1
|
Xie L, Bao X, Chen S, Ding H, Fang Y. The effects of small geographical resolution and age on the phyllosphere microbial diversity of Castanopsis eyrei in subtropical forest. Microbiol Spectr 2025; 13:e0209124. [PMID: 39936891 PMCID: PMC11878032 DOI: 10.1128/spectrum.02091-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Our understanding of the mechanisms that maintain phyllosphere microbial diversity in natural systems remains far less developed than our understanding of belowground microbiomes. This knowledge gap hinders our comprehension of growth dynamics in the Fagaceae, a predominant tree family in subtropical regions, and the critical role it plays as a major forest community assembly. Here, we tested leaves from Castanopsis eyrei, a widespread subtropical Fagaceae species in south-eastern China, sampled across multiple ages within a forest dynamics plot on Mt. Huangshan. Using third-generation sequencing of full-length bacterial 16S rRNA genes and fungal ITS regions, we characterized the associated phyllosphere microbiota. We found that phyllosphere fungal diversity was high, dominated by Teratosphaeriaceae, Trimorphomycetaceae, and Bulleribasidiaceae, while bacterial diversity was lower and primarily comprised Beijerinckiaceae, Isosphaeraceae, and Acidobacteriaceae. Habitat, rather than host age, emerged as the principal factor influencing fungal and pathogen diversity. Linear mixed-effects models revealed a negative relationship between C. eyrei biomass and phyllosphere pathogen diversity. Co-occurrence network analysis showed that C. eyrei saplings supported the most complex network structure, with Recuromyces acting as a key pathogenic fungus, serving as both a module hub and a connector across all age classes. Overall, these findings highlight the ecological importance of habitat in shaping phyllosphere microbial diversity and underscore the interplay between host function and the maintenance of microbial diversity. IMPORTANCE Plant surfaces host diverse microbial communities that significantly impact host health and overall forest productivity. However, mechanisms maintaining phyllosphere microbial diversity and their consequences for host plants remain poorly understood. Employing a three-generation high-throughput sequencing approach, we investigated the phyllosphere fungal and bacterial diversity across different microhabitats and ages of Castanopsis eyrei, a common species in subtropical forest, China. Our results underscore the presence of exceptionally high microbial diversity on the plant surface, elucidating the taxonomic composition at the family level of key host microorganisms. Furthermore, our observation of a negative correlation between host performance and phyllosphere pathogens underscores the potential self-limiting ability of plants.
Collapse
Affiliation(s)
- Lei Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Normal University, Nanjing, Jiangsu, China
- Department of Biological Sciences, National University of Singapore, , Singapore
| | - XuXu Bao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shuifei Chen
- Research Center for Biodiversity Conservation and Biosafety, State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Biodiversity Comprehensive Observation Station for Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Hui Ding
- Research Center for Biodiversity Conservation and Biosafety, State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Biodiversity Comprehensive Observation Station for Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Semenzato G, Vitali F, Frascella A, Lollini L, Mocali S, Papini A, Fani R, Emiliani G. Role of metabolism, resistance, and/or antagonism as drivers of endomicrobiomes assemblage in Origanum heracleoticum L. Commun Biol 2025; 8:158. [PMID: 39900981 PMCID: PMC11790966 DOI: 10.1038/s42003-025-07527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The understanding of selective forces driving the compartmentalization of microbiota in plants remains limited. In this study, we performed a phenotypic characterization of bacterial endophytes isolated from the medicinal plant Origanum heracleoticum, together with the determination of the antibiotic resistance profiles and the antagonistic interactions of communities within and across different plant organs. Results revealed organ-related differences in the metabolic capabilities of bacteria, with those associated with stems displaying the highest metabolic activity for carbon sources. Contrarily, the patterns of antibiotic resistance appeared closely aligned with the taxonomical classification of the endophytes. The presence of antagonistic interactions, likely spurred by resource limitations, favor bacteria exhibiting greater metabolic plasticity. In conclusion, this research advances our comprehension of the intricate dynamics between plants and their associated microbiota, indicating that its composition is mainly influenced by forces contributing to the selection of distinct functions and phenotypic traits.
Collapse
Affiliation(s)
- Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Vitali
- Council for Agricultural Research and Economics (CREA) - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, Cascine del Riccio, 50125, Florence, Italy
| | - Arcangela Frascella
- Institute of Biosciences and Bioresources (IBBR) - National Research Council (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy.
| | - Ludovica Lollini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Stefano Mocali
- Council for Agricultural Research and Economics (CREA) - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, Cascine del Riccio, 50125, Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via Micheli 3, 50121, Firenze, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Florence, Italy.
| | - Giovanni Emiliani
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
3
|
Schlechter RO, Remus‐Emsermann MNP. Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere. Environ Microbiol 2025; 27:e70025. [PMID: 39792582 PMCID: PMC11722692 DOI: 10.1111/1462-2920.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood. To study the changes in population density and spatial distribution of bacteria in synthetic communities, the behaviour of two common bacterial groups in the Arabidopsis thaliana leaf microbiota-Methylobacterium (methylobacteria) and Sphingomonas (sphingomonads)-was examined. Using synthetic communities consisting of two or three species, the hypothesis was tested that the presence of a third species affects the density and spatial interaction of the other two species. Results indicated that methylobacteria exhibit greater sensitivity to changes in population densities and spatial patterns, with higher intra-genus competition and lower densities and aggregation compared to sphingomonads. Pairwise comparisons were insufficient to explain the shifts observed in three-species communities, suggesting that higher-order interactions influence the structuring of complex communities. This emphasises the role of multispecies interactions in determining spatial patterns and community dynamics on the phylloplane.
Collapse
Affiliation(s)
- R. O. Schlechter
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| | - M. N. P. Remus‐Emsermann
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- School of Biological Sciences and Biomolecular Interaction Centre and Bioprotection Research CoreUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
4
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Wang W, Portal-Gonzalez N, Wang X, Li J, Li H, Portieles R, Borras-Hidalgo O, He W, Santos-Bermudez R. Insights into the microbial assembly and metabolites associated with ginger (Zingiber officinale L. Roscoe) microbial niches and agricultural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174395. [PMID: 38992353 DOI: 10.1016/j.scitotenv.2024.174395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Ginger, a vegetable export from China, is well-known for its spicy flavour and use in traditional Chinese medicine. By examining the interactions of ginger plants' microbiome and metabolome, we can gain insights to advance agriculture, the environment, and other fields. Our study used metataxonomic analysis to investigate ginger plants' prokaryotic and fungal microbiomes in open fields and greenhouses. We also conducted untargeted metabolomic analysis to identify specific metabolites closely associated with ginger microbiome assembly under both agricultural conditions. Various bacteria and fungi were classified as generalists or specialists based on their ability to thrive in different environments and microbial niches. Our results indicate that ginger plants grown in greenhouses have a greater prokaryotic diversity, while those grown in open fields exhibit a greater fungal diversity. We have identified specific co-occurring prokaryotic and fungal genera associated with ginger plant agroecosystems that can enhance the health and growth of ginger plants while maintaining a healthy environment. In the open field these genera include Sphingomonas, Methylobacterium-Methylorubrum, Bacillus, Acidovorax, Rhizobium, Microbacterium, unclassified_f_Comamonadaceae, Herbaspirillum, Klebsiella, Enterobacter, Chryseobacterium, Nocardioides, Subgroup_10, Enterococcus, Pseudomonas, Devosia, g_unclassified_f_Chaetomiaceae, Pseudaleuria, Mortierella, Cheilymenia, and Pseudogymnoascus. In the greenhouse, the enriched genera were Rhizobium, Stenotrophomonas, Aureimonas, Bacillus, Nocardioides, Pseudomonas, Enterobacter, Delftia, Trichoderma, Mortierella, Cheilymenia, Schizothecium, and Actinomucor. Our research has identified several previously unknown microbial genera for ginger plant agroecosystems. Furthermore, our study has important implications for understanding the correlation between ginger's microbiome and metabolome profiles in diverse environments and may pave the way for future research. Specific microbial genera in crop production environments are associated with essential metabolites, including Safingol, Docosatrienoic acid, P-acetaminophen, and Hypoglycin B.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China.
| | - Nayanci Portal-Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China.
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China.
| | - Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao 276826, Shandong, People's Republic of China.
| | - Orlando Borras-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao 276826, Shandong, People's Republic of China.
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China.
| | - Ramon Santos-Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
7
|
Ye T, Su H, Zheng G, Meng H, Wang W, Guo Y. Multiomics Reveals the Key Microorganisms and Metabolites in the Resistance to Root Rot Disease of Paris polyphylla. Genes (Basel) 2023; 15:21. [PMID: 38254911 PMCID: PMC10815090 DOI: 10.3390/genes15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Root rot of Paris polyphylla has received widespread attention due to its threat to yield and leads to serious economic losses. However, the relationship among the rhizosphere microbial community, metabolites and root rot disease remained largely unexplored. Herein, we used integrated 16S rRNA, ITS, RNA sequencing and UPLC-MS/MS to systematically investigate the differences between healthy and diseased P. polyphylla. We found that root rot reduced the microbial diversity in the diseased P. polyphylla compared with the healthy control. The relative abundance of the bacterial phylum Actinobacteria increased in the diseased rhizome of P. polyphylla. For the fungal community, root rot disease contributed to an increased relative abundance of Ascomycota and decreased Glomeromycota at the phylum level. The transcriptomic results showed that the differently expressed genes were significantly enriched in the "Biosynthesis of various alkaloids", "flavonoid biosynthesis" and "isoflavonoid biosynthesis" and "Phenylpropanoid biosynthesis" was dramatically enriched in healthy P. polyphylla compared with that in diseased P. polyphylla. Likewise, the metabolomic results showed that the biosynthesis of secondary metabolites and metabolic pathways was found to be significantly enriched by differential metabolites. Taken together, the study of combining metabolomics with microbiomes can help us enhance our understanding of the mechanisms of plant resistance to root rot disease, thereby discovering specific metabolites and microorganisms that can resist pathogen infection in P. polyphylla.
Collapse
Affiliation(s)
- Ting Ye
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen 361006, China; (T.Y.); (H.M.); (W.W.)
| | - Hailan Su
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Germplasm Resources Center, Fuzhou 350000, China;
| | - Guohua Zheng
- Plant Introduction & Quarantine Base and Plant Product Key Laboratory of Xiamen City, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen 361002, China;
| | - Hongyan Meng
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen 361006, China; (T.Y.); (H.M.); (W.W.)
| | - Wenhua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen 361006, China; (T.Y.); (H.M.); (W.W.)
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen 361006, China; (T.Y.); (H.M.); (W.W.)
| |
Collapse
|
8
|
Yuan Z, Ye J, Lin F, Wang X, Yang T, Bi B, Mao Z, Fang S, Wang X, Hao Z, Ali A. Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2023; 12:3854. [PMID: 38005751 PMCID: PMC10674237 DOI: 10.3390/plants12223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Xing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Plant Ecology and Nature Conservation, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China;
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
9
|
Maia M, Aziz A, Jeandet P, Carré V. Profiling and Localization of Stilbene Phytoalexins Revealed by MALDI-MSI during the Grapevine- Botrytis cinerea Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15569-15581. [PMID: 37831964 DOI: 10.1021/acs.jafc.3c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stilbene phytoalexins are among the most accumulated compounds during grapevine-pathogen interactions. However, their steady-state accumulation level and spatial distribution within the tissues to counteract Botrytis cinerea infection remain to be explored. In this work, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used to determine the spatial distribution of different phytoalexins in grapevine leaves upon infection with B. cinerea. Ultraperformance liquid chromatography-fluorescence (UPLC-FL) was also employed to monitor the accumulation pattern of these phytoalexins. This study showed that stilbene compounds accumulate in areas close to the pathogen infection sites. It was also revealed that the accumulation patterns of the stilbene phytoalexins can vary from one time point postinfection to another with specific accumulation patterns within each time point. To the best of our knowledge, this is the first time that the separate localization of grapevine stilbene phytoalexins has been revealed following B. cinerea infection.
Collapse
Affiliation(s)
- Marisa Maia
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Vincent Carré
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| |
Collapse
|
10
|
De Mandal S, Jeon J. Phyllosphere Microbiome in Plant Health and Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3481. [PMID: 37836221 PMCID: PMC10575124 DOI: 10.3390/plants12193481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The phyllosphere refers to the aboveground surface of plants colonized by diverse microorganisms. Microbes inhabiting this environment play an important role in enhancing the host's genomic and metabolic capabilities, including defense against pathogens. Compared to the large volume of studies on rhizosphere microbiome for plant health and defense, our understanding of phyllosphere microbiome remains in its infancy. In this review, we aim to explore the mechanisms that govern the phyllosphere assembly and their function in host defence, as well as highlight the knowledge gaps. These efforts will help develop strategies to harness the phyllosphere microbiome toward sustainable crop production.
Collapse
Affiliation(s)
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
11
|
Gaube P, Marchenko P, Müller C, Schweiger R, Tenhaken R, Keller A, Junker RR. Inter- and intraspecific phytochemical variation correlate with epiphytic flower and leaf bacterial communities. Environ Microbiol 2023; 25:1624-1643. [PMID: 37011905 DOI: 10.1111/1462-2920.16382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Microbes associated with flowers and leaves affect plant health and fitness and modify the chemical phenotypes of plants with consequences for interactions of plants with their environment. However, the drivers of bacterial communities colonizing above-ground parts of grassland plants in the field remain largely unknown. We therefore examined the relationships between phytochemistry and the epiphytic bacterial community composition of flowers and leaves of Ranunculus acris and Trifolium pratense. On 252 plant individuals, we characterized primary and specialized metabolites, that is, surface sugars, volatile organic compounds (VOCs), and metabolic fingerprints, as well as epiphytic flower and leaf bacterial communities. The genomic potential of bacterial colonizers concerning metabolic capacities was assessed using bacterial reference genomes. Phytochemical composition displayed pronounced variation within and between plant species and organs, which explained part of the variation in bacterial community composition. Correlation network analysis suggests strain-specific correlations with metabolites. Analysis of bacterial reference genomes revealed taxon-specific metabolic capabilities that corresponded with genes involved in glycolysis and adaptation to osmotic stress. Our results show relationships between phytochemistry and the flower and leaf bacterial microbiomes suggesting that plants provide chemical niches for distinct bacterial communities. In turn, bacteria may induce alterations in the plants' chemical phenotype. Thus, our study may stimulate further research on the mechanisms of trait-based community assembly in epiphytic bacteria.
Collapse
Affiliation(s)
- Paul Gaube
- Department of Bioinformatics, University of Würzburg, D-97074, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, D-97074, Würzburg, Germany
| | - Polina Marchenko
- Department of Environment and Biodiversity, University of Salzburg, A-5020, Salzburg, Austria
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Raimund Tenhaken
- Department of Environment and Biodiversity, University of Salzburg, A-5020, Salzburg, Austria
| | - Alexander Keller
- Cellular and Organismic Networks, Center for Organismic Adaptation (CORA), Faculty of Biology, LMU Munich, Planegg-Martinsried, D-82152, Germany
| | - Robert R Junker
- Department of Environment and Biodiversity, University of Salzburg, A-5020, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, D-35032, Marburg, Germany
| |
Collapse
|
12
|
Wang Y, Wang X, Wu H, Wang L, Wang H, Lu Z. Characterization of Hsp17, a Novel Small Heat Shock Protein, in Sphingomonas melonis TY under Heat Stress. Microbiol Spectr 2023; 11:e0136023. [PMID: 37436164 PMCID: PMC10434288 DOI: 10.1128/spectrum.01360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria are constantly exposed to a variety of environmental stresses. Temperature is considered one of the most important environmental factors affecting microbial growth and survival. As ubiquitous environmental microorganisms, Sphingomonas species play essential roles in the biodegradation of organic contaminants, plant protection, and environmental remediation. Understanding the mechanism by which they respond to heat shock will help further improve cell resistance by applying synthetic biological strategies. Here, we assessed the transcriptomic and proteomic responses of Sphingomonas melonis TY to heat shock and found that stressful conditions caused significant changes in functional genes related to protein synthesis at the transcriptional level. The most notable changes observed were increases in the transcription (1,857-fold) and protein expression (11-fold) of Hsp17, which belongs to the small heat shock protein family, and the function of Hsp17 in heat stress was further investigated in this study. We found that the deletion of hsp17 reduced the capacity of the cells to tolerate high temperatures, whereas the overexpression of hsp17 significantly enhanced the ability of the cells to withstand high temperatures. Moreover, the heterologous expression of hsp17 in Escherichia coli DH5α conferred to the bacterium the ability to resist heat stress. Interestingly, its cells were elongated and formed connected cells following the increase in temperature, while hsp17 overexpression restored their normal morphology under high temperature. In general, these results indicate that the novel small heat shock protein Hsp17 greatly contributes to maintaining cell viability and morphology under stress conditions. IMPORTANCE Temperature is generally considered the most important factor affecting metabolic functions and the survival of microbes. As molecular chaperones, small heat shock proteins can prevent damaged protein aggregation during abiotic stress, especially heat stress. Sphingomonas species are widely distributed in nature, and they can frequently be found in various extreme environments. However, the role of small heat shock proteins in Sphingomonas under high-temperature stress has not been elucidated. This study greatly enhances our understanding of a novel identified protein, Hsp17, in S. melonis TY in terms of its ability to resist heat stress and maintain cell morphology under high temperature, leading to a broader understanding of how microbes adapt to environmental extremes. Furthermore, our study will provide potential heat resistance elements for further enhancing cellular resistance as well as the synthetic biological applications of Sphingomonas.
Collapse
Affiliation(s)
- Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, Vayena E, Hatzimanikatis V, Vorholt JA. Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023; 381:eadf5121. [PMID: 37410834 DOI: 10.1126/science.adf5121] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Collapse
Affiliation(s)
- Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rahel Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
14
|
Zhang M, Miao Y, Zhang X, Sun X, Li M, Huang L. Revealing ecotype influences on Cistanche sinensis: from the perspective of endophytes to metabolites characteristics. Front Microbiol 2023; 14:1154688. [PMID: 37538848 PMCID: PMC10394521 DOI: 10.3389/fmicb.2023.1154688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Plant microorganism is critical to plant health, adaptability, and productive forces. Intriguingly, the metabolites and microorganisms can act upon each other in a plant. The union of metabolomics and microbiome may uncover the crucial connections of the plant to its microbiome. It has important benefits for the agricultural industry and human being health, particularly for Chinese medical science investigation. Methods In this last 2 years study, on the strength of the UPLC-MS/MS detection platform, we accurately qualitatively, and quantitatively measured the Cistanche sinensis fleshy stems of two ecotypes. Thereafter, through high-throughput amplicon sequencing 16S/ITS sequences were procured. Results PhGs metabolites including echinacoside, isoacteoside, and cistanoside A were significantly downregulated at two ecotypes of C. sinensis. Add up to 876 metabolites were monitored and 231 differential metabolites were analyzed. Further analysis of 34 core differential metabolites showed that 15 compounds with up-regulated belonged to phenolic acids, flavonoids, and organic acids, while 19 compounds with down-regulated belonged to phenolic acids, flavonoids, alkaloids, amino acids, lipids, and nucleotides. There was no noteworthy discrepancy in the endophytic bacteria's α and β diversity between sandy and loam ecotypes. By comparison, the α and β diversity of endophytic fungi was notably distinct. The fungal community of the loam ecotype is more abundant than the sandy ecotype. However, there were few such differences in bacteria. Most abundant genera included typical endophytes such as Phyllobacterium, Mycobacterium, Cistanche, Geosmithia, and Fusarium. LEfSe results revealed there were 11 and 20 biomarkers of endophytic bacteria and fungi in C. sinensis at two ecotypes, respectively. The combination parsing of microflora and metabolites indicated noteworthy relativity between the endophytic fungal communities and metabolite output. Key correlation results that Anseongella was positive relation with Syringin, Arsenicitalea is negative relation with 7-methylxanthine and Pseudogymnoascus is completely positively correlated with nepetin-7-O-alloside. Discussion The aim of this research is: (1) to explore firstly the influence of ecotype on C. sinensis from the perspective of endophytes and metabolites; (2) to investigate the relationship between endophytes and metabolites. This discovery advances our understanding of the interaction between endophytes and plants and provides a theoretical basis for cultivation of C. sinensis in future.
Collapse
Affiliation(s)
- Min Zhang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, College of Pharmacy, Baotou Medical College, Baotou, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, College of Pharmacy, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Pacheco AR, Vorholt JA. Resolving metabolic interaction mechanisms in plant microbiomes. Curr Opin Microbiol 2023; 74:102317. [PMID: 37062173 DOI: 10.1016/j.mib.2023.102317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
Metabolic interactions are fundamental to the assembly and functioning of microbiomes, including those of plants. However, disentangling the molecular basis of these interactions and their specific roles remains a major challenge. Here, we review recent applications of experimental and computational methods toward the elucidation of metabolic interactions in plant-associated microbiomes. We highlight studies that span various scales of taxonomic and environmental complexity, including those that test interaction outcomes in vitro and in planta by deconstructing microbial communities. We also discuss how the continued integration of multiple methods can further reveal the general ecological characteristics of plant microbiomes, as well as provide strategies for applications in areas such as improved plant protection, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
16
|
Poupin MJ, Ledger T, Roselló-Móra R, González B. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2023; 18:9. [PMID: 36803555 PMCID: PMC9938593 DOI: 10.1186/s40793-023-00466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
Collapse
Affiliation(s)
- M J Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - T Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - R Roselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Illes Balears, Majorca, Spain
| | - B González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| |
Collapse
|
17
|
Wang X, Wu H, Wang L, Wang Y, Wang X, Wang H, Lu Z. Global transcriptional and translational regulation of Sphingomonas melonis TY in response to hyperosmotic stress. ENVIRONMENTAL RESEARCH 2023; 219:115014. [PMID: 36549482 DOI: 10.1016/j.envres.2022.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Liu X, Li Y, Micallef SA. Developmentally related and drought-induced shifts in the kale metabolome limited Salmonella enterica association, providing novel insights to enhance food safety. Food Microbiol 2022; 108:104113. [DOI: 10.1016/j.fm.2022.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
|
19
|
Ryback B, Bortfeld-Miller M, Vorholt JA. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. THE ISME JOURNAL 2022; 16:2712-2724. [PMID: 35987782 PMCID: PMC9666465 DOI: 10.1038/s41396-022-01303-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Auxotrophs are unable to synthesize all the metabolites essential for their metabolism and rely on others to provide them. They have been intensively studied in laboratory-generated and -evolved mutants, but emergent adaptation mechanisms to auxotrophy have not been systematically addressed. Here, we investigated auxotrophies in bacteria isolated from Arabidopsis thaliana leaves and found that up to half of the strains have auxotrophic requirements for biotin, niacin, pantothenate and/or thiamine. We then explored the genetic basis of auxotrophy as well as traits that co-occurred with vitamin auxotrophy. We found that auxotrophic strains generally stored coenzymes with the capacity to grow exponentially for 1-3 doublings without vitamin supplementation; however, the highest observed storage was for biotin, which allowed for 9 doublings in one strain. In co-culture experiments, we demonstrated vitamin supply to auxotrophs, and found that auxotrophic strains maintained higher species richness than prototrophs upon external supplementation with vitamins. Extension of a consumer-resource model predicted that auxotrophs can utilize carbon compounds provided by other organisms, suggesting that auxotrophic strains benefit from metabolic by-products beyond vitamins.
Collapse
Affiliation(s)
- Birgitta Ryback
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A. Vorholt
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Micallef SA, Han S, Martinez L. Tomato Cultivar Nyagous Fruit Surface Metabolite Changes during Ripening Affect Salmonella Newport. J Food Prot 2022; 85:1604-1613. [PMID: 36048925 DOI: 10.4315/jfp-22-160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Tomatoes are a valuable crop consumed year-round. Ripe fruit is picked for local sale, whereas tomatoes intended for transit may be harvested at late mature green or breaker stages when fruit firmness preserves quality. In this study, we evaluated Solanum lycopersicum cv. BHN602 association with three Salmonella serotypes and S. lycopersicum cv. Nyagous with Salmonella Newport using fruit at two ripeness stages. Counts of Salmonella Javiana and Typhimurium were higher from red ripe fruit surfaces of BHN602, and counts of Salmonella Newport were higher from ripe Nyagous fruit than from mature green fruit (P < 0.05). Aqueous fruit washes containing fruit surface compounds collected from ripe Nyagous fruit supported more Salmonella Newport growth than green fruit washes (P < 0.05). Growth curve analysis showed that between 2 and 6 h, Salmonella Newport grew at a rate of 0.25 log CFU/h in red fruit wash compared with 0.17 log CFU/h in green fruit wash (P < 0.05). The parallel trend in Salmonella interaction between fruit and wash suggested that surface metabolite differences between unripe and ripe fruit affect Salmonella dynamics. Untargeted phytochemical profiling of tomato fruit surface washes with gas chromatography time-of-flight mass spectrometry showed that ripe fruit had threefold-lower amino acid and fourfold-higher sugar (fructose, glucose, and xylose) levels than green fruit. Green fruit had higher levels of lauric, palmitic, margaric, and arachidic acids, whereas red fruit had more capric acid. The phenolics ferulic, chlorogenic, and vanillic acid, as well as tyrosol, also decreased with ripening. Although limitations of this study preclude conclusions on how specific compounds affect Salmonella, our study highlights the complexity of the plant niche for foodborne pathogens and the importance of understanding the metabolite landscape Salmonella encounters on fresh produce. Fruit surface phytochemical profiling generated testable hypotheses for future studies exploring the differential Salmonella interactions with tomato varieties and fruit at various ripeness stages. HIGHLIGHTS
Collapse
Affiliation(s)
- Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| | - Sanghyun Han
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Louisa Martinez
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
21
|
Santamaría‐Hernando S, López‐Maroto Á, Galvez‐Roldán C, Munar‐Palmer M, Monteagudo‐Cascales E, Rodríguez‐Herva J, Krell T, López‐Solanilla E. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. MOLECULAR PLANT PATHOLOGY 2022; 23:1433-1445. [PMID: 35689388 PMCID: PMC9452764 DOI: 10.1111/mpp.13238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant-derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l-Pro, two abundant components of the tomato apoplast, through the PsPto-PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto-PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto-PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l-Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Álvaro López‐Maroto
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Clara Galvez‐Roldán
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Martí Munar‐Palmer
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Elizabet Monteagudo‐Cascales
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - José‐Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| | - Tino Krell
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| |
Collapse
|
22
|
Kang L, Luo W, Dai Q, Zhou H, Wei W, Tang J, Han H, Yuan Y, Long J, Zhang Z, Hong M. Giant pandas' staple food bamboo phyllosphere fungal community and its influencing factors. Front Microbiol 2022; 13:1009588. [PMID: 36246256 PMCID: PMC9561849 DOI: 10.3389/fmicb.2022.1009588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Giant pandas have developed a series of foraging strategies to adapt to their special bamboo diets. Although bamboo is an important food resource for giant pandas in Liziping National Nature Reserve (Liziping NR), China, there are relatively few studies on their phyllosphere fungal community and its influencing factors. Herein, we used ITS1 amplification and metagenomic sequencing to analyze the phyllosphere fungi diversity and functions (KEGG, CAZyme, and antibiotic resistance gene) and explore the influencing factors for the three giant pandas foraging bamboo species (Arundinaria spanostachya, AS; Yushania lineolate, YL; and Fargesia ferax, FF) over different seasons (spring vs. autumn) in Liziping NR, China. We found that Ascomycota and Basidiomycota were the most dominant phyla in the bamboo phyllosphere. The alpha diversity (e.g., the Sobs index and Shannon index) was relatively higher in autumn samples than in spring samples, and the community structure differed significantly between the three bamboo species in spring and autumn. Some biotic and abiotic variables (e.g., the elevation and mean base diameter of bamboo) significantly influenced the abundance, diversity, and community structure of the bamboo phyllosphere fungal community. Moreover, the functional analysis showed the differences in the glycoside hydrolase community and antibiotic resistance gene (ARG) profile between spring and autumn samples. Co-occurrence network modeling suggested that AS phyllosphere fungal communities in autumn employed a much more complex network than that in spring, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was high and closely correlated with other ARGs. These results indicate that fungal community's abundance, diversity, and community structure are mainly affected by the season, host species, and elevation. The season and host species are major factors affecting the biological functions (KEGG and CAZyme), ARGs, and interactions between sympatric bacterial and fungal communities in bamboo phyllosphere. This integrated study can provide a reference basis for the seasonal management of bamboo resources foraged by wild giant pandas, and predict the risk of antibiotic resistance in bamboo phyllosphere fungal flora in Liziping NR (Xiaoxiangling mountains), China.
Collapse
Affiliation(s)
- Liwen Kang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Luo
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Qinglong Dai
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Hong Zhou
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Wei
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Junfeng Tang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Han Han
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yuan Yuan
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Juejie Long
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zejun Zhang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Mingsheng Hong
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
23
|
Ahmad M, Varela Alonso A, Koletti AE, Assimopoulou AN, Declerck S, Schneider C, Molin EM. Transcriptional dynamics of Chitinophaga sp. strain R-73072-mediated alkannin/shikonin biosynthesis in Lithospermum officinale. Front Microbiol 2022; 13:978021. [PMID: 36071973 PMCID: PMC9441710 DOI: 10.3389/fmicb.2022.978021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023] Open
Abstract
Plants are colonized by a wide range of bacteria, several of which are known to confer benefits to their hosts such as enhancing plant growth and the biosynthesis of secondary metabolites (SMs). Recently, it has been shown that Chitinophaga sp. strain R-73072 enhances the production of alkannin/shikonin, SMs of pharmaceutical and ecological importance. However, the mechanisms by which this bacterial strain increases these SMs in plants are not yet understood. To gain insight into these mechanisms, we analyzed the molecular responses of Lithospermum officinale, an alkannin/shikonin producing member of Boraginaceae, to inoculation with R-73072 in a gnotobiotic system using comparative transcriptomics and targeted metabolite profiling of root samples. We found that R-73072 modulated the expression of 1,328 genes, of which the majority appeared to be involved in plant defense and SMs biosynthesis including alkannin/shikonin derivatives. Importantly, bacterial inoculation induced the expression of genes that predominately participate in jasmonate and ethylene biosynthesis and signaling, suggesting an important role of these phytohormones in R-73072-mediated alkannin/shikonin biosynthesis. A detached leaf bioassay further showed that R-73072 confers systemic protection against Botrytis cinerea. Finally, R-73072-mediated coregulation of genes involved in plant defense and the enhanced production of alkannin/shikonin esters further suggest that these SMs could be important components of the plant defense machinery in alkannin/shikonin producing species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria,Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Alicia Varela Alonso
- Institut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany,Earth and Life Institute, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antigoni E. Koletti
- School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation of AUTh, Natural Products, Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana N. Assimopoulou
- School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation of AUTh, Natural Products, Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stéphane Declerck
- Earth and Life Institute, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Eva M. Molin
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria,*Correspondence: Eva M. Molin,
| |
Collapse
|
24
|
Maia M, Carré V, Aziz A, Jeandet P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9243-9245. [PMID: 35852307 DOI: 10.1021/acs.jafc.2c04208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Marisa Maia
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | - Aziz Aziz
- University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE, Reims 51100, France
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE, Reims 51100, France
| |
Collapse
|
25
|
Correlation between the Concentration of Secondary Metabolites and Soil Microorganisms in Sophora Koreensis Nakai from Different Habitat. FORESTS 2022. [DOI: 10.3390/f13071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sophora koreensis is an endemic species of Gangwon-do, Korea, that has a variety of applications for foods and for folk remedies. Here this research analyzed and compared compounds present in leaves, stems, and roots of S. koreensis collected from three different habitats in Chuncheon, Inje and Yanggu in South Korea. This research also analyzed soil microorganisms present in the three habitats to determine the correlation between the compound and microorganisms. N-methylcytisine was the most common compound in all three habitats, but the amounts varied with Chuncheon having the highest amount (509 mg/L), followed by Yanggu and Inje(102 mg/L and 39 mg/L, respectively). The composition of microorganisms also varied by habitat. Yanggu, Inje, and Chuncheon had 1013, 973, and 814 taxa, respectively. According to the phylogenetic relations, the composition of the soil microorganisms in Chuncheon was significantly different from the other two. It contained more PAC000121_g (Solibacteres), major taxa in all three habitats (14% in Chuncheon). In contrast less Opitutus minor taxa was found than Yannggu and Inje. The correlation between the soil microorganism N-methylcytisine was analyzed. Among these microorganisms, Paraburkholderia had a positive correlation with N-methylcytisine. Meanwhile, Rhizomicrobium, CP011215_f (Paceibacter), KB906767_g (Solibacteres) and Opitutus negatively correlated with N-methylcytisine. The results suggested that soil microorganisms in the habitats influenced the variations of the N-methylcytisine.
Collapse
|
26
|
Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ. Nat Commun 2022; 13:2836. [PMID: 35595740 PMCID: PMC9123166 DOI: 10.1038/s41467-022-30469-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Differences between species promote stable coexistence in a resource-limited environment. These differences can result from interspecies competition leading to character shifts, a process referred to as character displacement. While character displacement is often interpreted as a consequence of genetically fixed trait differences between species, it can also be mediated by phenotypic plasticity in response to the presence of another species. Here, we test whether phenotypic plasticity leads to a shift in proteome allocation during co-occurrence of two bacterial species from the abundant, leaf-colonizing families Sphingomonadaceae and Rhizobiaceae in their natural habitat. Upon mono-colonizing of the phyllosphere, both species exhibit specific and shared protein functions indicating a niche overlap. During co-colonization, quantitative differences in the protein repertoire of both bacterial populations occur as a result of bacterial coexistence in planta. Specifically, the Sphingomonas strain produces enzymes for the metabolization of xylan, while the Rhizobium strain reprograms its metabolism to beta-oxidation of fatty acids fueled via the glyoxylate cycle and adapts its biotin acquisition. We demonstrate the conditional relevance of cross-species facilitation by mutagenesis leading to loss of fitness in competition in planta. Our results show that dynamic character displacement and niche facilitation mediated by phenotypic plasticity can contribute to species coexistence. In this study, the concept of dynamic character displacement among interacting bacterial species from leaf-colonizing families was empirically tested using a proteomics approach. A phenotypic shift towards the utilization of alternative carbon sources was observed during coexistence, thereby minimizing niche overlap.
Collapse
|
27
|
Ajith A, Milnes PJ, Johnson GN, Lockyer NP. Mass Spectrometry Imaging for Spatial Chemical Profiling of Vegetative Parts of Plants. PLANTS 2022; 11:plants11091234. [PMID: 35567235 PMCID: PMC9102225 DOI: 10.3390/plants11091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
The detection of chemical species and understanding their respective localisations in tissues have important implications in plant science. The conventional methods for imaging spatial localisation of chemical species are often restricted by the number of species that can be identified and is mostly done in a targeted manner. Mass spectrometry imaging combines the ability of traditional mass spectrometry to detect numerous chemical species in a sample with their spatial localisation information by analysing the specimen in a 2D manner. This article details the popular mass spectrometry imaging methodologies which are widely pursued along with their respective sample preparation and the data analysis methods that are commonly used. We also review the advancements through the years in the usage of the technique for the spatial profiling of endogenous metabolites, detection of xenobiotic agrochemicals and disease detection in plants. As an actively pursued area of research, we also address the hurdles in the analysis of plant tissues, the future scopes and an integrated approach to analyse samples combining different mass spectrometry imaging methods to obtain the most information from a sample of interest.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
| | - Phillip J. Milnes
- Syngenta, Jeolott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PY, UK;
| | - Nicholas P. Lockyer
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
28
|
Xu N, Zhao Q, Zhang Z, Zhang Q, Wang Y, Qin G, Ke M, Qiu D, Peijnenburg WJGM, Lu T, Qian H. Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4860-4870. [PMID: 35435673 DOI: 10.1021/acs.jafc.2c01113] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The leaves of plants are colonized by various microorganisms. In comparison to the rhizosphere, less is known about the characteristics and ecological functions of phyllosphere microorganisms. Phyllosphere microorganisms mainly originate from soil, air, and seeds. The composition of phyllosphere microorganisms is mainly affected by ecological and abiotic factors. Phyllosphere microorganisms execute multiple ecological functions by influencing leaf functions and longevity, seed mass, fruit development, and homeostasis of host growth. A plant can respond to phyllosphere microorganisms by secondary metabolite secretion and its immune system. Meanwhile, phyllosphere microorganisms play an important role in ecological stability and environmental safety assessment. However, as a result of the instability of the phyllosphere environment and the poor cultivability of phyllosphere microorganisms in the current research, there are still many limitations, such as the lack of insight into the mechanisms of plant-microorganism interactions, the roles of phyllosphere microorganisms in plant growth processes, the responses of phyllosphere microorganisms to plant metabolites, etc. This review summarizes the latest progress made in the research of the phyllosphere in recent years. This is beneficial for deepening our understanding of phyllosphere microorganisms and promoting the research of plant-atmosphere interactions, plant pathogens, and plant biological control.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang 830011, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Post Office Box 1, 3720 BA Bilthoven, Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| |
Collapse
|
29
|
Li H, Shi H, Xu P, Yu D. Metabolomics and microbiome reveal potential root microbiota affecting the alkaloidal metabolome in Aconitum vilmorinianum Kom. BMC Microbiol 2022; 22:70. [PMID: 35264111 PMCID: PMC8905797 DOI: 10.1186/s12866-022-02486-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Background The plant microbiome is vital for plant health, fitness, and productivity. Interestingly, plant metabolites and the plant microbiome can influence each other. The combination of metabolomics and microbiome may reveal the critical links between the plant and its microbiome. It is of great significance to agricultural production and human health, especially for Chinese medicine research. Aconitum vilmorinianum Kom. is a herb with alkaloid activities, and its roots are the raw material for some Chinese medicines. Former studies have investigated alkaloidal metabolites and antibacterial activities of endophytes in A. vilmorinianum roots. However, there are limited reports on the root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum. Results This research used ultra performance liquid chromatography-tandem mass spectrometry technology and high-throughput sequencing to examine the alkaloidal metabolome, bacterial microbiota, and fungal microbiota in A. vilmorinianum roots at two different sites in China. The results revealed that the samples from the two sites were rich in distinct alkaloidal metabolites and recruited significantly different root microbiota. Based on bioinformatics analysis, we found the potential bacterial and fungal microbiota impacting the alkaloidal metabolome in A. vilmorinianum. Conclusion Our findings reveal the composition of the alkaloidal metabolome, bacterial root microbiota, and fungal root microbiota in A. vilmorinianum roots at two different sites. Potential root microbiota that can influence the alkaloidal metabolome of A. vilmorinianum are indicated. This study provides a strategy for the cultivation and research of A. vilmorinianum and other Chinese herbs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02486-1.
Collapse
Affiliation(s)
- Hongrui Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongdi Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
30
|
Chen H, Chen J, Qi Y, Chu S, Ma Y, Xu L, Lv S, Zhang H, Yang D, Zhu Y, Mans DR, Liang Z. Endophytic fungus Cladosporium tenuissimum DF11, an efficient inducer of tanshinone biosynthesis in Salvia miltiorrhiza roots. PHYTOCHEMISTRY 2022; 194:113021. [PMID: 34826795 DOI: 10.1016/j.phytochem.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Salvia miltiorrhiza is a traditional medicinal plant mainly used for cardiovascular and cerebrovascular disease treatment. Tanshinones are the main bioactive constituents of S. miltiorrhiza, which mainly accumulate around its root periderm tissue. Endophytic fungi are important bioelicitors or probiotics that can promote the accumulation of secondary metabolites and sustainable cultivation of medicinal plants. Among them, endophytic Cladosporium spp., possessing a variety of biotransformation and metabolic abilities, is an ideal elicitor source. Here, we used a gnotobiotic system to investigate the effects of the endophytic fungus Cladosporium tenuissimum DF11 on tanshinone biosynthesis in S. miltiorrhiza roots. The results showed that C. tenuissimum DF11 mainly colonizes the intercellular space of the root tissues and promotes tanshinone biosynthesis and accumulation in S. miltiorrhiza roots by upregulating the expression of the genes encoding for key enzymes HMGR, DXS, DXR, GGPPS, CPS, KSL and CYP76AH1 of the tanshinone biosynthesis pathway. The expression levels of almost all genes encoding for key enzymes reached the response peak in the first or second week after DF11 colonization. Taken together, the endophytic fungus C. tenuissimum DF11 could promote secondary metabolite accumulation in S. miltiorrhiza roots. These results indicate that DF11 will be a potential biofertilizer fungus to regulate and stabilize the quality of cultivated S. miltiorrhiza medicinal materials.
Collapse
Affiliation(s)
- Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jialing Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yao Qi
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yao Ma
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Linna Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Shiyi Lv
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Haihua Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yonghong Zhu
- Tianjin Tasly Holding Group Co., Ltd., Tianjin, China
| | - Dennis Ra Mans
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|
32
|
Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res 2021; 40:45-58. [PMID: 36100333 PMCID: PMC9481936 DOI: 10.1016/j.jare.2021.11.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Plant-microbiome interaction occurs at the rhizosphere, endosphere, and phyllosphere. Root exudates can favor the recruitment of a beneficial microbiome in the rhizosphere. Plant topology and phytochemistry influence the recruitment of the phyllosphere microbiome. Diverse plant strategies selectively recruit beneficial microbiomes. Multiple plant mechanisms displace potential pathogens from the rhizosphere. The beneficial microbiome helps plants to recruit other beneficial microbiota.
Background Research on beneficial mechanisms by plant-associated microbiomes, such as plant growth stimulation and protection from plant pathogens, has gained considerable attention over the past decades; however, the mechanisms used by plants to recruit their microbiome is largely unknown. Aim of Review Here, we review the latest studies that have begun to reveal plant strategies in selectively recruiting beneficial microbiomes, and how they manage to exclude potential pathogens. Key Scientific concepts of Review: We examine how plants attract beneficial microbiota from the main areas of interaction, such as the rhizosphere, endosphere, and phyllosphere, and demonstrate that such process occurs by producing root exudates, and recognizing molecules produced by the beneficial microbiota or distinguishing pathogens using specific receptors, or by triggering signals that support plant-microbiome homeostasis. Second, we analyzed the main environmental or biotic factors that modulate the structure and successional dynamics of microbial communities. Finally, we review how the associated microbiome is capable of engaging with other synergistic microbes, hence providing an additional element of selection. Collectively, this study reveals the importance of understanding the complex network of plant interactions, which will improve the understanding of bioinoculant application in agriculture, based on a microbiome that interacts efficiently with plant organs under different environmental conditions.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
33
|
Long J, Luo W, Xie J, Yuan Y, Wang J, Kang L, Li Y, Zhang Z, Hong M. Environmental Factors Influencing Phyllosphere Bacterial Communities in Giant Pandas' Staple Food Bamboos. Front Microbiol 2021; 12:748141. [PMID: 34803968 PMCID: PMC8595598 DOI: 10.3389/fmicb.2021.748141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The giant panda has developed a series of evolutionary strategies to adapt to a bamboo diet. The abundance and diversity of the phyllosphere microbiome change dramatically depending on the season, host species, location, etc., which may, in turn, affect the growth and health of host plants. However, few studies have investigated the factors that influence phyllosphere bacteria in bamboo, a staple food source of the giant panda. Amplicon sequencing of the 16S rRNA gene was used to explore the abundance and diversity of phyllosphere bacteria in three bamboo species (Arundinaria spanostachya, Yushania lineolate, and Fargesia ferax) over different seasons (spring vs. autumn), elevation, distance from water, etc., in Liziping National Nature Reserve (Liziping NR), China. And whole-genome shotgun sequencing uncovered the differences in biological functions (KEGG and Carbohydrate-Active enzymes functions) of A. spanostachya phyllosphere bacteria between spring and autumn. The results showed that the abundance and diversity of F. ferax phyllosphere bacteria were greater than that of the other two bamboo species in both seasons. And three kinds of bamboo phyllosphere bacteria in autumn were significantly higher than in spring. The season was a more important factor than host bamboo species in determining the community structure of phyllosphere bacteria based on the (un)weighted UniFrac distance matrix. The composition, diversity, and community structure of phyllosphere bacteria in bamboo were primarily affected by the season, species, altitude, tree layer, and shrub layer. Different bacterial communities perform different functions in different bamboo species, and long-term low temperatures may shape more varied and complex KEGG and Carbohydrate-Active enzymes functions in spring. Our study presented a deeper understanding of factors influencing the bacterial community in the bamboo phyllosphere. These integrated results offer an original insight into bamboo, which can provide a reference for the restoration and management of giant panda bamboo food resources in the Xiaoxiangling mountains.
Collapse
Affiliation(s)
- Juejie Long
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Luo
- Liziping National Nature Reserve Administration, Ya'an, China
| | - Jianmei Xie
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yuan Yuan
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jia Wang
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Liwen Kang
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yi Li
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zejun Zhang
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Mingsheng Hong
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
34
|
Ahmed B, Hijri M. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J Cannabis Res 2021; 3:25. [PMID: 34217364 PMCID: PMC8254954 DOI: 10.1186/s42238-021-00082-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cannabis growing practices and particularly indoor cultivation conditions have a great influence on the production of cannabinoids. Plant-associated microbes may affect nutrient acquisition by the plant. However, beneficial microbes influencing cannabinoid biosynthesis remain largely unexplored and unexploited in cannabis production. OBJECTIVE To summarize study outcomes on bacterial and fungal communities associated with cannabis using high-throughput sequencing technologies and to uncover microbial interactions, species diversity, and microbial network connections that potentially influence secondary metabolite production in cannabis. MATERIALS AND METHOD A mini review was conducted including recent publications on cannabis and their associated microbiota and secondary metabolite production. RESULTS In this review, we provide an overview of the potential role of the soil microbiome in production of cannabinoids, and discussed that manipulation of cannabis-associated microbiome obtained through soil amendment interventions of diversified microbial communities sourced from natural forest soil could potentially help producers of cannabis to improve yields of cannabinoids and enhance the balance of cannabidiol (CBD) and tetrahydrocannabinol (THC) proportions. CONCLUSION Cannabis is one of the oldest cultivated crops in history, grown for food, fiber, and drugs for thousands of years. Extension of genetic variation in cannabis has developed into wide-ranging varieties with various complementary phenotypes and secondary metabolites. For medical or pharmaceutical purposes, the ratio of CBD to THC is key. Therefore, studying soil microbiota associated with cannabis and its potential impact on secondary metabolites production could be useful when selecting microorganisms as bioinoculant agents for enhanced organic cannabinoid production.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
35
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
36
|
Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 2021; 248:126763. [PMID: 33892241 DOI: 10.1016/j.micres.2021.126763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Ensuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g. reduced use of agrochemicals). Most governmental and inter-governmental agencies have highlighted the need for alternative approaches that harness natural resource to address this. Use of beneficial phytomicrobiome, (i.e. microbes intimately associated with plant tissues) is considered as one of the viable solutions to meet the twin challenges of food security and environmental sustainability. A diverse number of important microbes are found in various parts of the plant, i.e. root, shoot, leaf, seed, and flower, which play significant roles in plant health, development and productivity, and could contribute directly to improving the quality and quantity of food production. The phytomicrobiome can also increase productivity via increased resource use efficiency and resilience to biotic and abiotic stresses. In this article, we explore the role of phytomicrobiome in plant health and how functional properties of microbiome can be harnessed to increase agricultural productivity in environmental-friendly approaches. However, significant technical and translation challenges remain such as inconsistency in efficacy of microbial products in field conditions and a lack of tools to manipulate microbiome in situ. We propose pathways that require a system-based approach to realize the potential to phytomicrobiome in contributing towards food security. We suggest if these technical and translation constraints could be systematically addressed, phytomicrobiome can significantly contribute towards the sustainable increase in agriculture productivity and food security.
Collapse
Affiliation(s)
- Gowardhan Kumar Chouhan
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| |
Collapse
|
37
|
Souza FFC, Mathai PP, Pauliquevis T, Balsanelli E, Pedrosa FO, Souza EM, Baura VA, Monteiro RA, Cruz LM, Souza RAF, Andreae MO, Barbosa CGG, de Angelis IH, Sánchez-Parra B, Pӧhlker C, Weber B, Ruff E, Reis RA, Godoi RHM, Sadowsky MJ, Huergo LF. Influence of seasonality on the aerosol microbiome of the Amazon rainforest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144092. [PMID: 33341626 DOI: 10.1016/j.scitotenv.2020.144092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.
Collapse
Affiliation(s)
| | - Prince P Mathai
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Fabio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Valter A Baura
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rose A Monteiro
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Leonardo M Cruz
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rodrigo A F Souza
- Meteorology Department, State University of Amazonas - UEA, Manaus, AM, Brazil
| | - Meinrat O Andreae
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Scripps Institution of Oceanography, University of San Diego, La Jolla, CA, USA
| | - Cybelli G G Barbosa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | | | - Christopher Pӧhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Institut für Biologie, University of Graz, Graz, Austria
| | - Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, USA; J Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, USA
| | | | | | | | | |
Collapse
|
38
|
Santamaría‐Hernando S, Cerna‐Vargas JP, Martínez‐García PM, de Francisco‐de Polanco S, Nebreda S, Rodríguez‐Palenzuela P, Rodríguez‐Herva JJ, López‐Solanilla E. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1606-1619. [PMID: 33029921 PMCID: PMC7694672 DOI: 10.1111/mpp.13001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/01/2023]
Abstract
Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Jean Paul Cerna‐Vargas
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pedro Manuel Martínez‐García
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERAvenida Americo VespucioSevilleSpain
| | - Sofía de Francisco‐de Polanco
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones Científicas, Avenida Ramiro de MaeztuMadridSpain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pablo Rodríguez‐Palenzuela
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - José Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
39
|
Katsoula A, Vasileiadis S, Sapountzi M, Karpouzas DG. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiol Ecol 2020; 96:5813261. [PMID: 32221586 DOI: 10.1093/femsec/fiaa056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Pesticides interact with microorganisms in various ways with the outcome being negative or positive for the soil microbiota. Pesticides' effects on soil microorganisms have been studied extensively in soil but not in other pesticides-exposed microbial habitats like the phyllosphere. We tested the hypothesis that soil and phyllosphere support distinct microbial communities, but exhibit a similar response (accelerated biodegradation or toxicity) to repeated exposure to the fungicide iprodione. Pepper plants received four repeated foliage or soil applications of iprodione, which accelerated its degradation in soil (DT50_1st = 1.23 and DT50_4th = 0.48 days) and on plant leaves (DT50_1st > 365 and DT50_4th = 5.95 days). The composition of the epiphytic and soil bacterial and fungal communities, determined by amplicon sequencing, was significantly altered by iprodione. The archaeal epiphytic and soil communities responded differently; the former showed no response to iprodione. Three iprodione-degrading Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed iprodione to 3,5-dichloraniline via the formation of 3,5-dichlorophenyl-carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived arthrobacters implying a phylogenetic specialization in iprodione biotransformation. Our results suggest that iprodione-repeated application could affect soil and epiphytic microbial communities with implications for the homeostasis of the plant-soil system and agricultural production.
Collapse
Affiliation(s)
- A Katsoula
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - S Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - M Sapountzi
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| |
Collapse
|
40
|
Shakir S, Zaidi SSEA, de Vries FT, Mansoor S. Plant Genetic Networks Shaping Phyllosphere Microbial Community. Trends Genet 2020; 37:306-316. [PMID: 33036802 DOI: 10.1016/j.tig.2020.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Phyllosphere microbial communities inhabit the aerial plant parts, such as leaves and flowers, where they form complex molecular interactions with the host plant. Contrary to the relatively well-studied rhizosphere microbiome, scientists are just starting to understand, and potentially utilize, the phyllosphere microbiome. In this article, we summarize the recent studies that have provided novel insights into the mechanism of the host genotype shaping the phyllosphere microbiome and the possibility to select a stable and well-adapted microbiome. We also discuss the most pressing gaps in our knowledge and identify the most promising research directions and tools for understanding the assembly and function of phyllosphere microbiomes - this understanding is necessary if we are to harness phyllosphere microbiomes for improving plant growth and health in managed systems.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
41
|
Moitinho MA, Souza DT, Chiaramonte JB, Bononi L, Melo IS, Taketani RG. The unexplored bacterial lifestyle on leaf surface. Braz J Microbiol 2020; 51:1233-1240. [PMID: 32363565 PMCID: PMC7455623 DOI: 10.1007/s42770-020-00287-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Social interactions impact microbial communities and these relationships are mediated by small molecules. The chemical ecology of bacteria on the phylloplane environment is still little explored. The harsh environmental conditions found on leaf surface require high metabolic performances of the bacteria in order to survive. That is interesting both for scientific fields of prospecting natural molecules and for the ecological studies. Important queries about the bacterial lifestyle on leaf surface remain not fully comprehended. Does the hostility of the environment increase the populations' cellular altruism by the production of molecules, which can benefit the whole community? Or does the reverse occur and the production of molecules related to competition between species is increased? Does the phylogenetic distance between the bacterial populations influence the chemical profile during social interactions? Do phylogenetically related bacteria tend to cooperate more than the distant ones? The phylloplane contains high levels of yet uncultivated microorganisms, and understanding the molecular basis of the social networks on this habitat is crucial to gain new insights on the ecology of the mysterious community members due to interspecies molecular dependence. Here, we review and discuss what is known about bacterial social interactions and their chemical lifestyle on leaf surface.
Collapse
Affiliation(s)
- Marta A Moitinho
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Danilo T Souza
- Laboratory of Mass Spectrometry Applied Natural Products Chemistry; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Josiane B Chiaramonte
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Laura Bononi
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Itamar S Melo
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
| | - Rodrigo G Taketani
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
- CETEM, Centre for Mineral Technology, MCTIC Ministry of Science, Technology, Innovation and Communication, Av. Pedro Calmon, 900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-908, Brazil.
| |
Collapse
|
42
|
Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front Microbiol 2020; 11:1619. [PMID: 32760378 PMCID: PMC7372246 DOI: 10.3389/fmicb.2020.01619] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.
Collapse
Affiliation(s)
- Marie Legein
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Babette Muyshondt
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Laboratory for Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
44
|
Lajoie G, Maglione R, Kembel SW. Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. MICROBIOME 2020; 8:70. [PMID: 32438916 PMCID: PMC7243311 DOI: 10.1186/s40168-020-00844-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND The phyllosphere is an important microbial habitat, but our understanding of how plant hosts drive the composition of their associated leaf microbial communities and whether taxonomic associations between plants and phyllosphere microbes represent adaptive matching remains limited. In this study, we quantify bacterial functional diversity in the phyllosphere of 17 tree species in a diverse neotropical forest using metagenomic shotgun sequencing. We ask how hosts drive the functional composition of phyllosphere communities and their turnover across tree species, using host functional traits and phylogeny. RESULTS Neotropical tree phyllosphere communities are dominated by functions related to the metabolism of carbohydrates, amino acids, and energy acquisition, along with environmental signalling pathways involved in membrane transport. While most functional variation was observed within communities, there is non-random assembly of microbial functions across host species possessing different leaf traits. Metabolic functions related to biosynthesis and degradation of secondary compounds, along with signal transduction and cell-cell adhesion, were particularly important in driving the match between microbial functions and host traits. These microbial functions were also evolutionarily conserved across the host phylogeny. CONCLUSIONS Functional profiling based on metagenomic shotgun sequencing offers evidence for the presence of a core functional microbiota across phyllosphere communities of neotropical trees. While functional turnover across phyllosphere communities is relatively small, the association between microbial functions and leaf trait gradients among host species supports a significant role for plant hosts as selective filters on phyllosphere community assembly. This interpretation is supported by the presence of phylogenetic signal for the microbial traits driving inter-community variation across the host phylogeny. Taken together, our results suggest that there is adaptive matching between phyllosphere microbes and their plant hosts. Video abstract.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des sciences biologiques, Université du Québec à Montréal, 141, Avenue du Président-Kennedy, Montréal, Quebec, H2X 1Y4 Canada
| | - Rémi Maglione
- Département des sciences biologiques, Université du Québec à Montréal, 141, Avenue du Président-Kennedy, Montréal, Quebec, H2X 1Y4 Canada
| | - Steven W. Kembel
- Département des sciences biologiques, Université du Québec à Montréal, 141, Avenue du Président-Kennedy, Montréal, Quebec, H2X 1Y4 Canada
| |
Collapse
|
45
|
Saunier A, Mpamah P, Biasi C, Blande JD. Microorganisms in the phylloplane modulate the BVOC emissions of Brassica nigra leaves. PLANT SIGNALING & BEHAVIOR 2020; 15:1728468. [PMID: 32056488 PMCID: PMC7194374 DOI: 10.1080/15592324.2020.1728468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Numerous factors can affect the Biogenic Volatile Organic Compounds (BVOC) emitted by plants. One of these factors is the microbial communities living on leaf surfaces (phylloplane). Bacteria and fungi can use compounds produced and emitted by plants for their own metabolism. Thus, microorganism communities can modulate BVOC emissions and affect interactions between plants and other organisms. The aim of this study was to evaluate the role of microbial communities on BVOC emissions of Brassica nigra leaves. Therefore, we removed bacteria and/or fungi by using bactericide/fungicide treatments in a factorial design experiment with Brassica nigra grown in pots. BVOC emissions were sampled before and after the treatment application. Our results showed that four new compounds (cyclohexanone, cyclohexyl cyanide and two unknown compounds) were emitted after the removal of fungi, whereas no effect was detected in response to the bactericide treatment. This suggests that fungi inhibit or reduce the production of the above mentioned BVOCs from Brassica nigra leaves or use those compounds for their own metabolism. The origin and the roles of the novel compounds emitted requires further investigation.
Collapse
Affiliation(s)
- Amelie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Promise Mpamah
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Phenotypic diversity of Methylobacterium associated with rice landraces in North-East India. PLoS One 2020; 15:e0228550. [PMID: 32092057 PMCID: PMC7039438 DOI: 10.1371/journal.pone.0228550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 11/19/2022] Open
Abstract
The ecology and distribution of many bacteria is strongly associated with specific eukaryotic hosts. However, the impact of such host association on bacterial ecology and evolution is not well understood. Bacteria from the genus Methylobacterium consume plant-derived methanol, and are some of the most abundant and widespread plant-associated bacteria. In addition, many of these species impact plant fitness. To determine the ecology and distribution of Methylobacterium in nature, we sampled bacteria from 36 distinct rice landraces, traditionally grown in geographically isolated locations in North-East (NE) India. These landraces have been selected for diverse phenotypic traits by local communities, and we expected that the divergent selection on hosts may have also generated divergence in associated Methylobacterium strains. We determined the ability of 91 distinct rice-associated Methylobacterium isolates to use a panel of carbon sources, finding substantial variability in carbon use profiles. Consistent with our expectation, across spatial scales this phenotypic variation was largely explained by host landrace identity rather than geographical factors or bacterial taxonomy. However, variation in carbon utilisation was not correlated with sugar exudates on leaf surfaces, suggesting that bacterial carbon use profiles do not directly determine bacterial colonization across landraces. Finally, experiments showed that at least some rice landraces gain an early growth advantage from their specific phyllosphere-colonizing Methylobacterium strains. Together, our results suggest that landrace-specific host-microbial relationships may contribute to spatial structure in rice-associated Methylobacterium in a natural ecosystem. In turn, association with specific bacteria may provide new ways to preserve and understand diversity in one of the most important food crops of the world.
Collapse
|
47
|
O'Banion BS, O'Neal L, Alexandre G, Lebeis SL. Bridging the Gap Between Single-Strain and Community-Level Plant-Microbe Chemical Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:124-134. [PMID: 31687914 DOI: 10.1094/mpmi-04-19-0115-cr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although the influence of microbiomes on the health of plant hosts is evident, specific mechanisms shaping the structure and dynamics of microbial communities in the phyllosphere and rhizosphere are only beginning to become clear. Traditionally, plant-microbe interactions have been studied using cultured microbial isolates and plant hosts but the rising use of 'omics tools provides novel snapshots of the total complex community in situ. Here, we discuss the recent advances in tools and techniques used to monitor plant-microbe interactions and the chemical signals that influence these relationships in above- and belowground tissues. Particularly, we highlight advances in integrated microscopy that allow observation of the chemical exchange between individual plant and microbial cells, as well as high-throughput, culture-independent approaches to investigate the total genetic and metabolic contribution of the community. The chemicals discussed have been identified as relevant signals across experimental spectrums. However, mechanistic insight into the specific interactions mediated by many of these chemicals requires further testing. Experimental designs that attempt to bridge the gap in biotic complexity between single strains and whole communities will advance our understanding of the chemical signals governing plant-microbe associations in the rhizosphere and phyllosphere.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN, U.S.A
| | - Lindsey O'Neal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee
| | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee
| | - Sarah L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN, U.S.A
| |
Collapse
|
48
|
Liu TH, Yaghmour MA, Lee MH, Gradziel TM, Leveau JHJ, Bostock RM. An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces. PHYTOPATHOLOGY 2020; 110:297-308. [PMID: 31483224 DOI: 10.1094/phyto-07-19-0237-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reduction-oxidation (redox) environment of the phytobiome (i.e., the plant-microbe interface) can strongly influence the outcome of the interaction between microbial pathogens, commensals, and their host. We describe a noninvasive method using a bacterial bioreporter that responds to reactive oxygen species and redox-active chemicals to compare microenvironments perceived by microbes during their initial encounter of the plant surface. A redox-sensitive variant of green fluorescent protein (roGFP2), responsive to changes in intracellular levels of reduced and oxidized glutathione, was expressed under the constitutive SP6 and fruR promoters in the epiphytic bacterium Pantoea eucalypti 299R (Pe299R/roGFP2). Analyses of Pe299R/roGFP2 cells by ratiometric fluorometry showed concentration-dependent responses to several redox active chemicals, including hydrogen peroxide (H2O2), dithiothreitol (DTT), and menadione. Changes in intracellular redox were detected within 5 min of addition of the chemical to Pe299R/roGFP2 cells, with approximate detection limits of 25 and 6 μM for oxidation by H2O2 and menadione, respectively, and 10 μM for reduction by DTT. Caffeic acid, chlorogenic acid, and ascorbic acid mitigated the H2O2-induced oxidation of the roGFP2 bioreporter. Aqueous washes of peach and rose flower petals from young blossoms created a lower redox state in the roGFP2 bioreporter than washes from fully mature blossoms. The bioreporter also detected differences in surface washes from peach fruit at different stages of maturity and between wounded and nonwounded sites. The Pe299R/roGFP2 reporter rapidly assesses differences in redox microenvironments and provides a noninvasive tool that may complement traditional redox-sensitive chromophores and chemical analyses of cell extracts.
Collapse
Affiliation(s)
- Ting-Hang Liu
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan R.O.C
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University
- Agricultural Biotechnology Center, National Chung Hsing University
| | | | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan R.O.C
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University
- Agricultural Biotechnology Center, National Chung Hsing University
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University
| | - Richard M Bostock
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University
| |
Collapse
|
49
|
Lee JA, Riazi S, Nemati S, Bazurto JV, Vasdekis AE, Ridenhour BJ, Remien CH, Marx CJ. Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations. PLoS Genet 2019; 15:e1008458. [PMID: 31710603 PMCID: PMC6858071 DOI: 10.1371/journal.pgen.1008458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
While microbiologists often make the simplifying assumption that genotype determines phenotype in a given environment, it is becoming increasingly apparent that phenotypic heterogeneity (in which one genotype generates multiple phenotypes simultaneously even in a uniform environment) is common in many microbial populations. The importance of phenotypic heterogeneity has been demonstrated in a number of model systems involving binary phenotypic states (e.g., growth/non-growth); however, less is known about systems involving phenotype distributions that are continuous across an environmental gradient, and how those distributions change when the environment changes. Here, we describe a novel instance of phenotypic diversity in tolerance to a metabolic toxin within wild-type populations of Methylobacterium extorquens, a ubiquitous phyllosphere methylotroph capable of growing on the methanol periodically released from plant leaves. The first intermediate in methanol metabolism is formaldehyde, a potent cellular toxin that is lethal in high concentrations. We have found that at moderate concentrations, formaldehyde tolerance in M. extorquens is heterogeneous, with a cell's minimum tolerance level ranging between 0 mM and 8 mM. Tolerant cells have a distinct gene expression profile from non-tolerant cells. This form of heterogeneity is continuous in terms of threshold (the formaldehyde concentration where growth ceases), yet binary in outcome (at a given formaldehyde concentration, cells either grow normally or die, with no intermediate phenotype), and it is not associated with any detectable genetic mutations. Moreover, tolerance distributions within the population are dynamic, changing over time in response to growth conditions. We characterized this phenomenon using bulk liquid culture experiments, colony growth tracking, flow cytometry, single-cell time-lapse microscopy, transcriptomics, and genome resequencing. Finally, we used mathematical modeling to better understand the processes by which cells change phenotype, and found evidence for both stochastic, bidirectional phenotypic diversification and responsive, directed phenotypic shifts, depending on the growth substrate and the presence of toxin. Scientists tend to appreciate microbes for their simplicity and predictability: a population of genetically identical cells inhabiting a uniform environment is expected to behave in a uniform way. However, counter-examples to this assumption are frequently being discovered, forcing a re-examination of the relationship between genotype and phenotype. In most such examples, bacterial cells are found to split into two discrete populations, for instance growing and non-growing. Here, we report the discovery of a novel example of microbial phenotypic heterogeneity in which cells are distributed along a gradient of phenotypes, ranging from low to high tolerance of a toxic chemical. Furthermore, we demonstrate that the distribution of phenotypes changes in different growth conditions, and we use mathematical modeling to show that cells may change their phenotype either randomly or in a particular direction in response to the environment. Our work expands our understanding of how a bacterial cell's genome, family history, and environment all contribute to its behavior, with implications for the diverse situations in which we care to understand the growth of any single-celled populations.
Collapse
Affiliation(s)
- Jessica A. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Global Viral, San Francisco, California, United States of America
- * E-mail: (JAL); (CJM)
| | - Siavash Riazi
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Shahla Nemati
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Jannell V. Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Andreas E. Vasdekis
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin J. Ridenhour
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher H. Remien
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- * E-mail: (JAL); (CJM)
| |
Collapse
|
50
|
Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Köstlbacher S, Marx H, Herbold CW, Schmidt H, Rattei T. A Bioinformatics Guide to Plant Microbiome Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1313. [PMID: 31708944 PMCID: PMC6819368 DOI: 10.3389/fpls.2019.01313] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|