd, Fe, Mn, Ni, and Zn were also significantly related (p-value <0.05). In conclusion, the studied passive AMD treatment system enhanced the chemical quality of the treated AMD, showing high removal efficiencies for Al and Fe (> 99 %), and increasing the microbial diversity and richness in the effluent.
Collapse
Affiliation(s)
- Daniel Ramos-Perez
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Rocio J Alcántara-Hernández
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México.
| | - Francisco M Romero
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México; Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - José Luz González-Chávez
- Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
| |
Collapse
|
39
|
Peng Q, Zheng H, Meng K, Yu H, Xie G, Zhang Y, Yang X, Chen J, Xu Z, Lin Z, Liu S, Elsheery NI, Wu P, Fu J. Quantitative study on core bacteria producing flavor substances in Huangjiu (Chinese yellow rice wine). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Kumar M, Kumar R, Chaudhary DR, Jha B. An appraisal of early stage biofilm-forming bacterial community assemblage and diversity in the Arabian Sea, India. MARINE POLLUTION BULLETIN 2022; 180:113732. [PMID: 35594757 DOI: 10.1016/j.marpolbul.2022.113732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The community composition and distribution of early-stage (24 h) biofilm-forming bacteria on two different surfaces (glass slide and polystyrene plastic slide) at three different locations (Diu, Alang and Sikka) were studied using a culture-dependent and next-generation sequencing (NGS) approach in the Arabian Sea, Gujarat, India. The most dominant phyla observed using the NGS approach were the Proteobacteria among the sampling sites. Gammaproteobacteria class dominated both the surfaces among the sites and accounted for 46.7% to 89.2% of total abundance. The culture-dependent analysis showed Proteobacteria and Firmicutes as the dominant phyla on the surfaces within the sampling sites. During the initial colonization, hydrocarbon-degrading bacterial strains have also attached to the surfaces. The outcome of this study would be of great importance for targeting the early stage biofilm-forming and hydrocarbon-degrading bacterial isolates may help to degrade plastic in the marine environment.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raghawendra Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India.
| |
Collapse
|
41
|
Egorova D, Pyankova A, Shestakova E, Demakov V, Levin L, Maltsev S, Isaevich A, Grishin E, Kormshchikov D. Risk assessment of change in respiratory gas concentrations by native culturable bacteria in the air of sulfide ore mines. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1751-1765. [PMID: 34365567 DOI: 10.1007/s10653-021-01056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Sulfide ores are extracted from mines at considerable depths, that having unique a physical and chemical environment. On the one hand, physical, chemical, and biological processes taken place in the rocks produce this environment; on the other hand, they form unique bacterial communities. The aim of this study was to study the native culturable aerobic bacteria present in the sulfide ores of the deposits located in the Krasnoyarsk Territory (Russia) and evaluate their activity in relation to respiratory gases (oxygen and carbon dioxide) present in air. The results of the study established that the culturable bacteria present in the sulfide ore of the N1 deposit were related to genera Bacillus and Paenibacillus (class Bacilli), genera Citricoccus, Micrococcus, Brachybacterium, Microcella, Dietzia, and Rhodococcus (class Actinomycetia) and genera Paracoccus and Pseudomonas (class Proteobacteria). The culturable bacteria of the N2 sulfide ore deposit were represented by genera Bacillus, Oceanobacillus, Alicyclobacillus (class Bacilli) and genera Micrococcus and Agromyces (class Actinomycetia). The N2 deposit community contained the strain Nor9-1, which showed a high level of similarity with the Alicyclobacillus aeris ZJ-6 iron-/sulfur-oxidizing bacterium. The model systems showed a strong correlation (r2 = 0.91-0.97) between the growth of the bacterial communities of the studied ores and changes in the concentrations of oxygen and carbon dioxide in the model atmosphere. Under the ecological optimum (specific growth rate of the culture constituting 0.519 d-1) in 7 d, oxygen decreased to 0.34-1.48% and carbon dioxide increased to 7.44-14.88%. Under the ecological pessimum (restricted available organic carbon), given the predominant development of the chemolithotrophic group of bacteria (specific growth rate of 0.045 d-1), changes in the respiratory gas concentrations constituted 0.9-2.7% of O2 and 0.06-0.16% of CO2. A relationship was established between the specific rate of O2/CO2 loss and specific growth rate of the bacterial communities. Thus, for the first time, indigenous cultivated aerobic bacteria of sulfide ores collected from the deposits of the Krasnoyarsk Territory were studied, and their effects on oxygen and carbon dioxide contents in the atmosphere of closed model systems were examined.
Collapse
Affiliation(s)
- Darya Egorova
- Laboratory of Molecular Microbiology and Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, 614081, Russia.
| | - Anna Pyankova
- Laboratory of Molecular Microbiology and Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, 614081, Russia
| | - Elena Shestakova
- Laboratory of Molecular Microbiology and Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, 614081, Russia
| | - Vitaly Demakov
- Laboratory of Molecular Microbiology and Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm, 614081, Russia
| | - Lev Levin
- Mine Ventilation and Thermal Physics Department, Mining Institute UB RAS, Perm, 614007, Russia
| | - Stanislav Maltsev
- Mine Ventilation and Thermal Physics Department, Mining Institute UB RAS, Perm, 614007, Russia
| | - Aleksey Isaevich
- Mine Ventilation and Thermal Physics Department, Mining Institute UB RAS, Perm, 614007, Russia
| | - Evgeny Grishin
- Mine Ventilation and Thermal Physics Department, Mining Institute UB RAS, Perm, 614007, Russia
| | - Denis Kormshchikov
- Mine Ventilation and Thermal Physics Department, Mining Institute UB RAS, Perm, 614007, Russia
| |
Collapse
|
42
|
Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process. THE ISME JOURNAL 2022; 16:1547-1556. [PMID: 35132119 DOI: 10.1038/s41396-022-01201-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023]
Abstract
Antimony (Sb) contamination released from mine tailings represents a global threat to natural ecosystems and human health. The geochemical conditions of Sb tailings, which are oligotrophic and replete in sulfur (S) and Sb, may promote the coupled metabolism of Sb and S. In this study, multiple lines of evidence indicate that a novel biogeochemical process, S oxidation coupled to Sb(V) reduction, is enzymatically mediated by Desulfurivibrio spp. The distribution of Desulfurivibrio covaried with S and Sb concentrations, showing a high relative abundance in Sb mine tailings but not in samples from surrounding sites (i.e., soils, paddies, and river sediments). Further, the metabolic potential to couple S oxidation to Sb(V) reduction, encoded by a non-canonical, oxidative sulfite reductase (dsr) and arsenate reductase (arrA) or antimonate reductase (anrA), respectively, was found to be common in Desulfurivibrio genomes retrieved from metal-contaminated sites in southern China. Elucidation of enzymatically-catalyzed S oxidation coupled to Sb(V) reduction expands the fundamental understanding of Sb biogeochemical cycling, which may be harnessed to improve remediation strategies for Sb mine tailings.
Collapse
|
43
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|
44
|
Rossmassler K, Challacombe JF, De Long SK. Pulling needles out of a haystack: Subtractive community metatranscriptomics retrieves anaerobic o-xylene degradation pathway genes out of a mixed microbial culture. J Microbiol Methods 2022; 197:106481. [DOI: 10.1016/j.mimet.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
|
45
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
46
|
Lu XM, Chen YL. Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128196. [PMID: 35030489 DOI: 10.1016/j.jhazmat.2021.128196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The differential effects of microplastics and phthalates released from microplastics on antibiotic resistance genes in soil remain unknown. This study aims to analyze the varying characteristics and driving mechanisms of antibiotic resistance genes in soils amended with high-density polyethylene microplastics (with and without phthalates) through a 60-day microcosm experiment. The results indicate that the amended high-density polyethylene microplastics (containing phthalates) enhanced the abundance of antibiotic resistance genes in the soil, a phenomenon that markedly increased with the amendment period. Nevertheless, the addition of high-density polyethylene microplastics (without phthalates) mitigated the abundance of antibiotic resistance genes, which was less significant with increasing amendment period. Furthermore, addition of high-density polyethylene microplastics altered the soil properties, especially porosity. The phthalates released from high-density polyethylene microplastics and the changes in the soil properties transformed soil bacterial communities, resulting in increased abundance of bacterial hosts harboring antibiotic resistance genes (Calditrichaeota, Candidate division CPR1, Candidatus Delongbacteria, Candidatus Kapabacteria, Candidatus Spechtbacteria, Candidatus Wildermuthbacteria, and Ignavibacteriae), thereby enhancing the abundance of antibiotic resistance genes. These findings suggest that compared to microplastics, the phthalates released from microplastics considerably affect the antibiotic resistance genes in soils, thereby promoting the propagation of antibiotic resistance genes in agricultural environments.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China.
| | - Yi-Lan Chen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
47
|
Shu WS, Huang LN. Microbial diversity in extreme environments. Nat Rev Microbiol 2022; 20:219-235. [PMID: 34754082 DOI: 10.1038/s41579-021-00648-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
A wide array of microorganisms, including many novel, phylogenetically deeply rooted taxa, survive and thrive in extreme environments. These unique and reduced-complexity ecosystems offer a tremendous opportunity for studying the structure, function and evolution of natural microbial communities. Marker gene surveys have resolved patterns and ecological drivers of these extremophile assemblages, revealing a vast uncultured microbial diversity and the often predominance of archaea in the most extreme conditions. New omics studies have uncovered linkages between community function and environmental variables, and have enabled discovery and genomic characterization of major new lineages that substantially expand microbial diversity and change the structure of the tree of life. These efforts have significantly advanced our understanding of the diversity, ecology and evolution of microorganisms populating Earth's extreme environments, and have facilitated the exploration of microbiota and processes in more complex ecosystems.
Collapse
Affiliation(s)
- Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
48
|
Cortez D, Neira G, González C, Vergara E, Holmes DS. A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH. Front Microbiol 2022; 13:803241. [PMID: 35387071 PMCID: PMC8978632 DOI: 10.3389/fmicb.2022.803241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The genome streamlining theory suggests that reduction of microbial genome size optimizes energy utilization in stressful environments. Although this hypothesis has been explored in several cases of low-nutrient (oligotrophic) and high-temperature environments, little work has been carried out on microorganisms from low-pH environments, and what has been reported is inconclusive. In this study, we performed a large-scale comparative genomics investigation of more than 260 bacterial high-quality genome sequences of acidophiles, together with genomes of their closest phylogenetic relatives that live at circum-neutral pH. A statistically supported correlation is reported between reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced gene sizes. This trend is independent from other genome size constraints such as temperature and G + C content. Genome streamlining in the evolution of acidophilic bacteria is thus supported by our results. The analyses of predicted Clusters of Orthologous Genes (COG) categories and subcellular location predictions indicate that acidophiles have a lower representation of genes encoding extracellular proteins, signal transduction mechanisms, and proteins with unknown function but are enriched in inner membrane proteins, chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome streamlining, there was no significant change in paralog frequencies across pH. However, a detailed analysis of COG categories revealed a higher proportion of genes in acidophiles in the following categories: "replication and repair," "amino acid transport," and "intracellular trafficking". This study brings increasing clarity regarding the genomic adaptations of acidophiles to life at low pH while putting elements, such as the reduction of average gene size, under the spotlight of streamlining theory.
Collapse
Affiliation(s)
- Diego Cortez
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
49
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
50
|
Lu XM, Jiang XQ, Liu XP. Response process and adaptation mechanism of estuarine benthic microbiota to polyvinyl chloride microplastics with and without phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150693. [PMID: 34599949 DOI: 10.1016/j.scitotenv.2021.150693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the response mechanisms of the microbiota in estuarine sediments amended with polyvinyl chloride (PVC) microplastics (MPs) with and without phthalates (PAEs) through a 60-day microcosm experiment. The results indicated that addition of MPs increased the porosity of the sediment. However, the sediment porosity decreased with the length of the amendment period. Following amendment with MPs containing PAEs, the sediment PAE content increased over time. The addition of MPs without PAEs increased the relative abundance of the dominant phyla of bacteria (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes) and eukaryotes (Ascomycota, Bacillariophyta, Chordata, and Streptophyta), whereas the relative abundance decreased over time following the addition of MPs containing PAEs. The PAEs released from MPs had greater effects on these phyla than the MPs themselves. The dominant bacteria were more sensitive to MPs than the dominant eukaryotes. After a 60-day amendment with MPs containing PAEs, the bacterial and eukaryotic species numbers were lower by 5.4% and 3.4%, respectively, the relative abundance of certain genes involved in metabolism was lower, and the relative abundance of stress-related genes was higher. These findings provide insight into the microbial response and adaptation mechanisms in estuarine environments polluted with MPs.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China.
| | - Xiao-Qiang Jiang
- School of Urban Operations Management, Shanghai Urban Construction Vocational College, Shanghai 200438, China
| | - Xue-Ping Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|