1
|
Xie X, Sun K, Liu A, Miao R, Yin F. Analysis of gill and skin microbiota in Larimichthys crocea reveals bacteria associated with cryptocaryoniasis resistance potential. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110228. [PMID: 40020952 DOI: 10.1016/j.fsi.2025.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Cryptocaryoniasis, caused by the ciliate parasite Cryptocaryon irritans, poses a significant threat to the large yellow croaker (Larimichthys crocea) in intensive marine aquaculture. This study explores the interaction between skin and gill microbiota and C. irritans infection, focusing on the role of commensal microbes in disease resistance. Fish were challenged with 100 theronts per gram of body weight, leading to substantial microbial dysbiosis, characterized by decreased alpha diversity and disrupted co-occurrence networks, particularly on the skin. Post-infection, Vibrio abundance significantly increased in both gills and skin, suggesting potential for secondary infections. Conversely, lower Vibrio levels correlated with higher populations of Bdellovibrio-like organisms (BALOs), which may play a beneficial role in microbial balance. Fish showed varying susceptibility, with mildly infected individuals exhibiting less histopathological damage and a stronger immune response, indicated by elevated interleukin-1β (IL-1β) and interleukin-8 (IL-8) levels. Correlation analyses revealed significant relationships between relative infection intensity (RII) and microbial composition, with certain bacteria known for anti-eukaryotic microbial properties showing negative correlations with RII. Additionally, the abundance of nitrogen-metabolizing bacteria also correlated negatively with RII. Functional predictions indicated increased bacterial genes related to denitrification and vitamin biosynthesis post-infection. Notably, Candidatus Midichloria was identified as a potential biomarker for C. irritans infection and is thought to be an endosymbiont of C. irritans, with its presence validated through PCR analysis. These findings illuminate microbial dynamics during C. irritans infection and suggest probiotic candidates for managing cryptocaryoniasis.
Collapse
Affiliation(s)
- Xiao Xie
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China.
| | - Kangshuai Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Aowei Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Rujiang Miao
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China
| | - Fei Yin
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China.
| |
Collapse
|
2
|
Wang J, Skalkos ZMG, Grueber CE, Whittington CM. Changes to the reproductive microbiome of the brood pouch during male pregnancy in seahorses (Hippocampus abdominalis). Reproduction 2025; 169:e240159. [PMID: 39946165 PMCID: PMC11906128 DOI: 10.1530/rep-24-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 03/12/2025]
Abstract
In brief Reproductive microbiomes contribute to the successful embryogenesis of offspring but are poorly studied in non-mammalian species that exhibit pregnancy. This study characterises the male pregnant seahorse brood pouch microbiome and identifies potential microbial maternal contributions to the pouch, providing insights into the sources and adaptive value of the embryonic microbial environment. Abstract Seahorses demonstrate an unusual reproductive strategy, in which males incubate embryos inside a complex 'brood pouch' until parturition, analogous to mammalian viviparity. In many species, a 'normal' reproductive microbiome ensures successful embryogenesis and enables parents (usually mothers) to provide their offspring with their initial microbiome. In male-pregnant seahorses, embryos may receive microbiomes from both parents: from the paternal brood pouch and from the maternal eggs. Using the pot-bellied seahorse (Hippocampus abdominalis), we employed 16S rRNA sequencing to explore the reproductive microbiome. We aimed to compare the microbiome of the male pregnant pouch to the male non-pregnant pouch and external skin, and to identify bacterial taxa found exclusively in the pregnant pouch that could be derived maternally from the microbiome of eggs. Our findings demonstrate that the pregnant brood pouch microbiome is compositionally distinct from the non-pregnant pouch and external skin. The pouch microbiome also has characteristics of resistance to colonisation by pathogens, including a low species richness, high species evenness and diversity and very low abundance of Vibrio, a genus that includes fish skin pathogens. Thirteen bacterial taxa appear exclusively in the pregnant pouch, relative to the non-pregnant pouch, and seven of these overlapped with taxa present in or on the eggs. The possible supplementation of brood pouch microbiome with egg-associated micro-organisms hints at a maternal microbial contribution to male pregnancy. This characterisation of the pregnant seahorse pouch microbiome provides a platform for further research into its function and possible adaptive value during male pregnancy.
Collapse
|
3
|
Pavić D, Geček S, Miljanović A, Grbin D, Bielen A. Characterization of Bacterial Communities on Trout Skin and Eggs in Relation to Saprolegnia parasitica Infection Status. Microorganisms 2024; 12:1733. [PMID: 39203577 PMCID: PMC11357440 DOI: 10.3390/microorganisms12081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
We have investigated the changes in the microbial communities on the surface of trout eggs and the skin of adult trout in relation to the presence of Saprolegnia parasitica. This pathogen causes saprolegniosis, a disease responsible for significant losses in salmonid farms and hatcheries. It is known from other disease systems that the host-associated microbiome plays a crucial role in the defence against pathogens, but if the pathogen predominates, this can lead to dysbiosis. However, analyses of the effects of S. parasitica on the diversity, composition, and function of microbial communities on fish skin and eggs are scarce. Thus, we have collected skin swabs from injured and healthy trout (N = 12), which differed in S. parasitica load, from three different fish farms in Croatia (Kostanjevac, Radovan, and Solin), while trout egg samples (N = 12) were infected with S. parasitica in the laboratory. Illumina sequencing of the V4 region of the 16S rRNA marker gene showed that infection with S. parasitica reduced the microbial diversity on the surface of the eggs, as evidenced by decreased Pielou's evenness and Shannon's indices. We further determined whether the bacterial genera with a relative abundance of >5.0% in the egg/skin samples were present at significantly different abundances in relation to the presence of S. parasitica. The results have shown that some genera, such as Pseudomonas and Flavobacterium, decreased significantly in the presence of the pathogen on the egg surface. On the other hand, some bacterial taxa, such as Acinetobacter and Janthinobacterium, as well as Aeromonas, were more abundant on the diseased eggs and the injured trout skin, respectively. Finally, beta diversity analyses (weighted UniFrac, unweighted UniFrac, Bray-Curtis) have shown that the sampling location (i.e., fish farm), along with S. parasitica infection status, also has a significant influence on the microbial communities' composition on the trout skin and eggs, demonstrating the strong influence of the environment on the shaping of the host surface microbiome. Overall, we have shown that the presence of S. parasitica was associated with changes in the diversity and structure of the trout skin/egg microbiome. The results obtained could support the development of new strategies for the management of saprolegniosis in aquaculture.
Collapse
Affiliation(s)
- Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| |
Collapse
|
4
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Markovskaja S, Iršėnaitė R, Kačergius A, Sauliutė G, Stankevičiūtė M. Diversity of fungus-like stramenopilous organisms (Oomycota) in Lithuanian freshwater aquaculture: Morphological and molecular analysis, risk to fish health. JOURNAL OF FISH DISEASES 2024; 47:e13903. [PMID: 38087880 DOI: 10.1111/jfd.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
The present work is the first comprehensive study of fungus-like stramenopilous organisms (Oomycota) diversity in Lithuanian fish farms aimed at proper identification of saprolegniasis pathogens, which is important for water quality control, monitoring infection levels and choosing more effective treatments for this disease in aquaculture. Pathogenic to fish, Saprolegnia and other potentially pathogenic water moulds were isolated from adult fish, their eggs, fry and from water samples. All detected isolates were examined morphologically and confirmed by sequence-based molecular methods. A total of eight species belonging to the genera Saprolegnia, Achlya, Newbya and Pythium were identified. Four species (S. parasitica, S. ferax, S. australis and S. diclina) were found to be the main causative agents of saprolegniasis in Lithuania. S. parasitica and S. ferax dominated both in hatcheries and open fishponds, accounting for 66.2% of all isolates. S. parasitica was isolated from all farmed salmonid fish species as well as from the skin of Cyprinus carpio, Carassius carassius and Perca fluviatilis. S. australis was isolated from water and once from the skin of Oncorhynchus mykiss, and S. diclina was detected only once on the skin of Salmo salar fish. In addition, Achlya ambisexualis, Saprolegnia anisospora and Newbia oligocantha isolated during this study are noted as a possible source of saprolegniasis. The results of this study are relevant for assessing the risk of potential outbreaks of saprolegniasis or other saprolegnia-like infection in Lithuanian freshwater aquaculture.
Collapse
Affiliation(s)
| | - Reda Iršėnaitė
- Laboratory of Mycology, Nature Research Centre, Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Gintarė Sauliutė
- Laboratory of Ecotoxicology, Nature Research Centre, Vilnius, Lithuania
| | | |
Collapse
|
6
|
Lokesh J, Siriyappagouder P, Fernandes JMO. Unravelling the temporal and spatial variation of fungal phylotypes from embryo to adult stages in Atlantic salmon. Sci Rep 2024; 14:981. [PMID: 38200059 PMCID: PMC10781754 DOI: 10.1038/s41598-023-50883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Early microbial colonization has a profound impact on host physiology during different stages of ontogeny. Although several studies have focused on early bacterial colonization and succession, the composition and role of fungal communities are poorly known in fish. Here, we sequenced the internal transcribed spacer 2 (ITS2) region of fungi to profile the mycobiome associated with the eggs, hatchlings and intestine of Atlantic salmon at various freshwater and marine stages. In most of the stages studied, fungal diversity was lower than bacterial diversity. There were several stage-specific fungal phylotypes belonging to different stages of ontogeny but some groups, such as Candida tropicalis, Saccharomyces cerevisiae, Alternaria metachromatica, Davidiella tassiana and Humicola nigrescens, persisted during successive stages of ontogeny. We observed significant changes in the intestinal fungal communities during the first feeding. Prior to first feeding, Humicola nigrescens dominated, but Saccharomyces cerevisiae (10 weeks post hatch) and Candida tropicalis (12 weeks post hatch) became dominant subsequently. Seawater transfer resulted in a decrease in alpha diversity and an increase in Candida tropicalis abundance. We also observed notable variations in beta diversity and composition between the different farms. Overall, the present study sheds light on the fungal communities of Atlantic salmon from early ontogeny to adulthood. These novel findings will also be useful in future studies investigating host-microbiota interactions in the context of developing better nutritional and health management strategies for Atlantic salmon farming.
Collapse
Affiliation(s)
- Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-Sur-Nivelle, France.
| | | | | |
Collapse
|
7
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
8
|
Fiedler AW, Drågen MKR, Lorentsen ED, Vadstein O, Bakke I. The stability and composition of the gut and skin microbiota of Atlantic salmon throughout the yolk sac stage. Front Microbiol 2023; 14:1177972. [PMID: 37485532 PMCID: PMC10358989 DOI: 10.3389/fmicb.2023.1177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The bacterial colonization of newly hatched fish is important for the larval development and health. Still, little is known about the ontogeny of the early microbiota of fish. Here, we conducted two independent experiments with yolk sac fry of Atlantic salmon that were (1) either reared conventionally, with the eggs as the only source for bacteria (egg-derived microbiota; EDM) or (2) hatched germ-free and re-colonized using lake water (lake-derived microbiota; LDM). First, we characterized the gut and skin microbiota at 6, 9, and 13 weeks post hatching based on extracted RNA. In the second experiment, we exposed fry to high doses of either a fish pathogen or a commensal bacterial isolate and sampled the microbiota based on extracted DNA. The fish microbiota differed strongly between EDM and LDM treatments. The phyla Proteobacteria, Bacteroidetes, and Actinobacteria dominated the fry microbiota, which was found temporarily dynamic. Interestingly, the microbiota of EDM fry was more stable, both between replicate rearing flasks, and over time. Although similar, the skin and gut microbiota started to differentiate during the yolk sac stage, several weeks before the yolk was consumed. Addition of high doses of bacterial isolates to fish flasks had only minor effects on the microbiota.
Collapse
|
9
|
Zhai W, Wang Q, Zhu X, Jia X, Chen L. Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Zhang M, Wang X, Wang Z, Mao S, Zhang J, Li M, Pan H. Metatranscriptomic Analyses Reveal Important Roles of the Gut Microbiome in Primate Dietary Adaptation. Genes (Basel) 2023; 14:228. [PMID: 36672969 PMCID: PMC9858838 DOI: 10.3390/genes14010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiome plays a vital role in host ecological adaptation, especially dietary adaptations. Primates have evolved a variety of dietary and gut physiological structures that are useful to explore the role of the gut microbiome in host dietary adaptations. Here, we characterize gut microbiome transcriptional activity in ten fecal samples from primates with three different diets and compare the results to their previously reported metagenomic profile. Bacteria related to cellulose degradation, like Bacteroidaceae and Alcaligenaceae, were enriched and actively expressed in the gut microbiome of folivorous primates, and functional analysis revealed that the glycan biosynthesis and metabolic pathways were significantly active. In omnivorous primates, Helicobacteraceae, which promote lipid metabolism, were significantly enriched in expression, and activity and xenobiotic biodegradation and metabolism as well as lipid metabolism pathways were significantly active. In frugivorous primates, the abundance and activity of Elusimicrobiaceae, Neisseriaceae, and Succinivibrionaceae, which are associated with digestion of pectin and fructose, were significantly elevated, and the functional pathways involved in the endocrine system were significantly enriched. In conclusion, the gut microbiome contributes to host dietary adaptation by helping hosts digest the inaccessible nutrients in their specific diets.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxin Mao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Keiz K, Ulrich S, Wenderlein J, Keferloher P, Wiesinger A, Neuhaus K, Lagkouvardos I, Wedekind H, Straubinger RK. The Development of the Bacterial Community of Brown Trout ( Salmo trutta) during Ontogeny. Microorganisms 2023; 11:211. [PMID: 36677503 PMCID: PMC9863972 DOI: 10.3390/microorganisms11010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown trout (Salmo trutta) is an important aquaculture species in Germany, but its production faces challenges due to global warming and a high embryo mortality. Climate factors might influence the fish's bacterial community (BC) and thus increase embryo mortality. Yet, knowledge of the physiological BC during ontogeny in general is scarce. In this project, the BC of brown trout has been investigated in a period from unfertilized egg to 95 days post fertilization (dpf) using 16S rRNA gene amplicon sequencing. Developmental changes differed between early and late ontogeny and major differences in BC occurred especially during early developmental stages. Thus, analysis was conducted separately for 0 to 67 dpf and from 67 to 95 dpf. All analyzed stages were sampled in toto to avoid bias due to different sampling methods in different developmental stages. The most abundant phylum in the BC of all developmental stages was Pseudomonadota, while only two families (Comamonadaceae and Moraxellaceae) occurred in all developmental stages. The early developmental stages until 67 dpf displayed greater shifts in their BC regarding bacterial richness, microbial diversity, and taxonomic composition. Thereafter, in the fry stages, the BC seemed to stabilize and changes were moderate. In future studies, a reduction in the sampling time frames during early development, an increase in sampling numbers, and an attempt for biological reproduction in order to characterize the causes of these variations is recommended.
Collapse
Affiliation(s)
- Katharina Keiz
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Ulrich
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Patrick Keferloher
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Anna Wiesinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Aquaculture (IMBBC), 715 00 Heraklion, Greece
| | - Helmut Wedekind
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
12
|
Zhou N, Wang Z, Yang L, Zhou W, Qin Z, Zhang H. Size-dependent toxicological effects of polystyrene microplastics in the shrimp Litopenaeus vannamei using a histomorphology, microbiome, and metabolic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120635. [PMID: 36370970 DOI: 10.1016/j.envpol.2022.120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide application of plastic products in human life, microplastic pollution in water has recently attracted more attention. Many studies have revealed the size-dependent toxicity of microplastics. Here, we investigated the toxicological effects of polystyrene microplastics (PS-MPs) on the white leg shrimp, Litopenaeus vannamei, a profitable aquaculture species, using a comprehensive histomorphological, microbiome, and metabolomic approach to verify whether smaller particles are more toxic than larger particles. L. vannamei were experimentally exposed to water containing PS-MPs of four sizes (0.1, 1.0, 5.0, and 20.0 μm) for 24 h at 10 mg/L (acute experiment) and 12 d at 1 mg/L (subchronic experiment). After 24 h of acute exposure, PS-MP accumulation in shrimp indicated that the ingestion and egestion of PS-MPs had a size-dependent effect, and smaller particles were more bioavailable. The tissue morphological results of subchronic experiments showed that, for the guts and gills, the smaller sizes of the PS-MPs exhibited greater damage. In addition, 16 S rRNA gene amplicon sequencing showed that the alpha diversity was higher under larger PS-MP exposure. Correlated with changes in intestinal bacteria, we found a greater enrichment of metabolic pathways in hemolymph proteins and metabolites in larger PS-MP groups, such as "arginine and proline metabolism", "protein digestion and absorption", "lysine degradation". Interestingly, the activity or content of biomarkers of oxidative stress showed a peak at 1 μm and 5 μm. Under specific sizes of PS-MPs, the abundance of the pathogen Vibrio and probiotic bacteria Rhodobacter (5-μm) and Bacillus and Halomonas (1-μm) were simultaneously enriched. Our results indicated that PS-MP exposure can cause size-dependent damage to shrimp, yet specific particle size can be influential differently in regard to some research indicators. Therefore, it can enhance our comprehensive understanding of the impacts of microplastics on shrimp health and suggests that specific particle size should be considered when assessing the size-dependent toxicity of microplastics.
Collapse
Affiliation(s)
- Ningjia Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Lifeng Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Wenyao Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
13
|
Aquatic insects differentially affect lake sturgeon larval phenotypes and egg surface microbial communities. PLoS One 2022; 17:e0277336. [PMID: 36409729 PMCID: PMC9678266 DOI: 10.1371/journal.pone.0277336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.
Collapse
|
14
|
Duval C, Marie B, Foucault P, Duperron S. Establishment of the Bacterial Microbiota in a Lab-Reared Model Teleost Fish, the Medaka Oryzias latipes. Microorganisms 2022; 10:2280. [PMID: 36422350 PMCID: PMC9696534 DOI: 10.3390/microorganisms10112280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2023] Open
Abstract
Oryzias latipes is an important model organism for physiology, genetics, and developmental studies, and has also emerged as a relevant vertebrate model for aquatic ecotoxicology. Knowledge regarding its associated microbiota on the other hand is still scarce and limited to adults, despite the relevance of the associated microbiome to the host's biology. This study provides the first insights into the establishment of bacterial microbiota during early developmental stages of laboratory-reared medaka using a 16S-rRNA-sequencing-based approach. Major shifts in community compositions are observed, from a Proteobacteria-dominated community in larvae and juveniles to a more phylum-diverse community towards adulthood, with no obvious difference between female and male specimens. Major bacterial taxa found in adults, including genera Cetobacterium and ZOR0006, establish progressively and are rare during early stages. Dominance shifts are comparable to those documented in another major model teleost, the zebrafish. Results from this study provide a basis for future work investigating the influence of medaka-associated bacteria during host development.
Collapse
Affiliation(s)
| | | | | | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, CNRS, 75005 Paris, France
| |
Collapse
|
15
|
Pavić D, Grbin D, Hudina S, Prosenc Zmrzljak U, Miljanović A, Košir R, Varga F, Ćurko J, Marčić Z, Bielen A. Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment. Sci Rep 2022; 12:16646. [PMID: 36198674 PMCID: PMC9534867 DOI: 10.1038/s41598-022-16553-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.
Collapse
Affiliation(s)
- Dora Pavić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.,Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Anđela Miljanović
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Rok Košir
- Labena Ltd, BIA Separations CRO - Molecular Biology Laboratory, 1000, Ljubljana, Slovenia
| | - Filip Varga
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, 10000, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, CoE CroP-BioDiv), 10000, Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Zoran Marčić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Tagg AS, Sperlea T, Labrenz M, Harrison JP, Ojeda JJ, Sapp M. Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth. Microorganisms 2022; 10:microorganisms10091775. [PMID: 36144377 PMCID: PMC9506493 DOI: 10.3390/microorganisms10091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces.
Collapse
Affiliation(s)
- Alexander S. Tagg
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Correspondence:
| | - Theodor Sperlea
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jesse P. Harrison
- CSC—IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Melanie Sapp
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Li T, Yang Y, Li H, Li C. Mixed-Mode Bacterial Transmission via Eggshells in an Oviparous Reptile Without Parental Care. Front Microbiol 2022; 13:911416. [PMID: 35836422 PMCID: PMC9273969 DOI: 10.3389/fmicb.2022.911416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microorganisms play important roles in maintaining health and facilitating the adaptation of the host. We know little about the origin and transgenerational transmission of symbiotic bacteria, especially in egg-laying species without parental care. Here, we investigated the transmission of bacterial symbionts in the Chinese three-keeled pond turtle (Mauremys reevesii), a species with no post-oviposition parental care, by evaluating contributions from potential maternal and environmental sources to eggshell bacterial communities. Using 16S rRNA amplicon sequencing, we established that the bacterial communities of eggshells were similar to those of the maternal cloaca, maternal skin, and nest soil, but distinct from those of surface soil around nest and pond water. Phylogenetic structure analysis and source-tracking models revealed the deterministic assembly process of eggshell microbiota and high contributions of the maternal cloaca, maternal skin, and nest soil microbiota to eggshell bacterial communities. Moreover, maternal cloaca showed divergent contribution to eggshell microbiota compared with two other main sources in phylogenesis and taxonomic composition. The results demonstrate a mixture of horizontal and vertical transmission of symbiotic bacteria across generations in an oviparous turtle without parental care and provide insight into the significance of the eggshell microbiome in embryo development.
Collapse
|
18
|
Uren Webster TM, Consuegra S, Garcia de Leaniz C. Early life stress causes persistent impacts on the microbiome of Atlantic salmon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100888. [PMID: 34365156 PMCID: PMC8600188 DOI: 10.1016/j.cbd.2021.100888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/06/2023]
Abstract
Farmed fish are commonly exposed to stress in intensive aquaculture systems, often leading to immune impairment and increased susceptibility to disease. As microbial communities associated with the gut and skin are vital to host health and disease resilience, disruption of microbiome integrity could contribute to the adverse consequences of stress exposure. Little is known about how stress affects the fish microbiome, especially during sensitive early life stages when initial colonisation and proliferation of host-associated microbial communities take place. Therefore, we compared the effects of two aquaculture-relevant early-life stressors on the gut and skin microbiome of Atlantic salmon fry (four months post hatching) using 16S rRNA amplicon sequencing. Acute cold stress applied during late embryogenesis had a pronounced, lasting effect on the structure of the skin microbiome, as well as a less consistent effect on the gut microbiome. Follow-up targeted qPCR assays suggested that this is likely due to disruption of the egg shell microbial communities at the initial stages of microbiome colonisation, with persistent effects on community structure. In contrast, chronic post hatching stress altered the structure of the gut microbiome, but not that of the skin. Both types of stress promoted similar Gammaproteobacteria ASVs, particularly within the genera Acinetobacter and Aeromonas, which include several important opportunistic fish pathogens. Our results demonstrate the sensitivity of the salmon microbiome to environmental stressors during early life, with potential associated health impacts on the host. We also identified common signatures of stress in the salmon microbiome, which may represent useful microbial stress biomarkers.
Collapse
|
19
|
Kidess E, Kleerebezem M, Brugman S. Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Front Microbiol 2021; 12:729053. [PMID: 34603258 PMCID: PMC8484919 DOI: 10.3389/fmicb.2021.729053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10–/– mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10–/– mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.
Collapse
Affiliation(s)
- Evelien Kidess
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Miljanović A, Grbin D, Pavić D, Dent M, Jerković I, Marijanović Z, Bielen A. Essential Oils of Sage, Rosemary, and Bay Laurel Inhibit the Life Stages of Oomycete Pathogens Important in Aquaculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081676. [PMID: 34451721 PMCID: PMC8401702 DOI: 10.3390/plants10081676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031-0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007-0.049 µL/mL for A. astaci and 0.012-0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.
Collapse
Affiliation(s)
- Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Maja Dent
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000 Split, Croatia; (I.J.); (Z.M.)
| | - Zvonimir Marijanović
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000 Split, Croatia; (I.J.); (Z.M.)
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.M.); (D.G.); (D.P.); (M.D.)
| |
Collapse
|
21
|
Faber MN, Sojan JM, Saraiva M, van West P, Secombes CJ. Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: Evaluation with Saprolegnia parasitica. JOURNAL OF FISH DISEASES 2021; 44:701-710. [PMID: 33434302 DOI: 10.1111/jfd.13331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Understanding the ways in which pathogens infect host cells is essential to improve and develop new treatment strategies. This study aimed to generate a novel in vitro infection model by establishing a reproducible 3D spheroid cell culture system that may lead to a reduced need for animals in fish disease research. 2D models (commonly cell lines) cannot replicate many key conditions of in vivo infections, but 3D spheroids have the potential to provide bridging technology between in vivo and in vitro systems. 3D spheroids were generated using cells from rainbow trout (Oncorhynchus mykiss) cell lines, RTG-2 and RTS-11. The RTG-2 spheroids were tested for their potential to be infected upon exposure to Saprolegnia parasitica spores. Positive infiltration of mycelia into the spheroids was verified by confocal microscopy. As a closer analogue of in vivo conditions encountered during infection, the straightforward model developed in this study shows promise as an additional tool that can be used to further our understanding of host-pathogen interactions for Saprolegnia and possibly a variety of other fish pathogens.
Collapse
Affiliation(s)
- Marc N Faber
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jerry M Sojan
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Marcia Saraiva
- Aberdeen Oomycete Laboratory, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Pieter van West
- Aberdeen Oomycete Laboratory, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
22
|
Pepler MA, Hindra, Miller JS, Elliot MA, Balshine S. Tactic-specific antimicrobial activity suggests a parental care function for accessory glands in a marine toadfish. Proc Biol Sci 2021; 288:20202873. [PMID: 33726600 DOI: 10.1098/rspb.2020.2873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Males of some species possess extra reproductive organs called accessory glands which are outgrowths of the testes or sperm duct. These organs have a well-established role in reproduction; however, they also appear to have other important functions that are less understood. Here, we investigate the function of the highly complex accessory glands of a marine toadfish, Porichthys notatus, a fish with two reproductive male types: large care-providing 'guarder' males and small non-caring 'sneaker' males. While both male types have accessory glands, guarder male accessory glands are much larger relative to their body size. We show that accessory gland fluids strongly inhibit the growth of bacterial genera associated with unhealthy eggs and have no effect on the growth of strains isolated from healthy eggs. This antibacterial effect was particularly pronounced for extracts from guarder males. Furthermore, we demonstrate that both healthy and unhealthy plainfin midshipman eggs have diverse but distinct microbial communities that differ in their composition and abundance. The highly specific inhibitory capacity of accessory gland fluid on bacteria from unhealthy eggs was robust across a wide range of ecologically relevant temperatures and salinities. Collectively, these ecological and molecular observations suggest a care function for the accessory gland mediated by antimicrobial agents.
Collapse
Affiliation(s)
- Meghan A Pepler
- Department of Biology, and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Hindra
- Department of Biology, and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jessica S Miller
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, University of Waterloo, Ontario, Canada
| | - Marie A Elliot
- Department of Biology, and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Nguyen CDH, Amoroso G, Ventura T, Minich JJ, Elizur A. Atlantic Salmon (Salmo salar L., 1758) Gut Microbiota Profile Correlates with Flesh Pigmentation: Cause or Effect? MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:786-804. [PMID: 31942646 DOI: 10.1007/s10126-019-09939-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
In Tasmania (Australia), during the marine phase, it has been observed that flesh pigmentation significantly drops in summer, possibly due to high water temperatures (> 20 °C). Although this deleterious effect of summer temperatures has been ascertained, there is a lack of knowledge of the actual mechanisms behind the impaired uptake and/or loss of pigments in Atlantic salmon in a challenging environment. Since the microbial community in the fish intestine significantly changes in relation to the variations of water temperature, this study was conducted to assess how the gut microbiota profile also correlates with the flesh color during temperature fluctuation. We sampled 68 fish at three time points covering the end of summer to winter at a marine farm in Tasmania, Australia. Flesh color was examined in two ways: the average color throughout and the evenness of the color between different areas of the fillet. Using 16S rRNA sequencing of the v3-v4 region, we determined that water temperature corresponded to changes in the gut microbiome both with alpha diversity (Kruskal-Wallis tests P = 0.05) and beta diversity indices (PERMANOVA P = 0.001). Also, there was a significant correlation between the microbiota and the color of the fillet (PERMANOVA P = 0.016). There was a high abundance of Pseudoalteromonadaceae, Enterobacteriaceae, Microbacteriaceae, and Vibrionaceae in the pale individuals. Conversely, carotenoid-synthesizing bacteria families (Bacillaceae, Mycoplasmataceae, Pseudomonas, Phyllobacteriaceae, and Comamonadaceae) were found in higher abundance in individuals with darker flesh color.
Collapse
Affiliation(s)
- Chan D H Nguyen
- GeneCology Research Centre, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Gianluca Amoroso
- GeneCology Research Centre, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
- Petuna Aquaculture, 134 Tarleton Street, East Devonport, Tasmania, 7310, Australia
| | - Tomer Ventura
- GeneCology Research Centre, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Jeremiah J Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
24
|
Bone A, Bekaert M, Papadopoulou A, McMillan S, Adams A, Davie A, Desbois AP. Bacterial Communities of Ballan Wrasse (Labrus bergylta) Eggs at a Commercial Marine Hatchery. Curr Microbiol 2020; 78:114-124. [PMID: 33230621 PMCID: PMC7815581 DOI: 10.1007/s00284-020-02286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Ballan wrasse (Labrus bergylta, Ascanius 1767) are cleaner fish cultured in northern Europe to remove sea lice from farmed Atlantic salmon (Salmo salar, Linnaeus 1758). Despite increasing appreciation for the importance of the microbiota on the phenotypes of vertebrates including teleosts, the microbiota of wrasse eggs has yet to be described. Therefore, the aim of this present study was to describe the bacterial component of the microbiota of ballan wrasse eggs shortly after spawning and at 5 days, once the eggs had undergone a routine incubation protocol that included surface disinfection steps in a common holding tank. Triplicate egg samples were collected from each of three spawning tanks and analysis of 16S rRNA gene sequences revealed that 88.6% of reads could be identified to 186 taxonomic families. At Day 0, reads corresponding to members of the Vibrionaceae, Colwelliaceae and Rubritaleaceae families were detected at greatest relative abundances. Bacterial communities of eggs varied more greatly between tanks than between samples deriving from the same tank. At Day 5, there was a consistent reduction in 16S rRNA gene sequence richness across the tanks. Even though the eggs from the different tanks were incubated in a common holding tank, the bacterial communities of the eggs from the different tanks had diverged to become increasingly dissimilar. This suggests that the disinfection and incubation exerted differential effects of the microbiota of the eggs from each tank and that the influence of the tank water on the composition of the egg microbiota was lower than expected. This first comprehensive description of the ballan wrasse egg bacterial community is an initial step to understand the role and function of the microbiota on the phenotype of this fish. In future, mass DNA sequencing methods may be applied in hatcheries to screen for pathogens and as a tool to assess the health status of eggs.
Collapse
Affiliation(s)
- Aileen Bone
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Athina Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Stuart McMillan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
25
|
Nyholm SV. In the beginning: egg-microbe interactions and consequences for animal hosts. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190593. [PMID: 32772674 PMCID: PMC7435154 DOI: 10.1098/rstb.2019.0593] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Microorganisms are associated with the eggs of many animals. For some hosts, the egg serves as the ideal environment for the vertical transmission of beneficial symbionts between generations, while some bacteria use the egg to parasitize their hosts. In a number of animal groups, egg microbiomes often perform other essential functions. The eggs of aquatic and some terrestrial animals are especially susceptible to fouling and disease since they are exposed to high densities of microorganisms. To overcome this challenge, some hosts form beneficial associations with microorganisms, directly incorporating microbes and/or microbial products on or in their eggs to inhibit pathogens and biofouling. Other functional roles for egg-associated microbiomes are hypothesized to involve oxygen and nutrient acquisition. Although some egg-associated microbiomes are correlated with increased host fitness and are essential for successful development, the mechanisms that lead to such outcomes are often not well understood. This review article will discuss different functions of egg microbiomes and how these associations have influenced the biology and evolution of animal hosts. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269USA
| |
Collapse
|
26
|
Veyrand-Quirós B, Gómez-Gil B, Lomeli-Ortega CO, Escobedo-Fregoso C, Millard AD, Tovar-Ramírez D, Balcázar JL, Quiroz-Guzmán E. Use of bacteriophage vB_Pd_PDCC-1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs. J Appl Microbiol 2020; 129:1497-1510. [PMID: 32538525 DOI: 10.1111/jam.14744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023]
Abstract
AIMS This study describes the effect of phage therapy on hatching of longfin yellowtail (Seriola rivoliana) eggs challenged with Photobacterium damselae subsp. damselae. METHODS AND RESULTS A lytic phage (vB_Pd_PDCC-1) against P. damselae subsp. damselae was isolated and characterized. The use of phage vB_Pd_PDCC-1 increased the hatching rate of eggs, and reduced presumptive Vibrio species to non-detectable numbers, even in non-disinfected eggs. High-throughput 16S rRNA gene sequencing analysis revealed that phage vB_Pd_PDCC-1 caused significant changes in the composition and structure of the associated microbiota, allowing that members (e.g. those belonging to the family Vibrionaceae) of the class Gammaproteobacteria to be displaced by members of the class Alphaproteobacteria. CONCLUSIONS To the best of our knowledge, this represents the first study evaluating phage therapy to control potential negative effects of P. damselae subsp. damselae during hatching of longfin yellowtail eggs. SIGNIFICANCE AND IMPACT OF THE STUDY The Seriola genus includes several important commercial fish species due to its rapid growth and easy adaptability to confinement conditions. However, bacterial infections (especially those caused by Vibrio and Photobacterium species) are among the main limiting factors for the intensification of marine fish aquaculture, particularly during early development stages. Therefore, the use of phages, which are natural killers of bacteria, represents a promising strategy to reduce the mortality of farmed organisms caused by pathogenic bacteria.
Collapse
Affiliation(s)
- B Veyrand-Quirós
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - B Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa, Mexico
| | - C O Lomeli-Ortega
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - C Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional, La Paz Baja California Sur, Mexico
| | - A D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - D Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain.,University of Girona, Girona, Spain
| | - E Quiroz-Guzmán
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional, La Paz Baja California Sur, Mexico
| |
Collapse
|
27
|
Analysis of the Microbiome of Rainbow Trout (Oncorhynchus mykiss) Exposed to the Pathogen Flavobacterium psychrophilum 10094. Microbiol Resour Announc 2020; 9:9/12/e01562-19. [PMID: 32193245 PMCID: PMC7082464 DOI: 10.1128/mra.01562-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rainbow trout that were resistant or susceptible to Flavobacterium psychrophilum infection were compared with respect to their microbial composition by using 16S rRNA V3-V4 sequencing. The differences occurred in gills, where resistant fish displayed a greater abundance of the phylum Proteobacteria and a smaller proportion of Firmicutes relative to those of susceptible fish. Rainbow trout that were resistant or susceptible to Flavobacterium psychrophilum infection were compared with respect to their microbial composition by using 16S rRNA V3-V4 sequencing. The differences occurred in gills, where resistant fish displayed a greater abundance of the phylum Proteobacteria and a smaller proportion of Firmicutes relative to those of susceptible fish.
Collapse
|
28
|
Bai S, Hou G. Microbial communities on fish eggs from Acanthopagrus schlegelii and Halichoeres nigrescens at the XuWen coral reef in the Gulf of Tonkin. PeerJ 2020; 8:e8517. [PMID: 32071819 PMCID: PMC7008816 DOI: 10.7717/peerj.8517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/05/2020] [Indexed: 01/21/2023] Open
Abstract
Coral reefs are an important part of the ocean ecosystem and are a vital spawning ground for marine fish. Microorganisms are abundant in this environment and play a key role in the growth and development of host species. Many studies have investigated the microbial communities of fish with a focus on the intestinal microbiome of laboratory-reared adult fish. Little is known about the relationship between fish eggs and their microorganisms, especially as microbial communities relate to wild fish eggs in coral reefs. In this study, we analyzed the microbial communities of two species of coral fish eggs, Acanthopagrus schlegelii and Halichoeres nigrescens, using 16S rRNA gene amplicon sequencing technology. Pseudomonas, Archromobacter, and Serratia were the main bacterial genera associated with these fish eggs and are known to be bacteria with potentially pathogenic and spoilage effects. The microbial community structures of Acanthopagrus schlegelii and Halichoeres nigrescens eggs were separated based on the 30 most abundant operational taxonomic units (OTUs). Principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) further confirmed that the microbial communities of coral fish eggs differ by species, which may be due to host selection. A functional prediction of the microbial communities indicated that most of the microbial communities were chemoheterotrophic and involved in nitrogen cycling. Our results showed that the microbial communities of coral fish eggs were distinct by species and that key microorganisms were potentially pathogenic, leading to the spoilage of fish eggs, high mortality, and low incubation rates. This study provided new insights for understanding the relationship between microorganisms and wild fish eggs.
Collapse
Affiliation(s)
- Shijie Bai
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Gang Hou
- Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
29
|
In Vitro Activity of Essential Oils against Saprolegnia parasitica. Molecules 2019; 24:molecules24071270. [PMID: 30939843 PMCID: PMC6479710 DOI: 10.3390/molecules24071270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Saprolegnia spp. water molds severely impact fish health in aquaculture, fish farms and hobby fish tanks colonizing mature and immature stages of fishes, as well as eggs. Considering that there are no drugs licensed for treating and/or control the organism, efficient and environmental low-impact methods to control these oomycetes in aquaculture are needed. The aim of the present report was to evaluate the in vitro sensitivity of Saprolegnia parasitica to essential oils (EOs) from Citrus aurantium L., Citrus bergamia Risso et Poiteau, Citrus limon Burm. f., Citrus paradisi Macfad, Citrussinensis Osbeck, Cinnamomum zeylanicum Blume, Cymbopogon flexuosum (Nees ex Steud.) Watson, Foeniculum vulgare Mill., Illicium verum Hook.f., Litsea cubeba (Lour.) Pers., Origanum majorana L., Origanum vulgare L., Pelargonium graveolens L’Hér., Syzygium aromaticum Merr. & L.M.Perry, and Thymus vulgaris L., by microdilution test. The most effective EOs assayed were T. vulgaris and O. vulgare, followed by C. flexuosum, L. cubeba and C. bergamia. These EOs could be of interest for controlling Saprolegnia infections. Nevertheless, further safety studies are necessary to evaluate if these products could be dispersed in tank waters, or if their use should be limited to aquaculture supplies.
Collapse
|
30
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Brugman S, Ikeda-Ohtsubo W, Braber S, Folkerts G, Pieterse CMJ, Bakker PAHM. A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Front Nutr 2018; 5:80. [PMID: 30234124 PMCID: PMC6134018 DOI: 10.3389/fnut.2018.00080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
During recent years the impact of microbial communities on the health of their host (being plants, fish, and terrestrial animals including humans) has received increasing attention. The microbiota provides the host with nutrients, induces host immune development and metabolism, and protects the host against invading pathogens (1-6). Through millions of years of co-evolution bacteria and hosts have developed intimate relationships. Microbial colonization shapes the host immune system that in turn can shape the microbial composition (7-9). However, with the large scale use of antibiotics in agriculture and human medicine over the last decades an increase of diseases associated with so-called dysbiosis has emerged. Dysbiosis refers to either a disturbed microbial composition (outgrowth of possible pathogenic species) or a disturbed interaction between bacteria and the host (10). Instead of using more antibiotics to treat dysbiosis there is a need to develop alternative strategies to combat disturbed microbial control. To this end, we can learn from nature itself. For example, the plant root (or "rhizosphere") microbiome of sugar beet contains several bacterial species that suppress the fungal root pathogen Rhizoctonia solani, an economically important fungal pathogen of this crop (11). Likewise, commensal bacteria present on healthy human skin produce antimicrobial molecules that selectively kill skin pathogen Staphylococcus aureus. Interestingly, patients with atopic dermatitis (inflammation of the skin) lacked antimicrobial peptide secreting commensal skin bacteria (12). In this review, we will give an overview of microbial manipulation in fish, plants, and terrestrial animals including humans to uncover conserved mechanisms and learn how we might restore microbial balance increasing the resilience of the host species.
Collapse
Affiliation(s)
- Sylvia Brugman
- Cell Biology and Immunology Group, Animal Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
32
|
Lokesh J, Kiron V, Sipkema D, Fernandes JMO, Moum T. Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures. Microbiologyopen 2018; 8:e00672. [PMID: 29897674 PMCID: PMC6460355 DOI: 10.1002/mbo3.672] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Host‐associated microbiota undergoes a continuous transition, from the birth to adulthood of the host. These developmental stage‐related transitions could lead to specific microbial signatures that could impact the host biological processes. In this study, the succession of early‐life and intestinal bacterial communities of Atlantic salmon (starting from embryonic stages to 80‐week post hatch; wph) was studied using amplicon sequencing of 16S rRNA. Stage‐specific bacterial community compositions and the progressive transitions of the communities were evident in both the early life and the intestine. The embryonic communities showed lower richness and diversity (Shannon and PD whole tree) compared to the hatchlings. A marked transition of the intestinal communities also occurred during the development; Proteobacteria were dominant in the early stages (both embryonic and intestinal), though the abundant genera under this phylum were stage‐specific. Firmicutes were the most abundant group in the intestine of late freshwater; Weissella being the dominant genus at 20 wph and Anaerofilum at 62 wph. Proteobacteria regained its dominance after the fish entered seawater. Furthermore, LEfSe analysis identified genera under the above ‐ mentioned phyla that are significant features of specific stages. The environmental (water) bacterial community was significantly different from that of the fish, indicating that the host is a determinant of microbial assemblage. Overall the study demonstrated the community dynamics during the development of Atlantic salmon.
Collapse
Affiliation(s)
- Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - Truls Moum
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
33
|
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME JOURNAL 2018; 12:1375-1388. [PMID: 29445132 DOI: 10.1038/s41396-018-0067-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
34
|
de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 2017; 94:4675208. [DOI: 10.1093/femsec/fix161] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, Leiden 2333 BE, Leiden, The Netherlands
| |
Collapse
|
35
|
Hughey MC, Delia J, Belden LK. Diversity and stability of egg‐bacterial assemblages: The role of paternal care in the glassfrog
Hyalinobatrachium colymbiphyllum. Biotropica 2017. [DOI: 10.1111/btp.12461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Myra C. Hughey
- Department of Biological Sciences Virginia Tech 2119 Derring Hall, 926 West Campus Drive Blacksburg VA 24061 USA
| | - Jesse Delia
- Department of Biology Boston University 5 Cummington Mall Boston MA 02215 USA
| | - Lisa K. Belden
- Department of Biological Sciences Virginia Tech 2119 Derring Hall, 926 West Campus Drive Blacksburg VA 24061 USA
| |
Collapse
|
36
|
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, Nesme X, Bardin M, Galiana E. Tomato root microbiota and Phytophthora parasitica-associated disease. MICROBIOME 2017; 5:56. [PMID: 28511691 PMCID: PMC5434524 DOI: 10.1186/s40168-017-0273-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.
Collapse
Affiliation(s)
- Marie Larousse
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Corinne Rancurel
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Ferran Palero
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | | | - Benoît Industri
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Xavier Nesme
- Université de Lyon, UCBL, CNRS, INRA, Ecologie Microbienne (LEM), 69622 Villeurbanne, France
| | - Marc Bardin
- Plant Pathology, INRA, 84140 Montfavet, France
| | - Eric Galiana
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
37
|
Bello MA, Ruiz-León Y, Sandoval-Sierra JV, Rezinciuc S, Diéguez-Uribeondo J. Scanning Electron Microscopy (SEM) Protocols for Problematic Plant, Oomycete, and Fungal Samples. J Vis Exp 2017. [PMID: 28190042 DOI: 10.3791/55031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Common problems in the processing of biological samples for observations with the scanning electron microscope (SEM) include cell collapse, treatment of samples from wet microenvironments and cell destruction. Using young floral tissues, oomycete cysts, and fungi spores (Agaricales) as examples, specific protocols to process delicate samples are described here that overcome some of the main challenges in sample treatment for image capture under the SEM. Floral meristems fixed with FAA (Formalin-Acetic-Alcohol) and processed with the Critical Point Dryer (CPD) did not display collapsed cellular walls or distorted organs. These results are crucial for the reconstruction of floral development. A similar CPD-based treatment of samples from wet microenvironments, such as the glutaraldehyde-fixed oomycete cysts, is optimal to test the differential growth of diagnostic characteristics (e.g., the cyst spines) on different types of substrates. Destruction of nurse cells attached to fungi spores was avoided after rehydration, dehydration, and the CPD treatment, an important step for further functional studies of these cells. The protocols detailed here represent low-cost and rapid alternatives for the acquisition of good-quality images to reconstruct growth processes and to study diagnostic characteristics.
Collapse
Affiliation(s)
- M Angélica Bello
- Biodiversity and Conservation Department, Real Jardín Botánico, CSIC;
| | | | | | - Svetlana Rezinciuc
- Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)
| | | |
Collapse
|
38
|
Affiliation(s)
- Marie Larousse
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Eric Galiana
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
39
|
High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Wilkins LGE, Fumagalli L, Wedekind C. Effects of host genetics and environment on egg-associated microbiotas in brown trout (Salmo trutta). Mol Ecol 2016; 25:4930-45. [PMID: 27507800 DOI: 10.1111/mec.13798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland.
| | - Luca Fumagalli
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| |
Collapse
|
41
|
Songe MM, Willems A, Wiik‐Nielsen J, Thoen E, Evensen Ø, van West P, Skaar I. Saprolegnia diclina IIIA and S. parasitica employ different infection strategies when colonizing eggs of Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2016; 39:343-52. [PMID: 25846807 PMCID: PMC4973706 DOI: 10.1111/jfd.12368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 05/23/2023]
Abstract
Here, we address the morphological changes of eyed eggs of Atlantic salmon, Salmo salar L. infected with Saprolegnia from a commercial hatchery and after experimental infection. Eyed eggs infected with Saprolegnia spp. from 10 Atlantic salmon females were obtained. Egg pathology was investigated by light and scanning electron microscopy. Eggs from six of ten females were infected with S. parasitica, and two females had infections with S. diclina clade IIIA; two Saprolegnia isolates remained unidentified. Light microscopy showed S. diclina infection resulted in the chorion in some areas being completely destroyed, whereas eggs infected with S. parasitica had an apparently intact chorion with hyphae growing within or beneath the chorion. The same contrasting pathology was found in experimentally infected eggs. Scanning electron microscopy revealed that S. parasitica grew on the egg surface and hyphae were found penetrating the chorion of the egg, and re-emerging on the surface away from the infection site. The two Saprolegnia species employ different infection strategies when colonizing salmon eggs. Saprolegnia diclina infection results in chorion destruction, while S. parasitica penetrates intact chorion. We discuss the possibility these infection mechanisms representing a necrotrophic (S. diclina) vs. a facultative biotrophic strategy (S. parasitica).
Collapse
Affiliation(s)
- M M Songe
- Norwegian Veterinary InstituteOsloNorway
| | - A Willems
- Aberdeen Oomycete LaboratoryCollege of Life Sciencesand Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - E Thoen
- Norwegian Veterinary InstituteOsloNorway
| | - Ø Evensen
- Faculty of Veterinary Medicine and BiosciencesNorwegian University of Life SciencesOsloNorway
| | - P van West
- Aberdeen Oomycete LaboratoryCollege of Life Sciencesand Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - I Skaar
- Norwegian Veterinary InstituteOsloNorway
| |
Collapse
|
42
|
Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina. Int J Mol Sci 2016; 17:ijms17010140. [PMID: 26805821 PMCID: PMC4730379 DOI: 10.3390/ijms17010140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.
Collapse
|
43
|
Wilkins LGE, Rogivue A, Schütz F, Fumagalli L, Wedekind C. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures. Sci Rep 2015; 5:17084. [PMID: 26611640 PMCID: PMC4661462 DOI: 10.1038/srep17084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 11/09/2022] Open
Abstract
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aude Rogivue
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.,WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Génopode, 1015 Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Liu Y, Rzeszutek E, van der Voort M, Wu CH, Thoen E, Skaar I, Bulone V, Dorrestein PC, Raaijmakers JM, de Bruijn I. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia. PLoS One 2015; 10:e0136241. [PMID: 26317985 PMCID: PMC4552890 DOI: 10.1371/journal.pone.0136241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Elzbieta Rzeszutek
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Menno van der Voort
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Cheng-Hsuan Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry, Boston University, Boston, United States of America
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Pieter C. Dorrestein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Topographical Mapping of the Rainbow Trout (Oncorhynchus mykiss) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the Skin. Appl Environ Microbiol 2015. [PMID: 26209676 DOI: 10.1128/aem.01826-15] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal surfaces of wild and farmed aquatic vertebrates face the threat of many aquatic pathogens, including fungi. These surfaces are colonized by diverse symbiotic bacterial communities that may contribute to fight infection. Whereas the gut microbiome of teleosts has been extensively studied using pyrosequencing, this tool has rarely been employed to study the compositions of the bacterial communities present on other teleost mucosal surfaces. Here we provide a topographical map of the mucosal microbiome of an aquatic vertebrate, the rainbow trout (Oncorhynchus mykiss). Using 16S rRNA pyrosequencing, we revealed novel bacterial diversity at each of the five body sites sampled and showed that body site is a strong predictor of community composition. The skin exhibited the highest diversity, followed by the olfactory organ, gills, and gut. Flectobacillus was highly represented within skin and gill communities. Principal coordinate analysis and plots revealed clustering of external sites apart from internal sites. A highly diverse community was present within the epithelium, as demonstrated by confocal microscopy and pyrosequencing. Using in vitro assays, we demonstrated that two Arthrobacter sp. skin isolates, a Psychrobacter sp. strain, and a combined skin aerobic bacterial sample inhibit the growth of Saprolegnia australis and Mucor hiemalis, two important aquatic fungal pathogens. These results underscore the importance of symbiotic bacterial communities of fish and their potential role for the control of aquatic fungal diseases.
Collapse
|