1
|
Weng MM, Klempay B, Bowman JS, Fisher L, Camplong C, Doran PT, Rundell S, Glass JB, Dutta A, Pontefract A, Bartlett DH, Schmidt B, Johnson SS. Light cues drive community-wide transcriptional shifts in the hypersaline South Bay Salt Works. Commun Biol 2025; 8:450. [PMID: 40097557 PMCID: PMC11914471 DOI: 10.1038/s42003-025-07855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The transition from day to night brings sweeping change to both environments and the organisms within them. Diel shifts in gene expression have been documented across all domains of life but remain understudied in microbial communities, particularly those in extreme environments where small changes may have rippling effects on resource availability. In hypersaline environments, many prominent taxa are photoheterotrophs that rely on organic carbon for growth but can also generate significant ATP via light-powered rhodopsins. Previous research demonstrated a significant response to light intensity shifts in the model halophile Halobacterium salinarum, but these cycles have rarely been explored in situ. Here, we examined genome-resolved differential expression in a hypersaline saltern (water activity (aw) ≅ 0.83, total dissolved solids = 250.7 g L-1) throughout a 24-h period. We found increased transcription of genes related to phototrophy and anabolic metabolic processes during the day, while genes related to aerobic respiration and oxidative stress were upregulated at night. Substantiating these results with a chemostat culture of the environmentally abundant halophilic bacterium Salinibacter ruber revealed similar transcriptional upregulation of genes associated with aerobic respiration under dark conditions. These results describe the potential for light-driven changes in oxygen use across both a natural hypersaline environment and a pure culture.
Collapse
Affiliation(s)
| | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Luke Fisher
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | | | | | | | | | - Avishek Dutta
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
- University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
2
|
Dindhoria K, Manyapu V, Ali A, Kumar R. Unveiling the role of emerging metagenomics for the examination of hypersaline environments. Biotechnol Genet Eng Rev 2024; 40:2090-2128. [PMID: 37017219 DOI: 10.1080/02648725.2023.2197717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Hypersaline ecosystems are distributed all over the globe. They are subjected to poly-extreme stresses and are inhabited by halophilic microorganisms possessing multiple adaptations. The halophiles have many biotechnological applications such as nutrient supplements, antioxidant synthesis, salt tolerant enzyme production, osmolyte synthesis, biofuel production, electricity generation etc. However, halophiles are still underexplored in terms of complex ecological interactions and functions as compared to other niches. The advent of metagenomics and the recent advancement of next-generation sequencing tools have made it feasible to investigate the microflora of an ecosystem, its interactions and functions. Both target gene and shotgun metagenomic approaches are commonly employed for the taxonomic, phylogenetic, and functional analyses of the hypersaline microbial communities. This review discusses different types of hypersaline niches, their residential microflora, and an overview of the metagenomic approaches used to investigate them. Various applications, hurdles and the recent advancements in metagenomic approaches have also been focused on here for their better understanding and utilization in the study of hypersaline microbiome.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vivek Manyapu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
| | - Ashif Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Rodríguez-Cruz UE, Castelán-Sánchez HG, Madrigal-Trejo D, Eguiarte LE, Souza V. Uncovering novel bacterial and archaeal diversity: genomic insights from metagenome-assembled genomes in Cuatro Cienegas, Coahuila. Front Microbiol 2024; 15:1369263. [PMID: 38873164 PMCID: PMC11169877 DOI: 10.3389/fmicb.2024.1369263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).
Collapse
Affiliation(s)
- Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - David Madrigal-Trejo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
4
|
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, Davín AA, Pisani D, Donoghue PCJ, Szöllősi GJ, Williams TA, Spang A. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023; 14:7456. [PMID: 37978174 PMCID: PMC10656485 DOI: 10.1038/s41467-023-42924-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.
Collapse
Affiliation(s)
- Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Dominik Schrempf
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
| | - Lénárd L Szánthó
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Karolina ut 29, H-1113, Budapest, Hungary
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Adrián A Davín
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Gergely J Szöllősi
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Xie L, Yu S, Lu X, Liu S, Tang Y, Lu H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023; 11:2002. [PMID: 37630563 PMCID: PMC10458105 DOI: 10.3390/microorganisms11082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.
Collapse
Affiliation(s)
- Linglu Xie
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| | - Xindi Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Yukai Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Hailong Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| |
Collapse
|
6
|
Vera-Gargallo B, Hernández M, Dumont MG, Ventosa A. Thrive or survive: prokaryotic life in hypersaline soils. ENVIRONMENTAL MICROBIOME 2023; 18:17. [PMID: 36915176 PMCID: PMC10012753 DOI: 10.1186/s40793-023-00475-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Soil services are central to life on the planet, with microorganisms as their main drivers. Thus, the evaluation of soil quality requires an understanding of the principles and factors governing microbial dynamics within it. High salt content is a constraint for life affecting more than 900 million hectares of land, a number predicted to rise at an alarming rate due to changing climate. Nevertheless, little is known about how microbial life unfolds in these habitats. In this study, DNA stable-isotope probing (DNA-SIP) with 18O-water was used to determine for the first time the taxa able to grow in hypersaline soil samples (ECe = 97.02 dS/m). We further evaluated the role of light on prokaryotes growth in this habitat. RESULTS We detected growth of both archaea and bacteria, with taxon-specific growth patterns providing insights into the drivers of success in saline soils. Phylotypes related to extreme halophiles, including haloarchaea and Salinibacter, which share an energetically efficient mechanism for salt adaptation (salt-in strategy), dominated the active community. Bacteria related to moderately halophilic and halotolerant taxa, such as Staphylococcus, Aliifodinibius, Bradymonadales or Chitinophagales also grew during the incubations, but they incorporated less heavy isotope. Light did not stimulate prokaryotic photosynthesis but instead restricted the growth of most bacteria and reduced the diversity of archaea that grew. CONCLUSIONS The results of this study suggest that life in saline soils is energetically expensive and that soil heterogeneity and traits such as exopolysaccharide production or predation may support growth in hypersaline soils. The contribution of phototrophy to supporting the heterotrophic community in saline soils remains unclear. This study paves the way toward a more comprehensive understanding of the functioning of these environments, which is fundamental to their management. Furthermore, it illustrates the potential of further research in saline soils to deepen our understanding of the effect of salinity on microbial communities.
Collapse
Affiliation(s)
- Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marcela Hernández
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain.
| |
Collapse
|
7
|
Comparative Genomic Insights into the Evolution of Halobacteria-Associated " Candidatus Nanohaloarchaeota". mSystems 2022; 7:e0066922. [PMID: 36259734 PMCID: PMC9765267 DOI: 10.1128/msystems.00669-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the phylum "Candidatus Nanohaloarchaeota," a representative lineage within the DPANN superphylum, are characterized by their nanosized cells and symbiotic lifestyle with Halobacteria. However, the development of the symbiosis remains unclear. Here, we propose two novel families, "Candidatus Nanoanaerosalinaceae" and "Candidatus Nanohalalkaliarchaeaceae" in "Ca. Nanohaloarchaeota," represented by five dereplicated metagenome-assembled genomes obtained from hypersaline sediments or related enrichment cultures of soda-saline lakes. Phylogenetic analyses reveal that the two novel families are placed at the root of the family "Candidatus Nanosalinaceae," including the cultivated taxa. The two novel families prefer hypersaline sediments, and the acid shift of predicted proteomes indicates a "salt-in" strategy for hypersaline adaptation. They contain a lower proportion of putative horizontal gene transfers from Halobacteria than "Ca. Nanosalinaceae," suggesting a weaker association with Halobacteria. Functional prediction and historical events reconstruction disclose that they exhibit divergent potentials in carbohydrate and organic acid metabolism and environmental responses. Globally, comparative genomic analyses based on the new families enrich the taxonomic and functional diversity of "Ca. Nanohaloarchaeota" and provide insights into the evolutionary process of "Ca. Nanohaloarchaeota" and their symbiotic relationship with Halobacteria. IMPORTANCE The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea. The archaeal symbiotic interaction is vital to understanding microbial communities. However, the formation and evolution of the symbiosis between the DPANN lineages and other diverse archaea remain unclear. Based on phylogeny, habitat distribution, hypersaline adaptation, host prediction, functional potentials, and historical events of "Ca. Nanohaloarchaeota," a representative phylum within the DPANN superphylum, we report two novel families representing intermediate stages, and we infer the evolutionary process of "Ca. Nanohaloarchaeota" and their Halobacteria-associated symbiosis. Altogether, this research helps in understanding the evolution of symbiosis in "Ca. Nanohaloarchaeota" and provides a model for the evolution of other DPANN lineages.
Collapse
|
8
|
Xie YG, Luo ZH, Fang BZ, Jiao JY, Xie QJ, Cao XR, Qu YN, Qi YL, Rao YZ, Li YX, Liu YH, Li A, Seymour C, Palmer M, Hedlund BP, Li WJ, Hua ZS. Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota. MICROBIOME 2022; 10:172. [PMID: 36242054 PMCID: PMC9563170 DOI: 10.1186/s40168-022-01376-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Candidatus Nanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association with Halobacteria. Aside from hypersaline environments, Ca. Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments. RESULTS Three metagenome-assembled genomes (MAGs) representing a new order within the Ca. Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order, Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and other Ca. Nanohaloarchaeota inhabiting saline habitats use a "salt-in" strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously described Ca. Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification within Ca. Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages. CONCLUSIONS This study provides deeper insight into the ecological functions and evolution of the expanded phylum Ca. Nanohaloarchaeota and further advances our understanding on the functional and genetic associations between potential symbionts and hosts. Video Abstract.
Collapse
Affiliation(s)
- Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qi-Jun Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xing-Ru Cao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan-Lin Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Cale Seymour
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
9
|
Fu S, Lian S, Angelidaki I, Guo R. Micro-aeration: an attractive strategy to facilitate anaerobic digestion. Trends Biotechnol 2022; 41:714-726. [PMID: 36216713 DOI: 10.1016/j.tibtech.2022.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Collapse
|
10
|
Feng Y, Neri U, Gosselin S, Louyakis AS, Papke RT, Gophna U, Gogarten JP. The Evolutionary Origins of Extreme Halophilic Archaeal Lineages. Genome Biol Evol 2021; 13:6320066. [PMID: 34255041 PMCID: PMC8350355 DOI: 10.1093/gbe/evab166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Neri
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
11
|
Huby TJC, Clark DR, McKew BA, McGenity TJ. Extremely halophilic archaeal communities are resilient to short-term entombment in halite. Environ Microbiol 2021; 23:3370-3383. [PMID: 31919959 PMCID: PMC8359394 DOI: 10.1111/1462-2920.14913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Some haloarchaea avoid the harsh conditions present in evaporating brines by entombment in brine inclusions within forming halite crystals, where a subset of haloarchaea survives over geological time. However, shifts in the community structure of halite-entombed archaeal communities remain poorly understood. Therefore, we analysed archaeal communities from in situ hypersaline brines collected from Trapani saltern (Sicily) and their successional changes in brines versus laboratory-grown halite over 21 weeks, using high-throughput sequencing. Haloarchaea were dominant, comprising >95% of the archaeal community. Unexpectedly, the OTU richness of the communities after 21 weeks was indistinguishable from the parent brine and overall archaeal abundance in halite showed no clear temporal trends. Furthermore, the duration of entombment was less important than the parent brine from which the halite derived in determining the community composition and relative abundances of most genera in halite-entombed communities. These results show that halite-entombed archaeal communities are resilient to entombment durations of up to 21 weeks, and that entombment in halite may be an effective survival strategy for near complete communities of haloarchaea. Additionally, the dominance of 'halite specialists' observed in ancient halite must occur over periods of years, rather than months, hinting at long-term successional dynamics in this environment.
Collapse
Affiliation(s)
- Tom J. C. Huby
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | - Dave R. Clark
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | - Boyd A. McKew
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | | |
Collapse
|
12
|
Molina V, Eissler Y, Fernandez C, Cornejo-D'Ottone M, Dorador C, Bebout BM, Jeffrey WH, Romero C, Hengst M. Greenhouse gases and biogeochemical diel fluctuations in a high-altitude wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144370. [PMID: 33454466 DOI: 10.1016/j.scitotenv.2020.144370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The landscapes of high-altitude wetland ecosystems are characterized by different kinds of aquatic sites, including ponds holding conspicuous microbial life. Here, we examined a representative pond of the wetland landscape for dynamics of greenhouse gases, and their association with other relevant biogeochemical conditions including diel shifts of microbial communities' structure and activity over two consecutive days. Satellite image analysis indicates that the area of ponds cover 238 of 381.3 Ha (i.e., 62.4%), representing a significant landscape in this wetland. Solar radiation, wind velocity and temperature varied daily and between the days sampled, influencing the biogeochemical dynamics in the pond, shifting the pond reservoir of inorganic versus dissolved organic nitrogen/phosphorus bioavailability, between day 1 and day 2. Day 2 was characterized by high dissolved organic nitrogen/phosphorus and N2O accumulation. CH4 presented a positive excess showing maxima at hours of high radiation during both days. The microbial community in the sediment was diverse and enriched in keystone active groups potentially related with GHG recycling including bacteria and archaea, such as Cyanobacteria, Verrucomicrobia, Rhodobacterales and Nanoarchaeaota (Woesearchaeia). Archaea account for the microbial community composition changes between both days and for the secondary productivity in the water measured during day 2. The results indicate that an intense recycling of organic matter occurs in the pond systems and that the activity of the microbial community is correlated with the availability of nutrients. Together, the above results indicate a net sink of CO2 and N2O, which has also been reported for other natural and artificial ponds. Overall, our two-day fluctuation study in a representative pond of a high-altitude wetland aquatic landscape indicates the need to explore in more detail the short-term besides the long-term biogeochemical variability in arid ecosystems of the Andes plateau, where wetlands are hotspots of life currently under high anthropogenic pressure.
Collapse
Affiliation(s)
- Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 200, Playa Ancha, Valparaíso 2340000, Chile.
| | - Yoanna Eissler
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile.
| | - Camila Fernandez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, de Banyuls sur Mer, F-6665 Banyuls/mer, France; Interdisciplinary Center for Aquaculture Research (INCAR), PIA CONICYT COPAS SUR-AUSTRAL Program, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile; Centro Fondap IDEAL, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile.
| | - Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Altamirano 1480, Valparaíso 2360007, Chile.
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta s/n, Antofagasta 1240000, Chile; Centre for Biotechnology and Bioengineering, Santiago 8320000, Chile.
| | - Brad M Bebout
- Exobiology Branch, Ames Research Center National Aeronautics and Space Administration, Moffett Field, CA 94035-0001, USA.
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL 32514, USA.
| | - Carlos Romero
- Laboratorio de Teledetección Ambiental, Departamento de Ciencias Geográficas, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Santiago 8320000, Chile; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte. Av Angamos 0610, Antofagasta 1270709, Chile.
| |
Collapse
|
13
|
Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc Natl Acad Sci U S A 2020; 117:20223-20234. [PMID: 32759215 PMCID: PMC7443923 DOI: 10.1073/pnas.2007232117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report on cultivation and characterization of an association between Candidatus Nanohalobium constans and its host, the chitinotrophic haloarchaeon Halomicrobium LC1Hm, obtained from a crystallizer pond of marine solar salterns. High-quality nanohaloarchael genome sequence in conjunction with electron- and fluorescence microscopy, growth analysis, and proteomic and metabolomic data revealed mutually beneficial interactions between two archaea, and allowed dissection of the mechanisms for these interactions. Owing to their ubiquity in hypersaline environments, Nanohaloarchaeota may play a role in carbon turnover and ecosystem functioning, yet insights into the nature of this have been lacking. Here, we provide evidence that nanohaloarchaea can expand the range of available substrates for the haloarchaeon, suggesting that the ectosymbiont increases the metabolic capacity of the host. Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon–haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon’s ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon–haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner’s ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca. Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.
Collapse
|
14
|
Uritskiy G, Tisza MJ, Gelsinger DR, Munn A, Taylor J, DiRuggiero J. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ Microbiol 2020; 23:3401-3417. [DOI: 10.1111/1462-2920.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/12/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Gherman Uritskiy
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - Michael J. Tisza
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Laboratory of Cellular Oncology NCI, NIH Bethesda MD 20892‐4263 USA
| | | | - Adam Munn
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - James Taylor
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Computer Science Johns Hopkins University Baltimore MD 21218 USA
| | - Jocelyne DiRuggiero
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
15
|
Viver T, Orellana LH, Díaz S, Urdiain M, Ramos‐Barbero MD, González‐Pastor JE, Oren A, Hatt JK, Amann R, Antón J, Konstantinidis KT, Rosselló‐Móra R. Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities. Environ Microbiol 2019; 21:4300-4315. [DOI: 10.1111/1462-2920.14790] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Luis H. Orellana
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Sara Díaz
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | | | - José E. González‐Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología Consejo Superior de Investigaciones Científicas – Instituto Nacional de Técnica Aeroespacial Madrid Spain
| | - Aharon Oren
- Department of Plant and Environmental Sciences The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Jerusalem 9190401 Israel
| | - Janet K. Hatt
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Rudolf Amann
- Department of Molecular Ecology Max‐Planck‐Institut für Marine Mikrobiologie Bremen D‐28359 Germany
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology University of Alicante Alicante Spain
| | | | - Ramon Rosselló‐Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| |
Collapse
|
16
|
Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol 2019; 16:629-645. [PMID: 30181663 DOI: 10.1038/s41579-018-0076-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth's environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function.
Collapse
|
17
|
Abstract
We demonstrate that Candidatus Nanohaloarchaeum antarcticus requires Halorubrum lacusprofundi for growth, illustrating that Nanohaloarchaeota require a host rather than being free living as previously proposed. Developing the means of cultivating Nanohaloarchaeota in the laboratory provides the capacity to advance understanding of how archaea interact and the factors that control their symbiotic relationship (e.g. mutualism, commensalism, antagonism). Our findings amplify the view that Antarctic lakes are a treasure trove for the discovery of microbes with previously unknown properties. In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch’s postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.
Collapse
|
18
|
Uritskiy G, DiRuggiero J. Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes (Basel) 2019; 10:genes10030220. [PMID: 30875864 PMCID: PMC6471235 DOI: 10.3390/genes10030220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus–host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next-generation sequencing technologies in halophilic communities. RNA sequencing, long-read technologies, and chromosome conformation assays, not initially intended for microbiomes, are becoming available in the study of microbial communities. Together with recent analytical advancements, these new methods and technologies have the potential to rapidly advance the field of halophile research.
Collapse
Affiliation(s)
- Gherman Uritskiy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
19
|
Horton DJ, Cooper MJ, Wing AJ, Kourtev PS, Uzarski DG, Learman DR. Microbial subnetworks related to short-term diel O2 fluxes within geochemically distinct freshwater wetlands. FEMS Microbiol Lett 2018; 365:5184454. [PMID: 30445437 DOI: 10.1093/femsle/fny269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Oxygen (O2) concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. When exploring the microbial communities within each wetland at finer resolutions, subcommunities of taxa within two wetlands were found to correspond to fluctuating O2 levels. Microbial taxa that were found to be susceptible to fluctuating O2 levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2 fluxes; however, specialist taxa may be sensitive to these same fluxes.
Collapse
Affiliation(s)
- Dean J Horton
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Matthew J Cooper
- Mary Griggs Burke Center for Freshwater Innovation, Northland College, Ashland, WI 54806, USA
| | - Anthony J Wing
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter S Kourtev
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Donald G Uzarski
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Deric R Learman
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| |
Collapse
|
20
|
Matyugina E, Belkova N, Borzenko S, Lukyanov P, Kabilov M, Baturina O, Kley AMV, Nalian A, Ptitsyn A. Structure and diversity dynamics of microbial communities at day and night: investigation of meromictic Lake Doroninskoe, Transbaikalia, Russia. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2018; 36:1978-1992. [DOI: 10.1007/s00343-018-7332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/27/2018] [Indexed: 07/26/2024]
|
21
|
Temperature-dependent expression of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula strains of the class Halobacteria. Antonie van Leeuwenhoek 2018; 112:187-201. [PMID: 30128892 PMCID: PMC6373231 DOI: 10.1007/s10482-018-1144-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/13/2018] [Indexed: 11/11/2022]
Abstract
Haloarcula strains, which are halophilic archaea, harbour two to three copies of 16S rRNA genes (rrsA, rrsB and rrsC) in their genomes. While rrsB and rrsC (rrsBC) show almost identical sequences, rrsA shows 4–6% sequence difference and 1–3% guanine-plus-cytosine content (PGC) difference compared to rrsBC. Based on the strong correlation between the PGC of 16S rRNA genes and the growth temperatures of the prokaryotes, we hypothesised that high-PGCrrsA and low-PGCrrsBC are expressed at high and low temperatures, respectively. To verify the hypothesis, we performed sequence analyses and expression surveys of each 16S rRNA gene in eight Haloarcula strains. The secondary structure prediction of the 16S rRNA via computer simulation showed that the structural stability of 16S rRNAs transcribed from rrsA was higher than that of 16S rRNAs transcribed from rrsBC. We measured expression levels of rrsA and rrsBC under various temperature conditions by reverse-transcriptase quantitative PCR. The expression ratio of high-PGCrrsA to low-PGCrrsBC increased with cultivation temperatures in seven of eight Haloarcula strains. Our results suggest that the transcription of high-PGCrrsA and low-PGCrrsBC may be regulated in response to environmental temperature, and that 16S rRNAs transcribed from high-PGCrrsA function under high temperature conditions close to the maximum growth temperature.
Collapse
|
22
|
Schinteie R, Brocks JJ. Paleoecology of Neoproterozoic hypersaline environments: Biomarker evidence for haloarchaea, methanogens, and cyanobacteria. GEOBIOLOGY 2017; 15:641-663. [PMID: 28691279 DOI: 10.1111/gbi.12245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
While numerous studies have examined modern hypersaline ecosystems, their equivalents in the geologic past, particularly in the Precambrian, are poorly understood. In this study, biomarkers from ~820 million year (Ma)-old evaporites from the Gillen Formation of the mid-Neoproterozoic Bitter Springs Group, central Australia, are investigated to elucidate the antiquity and paleoecology of halophiles. The sediments were composed of alternating laminae of dolomitized microbial mats and up to 90% anhydrite. Solvent extraction of these samples yielded thermally well-preserved hydrocarbon biomarkers. The regularly branched C25 isoprenoid 2,6,10,14,18-pentamethylicosane, the tail-to-tail linked C30 isoprenoid squalane, and breakdown products of the head-to-head linked C40 isoprenoid biphytane, were particularly abundant in the most anhydrite-rich sediments and mark the oldest current evidence for halophilic archaea. Linear correlations between isoprenoid concentrations (normalized to n-alkanes) and the anhydrite/dolomite ratio reveal microbial consortia that fluctuated with changing salinity levels. Halophilic archaea were the dominant organisms during periods of high salinity and gypsum precipitation, while bacteria were prevalent during stages of carbonate formation. The irregularly branched C25 isoprenoid 2,6,10,15,19-pentamethylicosane (PMI), with a central tail-to-tail link, was also abundant during periods of elevated salinity, highlighting the activity of methanogens. By contrast, the irregularly branched C20 isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane) was more common in dolomite-rich facies, revealing that an alternate group of archaea was active during less saline periods. Elevated concentrations of isotopically depleted heptadecane (n-C17 ) revealed the presence of cyanobacteria under all salinity regimes. The combination of biomarkers in the mid-Neoproterozoic Gillen Formation resembles lipid compositions from modern hypersaline cyanobacterial mats, pointing to a community composition that remained broadly constant since at least the Neoproterozoic. However, as a major contrast to most modern hypersaline environments, the Gillen evaporites did not yield any evidence for algae or other eukaryotes.
Collapse
Affiliation(s)
- R Schinteie
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | - J J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
23
|
Sato Y, Fujiwara T, Kimura H. Expression and Function of Different Guanine-Plus-Cytosine Content 16S rRNA Genes in Haloarcula hispanica at Different Temperatures. Front Microbiol 2017; 8:482. [PMID: 28400752 PMCID: PMC5368182 DOI: 10.3389/fmicb.2017.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
The halophilic archaeon Haloarcula hispanica harbors three ribosomal RNA (rRNA) operons (rrnA, rrnB, and rrnC) that contain the 16S rRNA genes rrsA, rrsB, and rrsC, respectively. Although rrsB and rrsC (rrsBC) have almost identical sequences, the rrsA and rrsBC sequences differ by 5.4%, and they differ by 2.5% with respect to guanine-plus-cytosine content (PGC). The strong correlation between the typical growth temperatures of archaea and PGC of their 16S rRNA genes suggests that H. hispanica may harbor different 16S rRNA genes having different PGC to maintain rapid growth in a wide range of temperatures. We therefore performed reverse transcription-coupled quantitative PCR to assess expression levels of rrsA (PGC, 58.9%) and rrsBC (PGC, 56.4-56.5%) at various temperatures. The expression ratio of rrsA to rrsBC increased with culture temperature. Mutants with complete deletions of one or two of the three rRNA operons were constructed and their growth rates at different temperatures compared to that of the wild-type. The growth characteristics of the rRNA operon single-mutant strains were indistinguishable from the wild-type. The rRNA operon double-mutant strains maintained the same temperature range as wild-type but displayed reduced growth rates. In particular, the double-mutant strains grew much slower than wild-type at low temperature related to minimum growth temperature of the wild-type. On the other hand, at physiologically high temperatures the wild-type and the double-mutant strain which harbors only rrnA with high-PGCrrsA grew significantly faster than the double-mutant strain which harbors only rrnC with low-PGCrrsC. These findings suggest the importance of 16S rRNAs transcribed from rrsA with high-PGC in maintaining rapid growth of this halophilic archaeon at raised growth temperatures.
Collapse
Affiliation(s)
- Yu Sato
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Biological Science, Faculty of Science, Shizuoka UniversityShizuoka, Japan
| | - Hiroyuki Kimura
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka UniversityShizuoka, Japan; Department of Geosciences, Faculty of Science, Shizuoka UniversityShizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
24
|
Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, Casero MC, DiRuggiero J. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol 2016; 18:2064-77. [DOI: 10.1111/1462-2920.13259] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore MD USA
| | - Jacek Wierzchos
- Department of Biochemistry and Microbial Ecology; Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas; Madrid Spain
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore MD USA
| | | | - M. Cristina Casero
- Department of Biochemistry and Microbial Ecology; Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas; Madrid Spain
| | | |
Collapse
|
25
|
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Front Microbiol 2016; 7:211. [PMID: 26941731 PMCID: PMC4766312 DOI: 10.3389/fmicb.2016.00211] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
- Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of HydrobiologyČeské Budějovice, Czech Republic
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|