1
|
Chen N, Zhang Z, Lan H, Wei H, Zhi S, Liu L. Insights for napyradiomycin family: structures, bioactivities and biosynthetic pathways. Arch Microbiol 2025; 207:85. [PMID: 40080144 DOI: 10.1007/s00203-025-04291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Napyradiomycins (NPDs), a family of structurally diverse terpenoids isolated from Streptomyces, have attracted significant scientific interest due to their unique halogenation patterns and potent bioactivities. Since identifying the first member from Streptomyces in 1986, over 50 NPDs have been characterized, demonstrating remarkable efficacy against drug-resistant bacteria and cancer cells, making them promising candidates for novel drug development. In this review, we provided an in-depth exploration of the complex chemical structure of NPDs, their diverse bioactivities, and the biosynthetic pathways involved in their formation. In particular, we collectively concluded the structure-activity relationship data to highlight the importance of the molecular features of napyradiomycins determining their therapeutic potential. Recent discoveries have shed light on the unique role of halogenases, which contribute to the structural diversity and enhance the biological potency of napyradiomycins, thus refining the known biosynthetic pathways. The data presented here aims to stimulate further research and facilitate the advancement of NPDs toward becoming first-line therapies for infectious diseases and cancer.
Collapse
Affiliation(s)
- Nuo Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Zinian Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Hangzhen Lan
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
2
|
Bunbamrung N, Intaraudom C, Dramae A, Boonyuen N, Choowong W, Rachtawee P, Thawai C, Pittayakhajonwut P. Antimalarial and antimicrobial substances from the endophytic fungus Chaetomium globosum BCC71876. Nat Prod Res 2024:1-10. [PMID: 39676752 DOI: 10.1080/14786419.2024.2440800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Three previously undescribed compounds including 2',3'-dihydroxy-4,5',4″-trimethoxy-p-terphenyl (1), 5-methoxyhydroperoxyco-chliodinol (2), and 5-(3',3'-dimethylallyl)indole-3-oxoacetic acid (17), along with fifteen known compounds (3 - 16 and 18), were isolated from the endophytic fungus, Chaetomium globosum BCC71876. The chemical structures were determined by NMR spectral information as well as the comparison with those closely related compounds reported in the literature. The compounds isolated were evaluated for biological properties including antimalarial, anti-TB, anti-plant pathogenic fungal, antibacterial, and cytotoxicity. The isolated compounds exhibited a wide range of biological activities against the tested cell lines and showed very low cytotoxicity against both cancerous (MCF-7 and NCI-H187) and non-cancerous (Vero) cells, except for compounds 5, 10, 11, 17, and 18 (IC50 0.47 - 114.8 µM). Cochliodinol (5) had the strongest antimalarial activity (IC50 4.39 µM), whereas chaetomugilin J (11) showed the strongest anti-TB activity (MIC 3.13 µg/mL).
Collapse
Affiliation(s)
- Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wilunda Choowong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pranee Rachtawee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
- Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
3
|
Liu X, Lv Y, He J, Hong B, Shao Z, Yu M, Niu S. Retrobisabolane A, a Novel Bisabolane-Derived Sesquiterpenoid Isolated from Deep-Sea-Derived Fungus Retroconis fusiformis MCCC 3A00792. Chem Biodivers 2024; 21:e202400805. [PMID: 38609327 DOI: 10.1002/cbdv.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
One novel bisabolane-derived sesquiterpenoid retrobisabolane A (1), featuring a methyl group location at the C-4 position instead of C-3 in the bisabolanes, and a known ester-substituted eremophilane-type sesquiterpenoid cryptosphaerolide (2), along with three known indole alkaloids (3-5) were discovered from the fermented cultures of a deep-sea-derived fungus Retroconis fusiformis MCCC 3A00792. The planar structure of new compound 1 was determined by extensive analysis of the NMR and HRESIMS spectra. The relative and absolute configurations of 1 were resolved by the coupling constant (J), calculation of ECD and NMR spectra, and the DP4+ probability analysis of the 1H and 13C NMR data. Interestingly, retrobisabolane A was the new subclass of bisabolanes bearing a methyl group linkage at C-4 instead of C-3 position. Three human cancer cell lines (Hela, AGS, and BIU-87) were subjected to evaluate the cytotoxic activities of compounds 1-5. As a result, compound 2 exhibited significant inhibitory activities against three cell lines with IC50 values ranging from 9.95 to 18.77 μM.
Collapse
Affiliation(s)
- Xin Liu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Yinghui Lv
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Jianlin He
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Zongze Shao
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China
| | - Siwen Niu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China
| |
Collapse
|
4
|
Abdelaziz R, Tartor YH, Barakat AB, El-Didamony G, Gado MM, Zaki MSA, Eid RA, El-Samadony HA. Alpha-sitosterol: a new antiviral agent produced by Streptomyces misakiensis and its potential activity against Newcastle disease virus. BMC Vet Res 2024; 20:76. [PMID: 38413949 PMCID: PMC10898069 DOI: 10.1186/s12917-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/29/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed B Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa M Gado
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed Samir A Zaki
- Anatomy Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, 12573, Saudi Arabia
| | - Hanaa A El-Samadony
- Department of Poultry, Animal Health Research Institute, Dokki, Agriculture Research Center, Giza, 44511, Egypt
| |
Collapse
|
5
|
Zhang Y, Fang W, Wang K, Zhang Z, Wu Z, Shi L, Liu F, Wan Z, Liu M. Napyradiomycin A4 and Its Relate Compounds, a New Anti-PRV Agent and Their Antibacterial Activities, from Streptomyces kebangsaanensis WS-68302. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020640. [PMID: 36677698 PMCID: PMC9861092 DOI: 10.3390/molecules28020640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Two new napyradiomycins derivatives, napyradiomycin A4 (1) and A80915 H (2), along with five known ones, were isolated from the ethyl acetate extract of fermentation culture of Streptomyces kebangsaanensis WS-68302. Their structures were elucidated by extensive spectroscopic analysis, including HR-MS, 1D and 2D NMR, CD spectrum, as well as comparison with literature data. Compound 1 exhibited significant antiviral activity against PRV (Pseudorabies virus) with an IC50 value of 2.056 μM and therapeutic ratio at 14.98, suggesting that it might have potential for development of an antiviral agent. Moreover, compound 1 displayed the strongest inhibition against PRV protein among the tested napyradiomycins in the indirect immunofuorescence assay. Compounds 3 and 4 showed higher activities against swine pathogenic Streptococcus suis than the positive control penicillin G sodium salt, with MIC values of 3.125 and 6.25 μg/mL, respectively. Compounds 1 and 3-6 exhibited moderate antibacterial activity against the swine pathogenic Erysipelothrix rhusiopathiae, with MIC values ranging from 25 to 50 μg/mL.
Collapse
|
6
|
Abdelaziz R, Tartor YH, Barakat AB, EL-Didamony G, Gado MM, Berbecea A, Radulov HDI. Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi. Front Cell Infect Microbiol 2023; 13:1162721. [PMID: 37168394 PMCID: PMC10165089 DOI: 10.3389/fcimb.2023.1162721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Background Antimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options. Purpose Thus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections. Methods We isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method. Results Preliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 μg/ml and 1 μg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 μg/ml and MIC90: 4 μg/mL) and fungi (MIC50: 4 μg/ml and MIC90: 8 μg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. Conclusion S. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Yasmine H. Tartor, ;
| | - Ahmed B. Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gamal EL-Didamony
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marwa M. Gado
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Adina Berbecea
- Department of Soil Science, University of Life Science”King Mihai I” from, Timioara, Romania
| | | |
Collapse
|
7
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
8
|
Orihara T, Kawaguchi M, Hosoya K, Tsutsumi R, Yamanaka M, Odagi M, Nagasawa K. Enantioselective Epoxidation of 2,3-Disubstituted Naphthoquinones by a Side Chain Truncated Guanidine-Urea Bifunctional Organocatalyst. J Org Chem 2020; 85:15232-15240. [PMID: 33147945 DOI: 10.1021/acs.joc.0c02084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An organocatalytic enantioselective epoxidation of 2,3-disubstituted naphthoquinones with tert-butyl hydroperoxide as an oxidant was developed using a guanidine-urea bifunctional catalyst lacking C2 symmetry, which was designed based upon the insights obtained from the DFT calculation model for our previous C2 symmetric catalyst. The present organocatalytic reaction provides access to a variety of optically active naphthoquinone epoxides bearing aryl and methyl substituents at C2 and C3 in high yields with high enantioselectivities (up to 97:3 er).
Collapse
Affiliation(s)
- Tatsuya Orihara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Masaki Kawaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Keisuke Hosoya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Ryosuke Tsutsumi
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, 171-8501 Tokyo, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, 171-8501 Tokyo, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| |
Collapse
|
9
|
Murray LAM, McKinnie SMK, Moore BS, George JH. Meroterpenoid natural products from Streptomyces bacteria - the evolution of chemoenzymatic syntheses. Nat Prod Rep 2020; 37:1334-1366. [PMID: 32602506 PMCID: PMC7578067 DOI: 10.1039/d0np00018c] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: Up to January 2020Meroterpenoids derived from the polyketide 1,3,6,8-tetrahydroxynaphthalene (THN) are complex natural products produced exclusively by Streptomyces bacteria. These antibacterial compounds include the napyradiomycins, merochlorins, marinones, and furaquinocins and have inspired many attempts at their chemical synthesis. In this review, we highlight the role played by biosynthetic studies in the stimulation of biomimetic and, ultimately, chemoenzymatic total syntheses of these natural products. In particular, the application of genome mining techniques to marine Streptomyces bacteria led to the discovery of unique prenyltransferase and vanadium-dependent haloperoxidase enzymes that can be used as highly selective biocatalysts in fully enzymatic total syntheses, thus overcoming the limitations of purely chemical reagents.
Collapse
Affiliation(s)
- Lauren A M Murray
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
10
|
Wang C, Lu Y, Cao S. Antimicrobial compounds from marine actinomycetes. Arch Pharm Res 2020; 43:677-704. [PMID: 32691395 DOI: 10.1007/s12272-020-01251-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 04/03/2023]
Abstract
Marine actinomycetes were the main origin of marine natural products in the past 40 years. This review was to present the sources, structures and antimicrobial activities of 313 new natural products from marine actinomycetes reported from 1976 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yuanyu Lu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.
| |
Collapse
|
11
|
New Napyradiomycin Analogues from Streptomyces sp. Strain CA-271078. Mar Drugs 2019; 18:md18010022. [PMID: 31888028 PMCID: PMC7024253 DOI: 10.3390/md18010022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
As part of our continuing efforts to discover new bioactive compounds from microbial sources, a reinvestigation of extracts of scaled-up cultures of the marine-derived Streptomyces sp. strain CA-271078 resulted in the isolation and structural elucidation of four new napyradiomycins (1-3, 5). The known napyradiomycin SC (4), whose structural details had not been previously described in detail, and another ten related known compounds (6-15). The structures of the new napyradiomycins were characterized by HRMS and 1D- and 2D-NMR spectroscopies and their relative configurations were established through a combination of molecular modelling with nOe and coupling constants NMR analysis. The absolute configuration of each compound is also proposed based on biosynthetic arguments and the comparison of specific rotation data with those of related compounds. Among the new compounds, 1 was determined to be the first non-halogenated member of napyradiomycin A series containing a functionalized prenyl side chain, while 2-4 harbor in their structures the characteristic chloro-cyclohexane ring of the napyradiomycin B series. Remarkably, compound 5 displays an unprecedented 14-membered cyclic ether ring between the prenyl side chain and the chromophore, thus representing the first member of a new class of napyradiomycins that we have designated as napyradiomycin D1. Anti-infective and cytotoxic properties for all isolated compounds were evaluated against a set of pathogenic microorganisms and the HepG2 cell line, respectively. Among the new compounds, napyradiomycin D1 exhibited significant growth-inhibitory activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, and HepG2.
Collapse
|
12
|
Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria. Biosci Biotechnol Biochem 2019; 83:1606-1615. [DOI: 10.1080/09168451.2019.1606700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Secondary metabolites produced by actinobacteria have diverse structures and important biological activities, making them a useful source of drug development. Diversity of the secondary metabolites indicates that the actinobacteria exploit various chemical reactions to construct a structural diversity. Thus, studying the biosynthetic machinery of these metabolites should result in discovery of various enzymes catalyzing interesting and useful reactions. This review summarizes our recent studies on the biosynthesis of secondary metabolites from actinobacteria, including the biosynthesis of nonproteinogenic amino acids used as building blocks of nonribosomal peptides, the type II polyketide synthase catalyzing polyene scaffold, the nitrous acid biosynthetic pathway involved in secondary metabolite biosynthesis and unique cytochrome P450 catalyzing nitrene transfer. These findings expand the knowledge of secondary metabolite biosynthesis machinery and provide useful tools for future bioengineering.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
13
|
García PA, Hernández ÁP, San Feliciano A, Castro MÁ. Bioactive Prenyl- and Terpenyl-Quinones/Hydroquinones of Marine Origin †. Mar Drugs 2018; 16:E292. [PMID: 30134616 PMCID: PMC6165040 DOI: 10.3390/md16090292] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Ángela P Hernández
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Arturo San Feliciano
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Mª Ángeles Castro
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
14
|
Kawaguchi M, Nakano K, Hosoya K, Orihara T, Yamanaka M, Odagi M, Nagasawa K. Asymmetric Epoxidation of 1,4-Naphthoquinones Catalyzed by Guanidine-Urea Bifunctional Organocatalyst. Org Lett 2018; 20:2811-2815. [PMID: 29717876 DOI: 10.1021/acs.orglett.8b00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An enantioselective nucleophilic epoxidation of 2-substituted 1,4-naphthoquinones in the presence of a newly developed guanidine-bisurea bifunctional organocatalyst with tert-butyl hydroperoxide (TBHP) as an oxidant is presented. 1,4-Naphthoquinones bearing substituents at C6, C7, and C2 were available for the reaction, and the corresponding epoxides were obtained with 88:12-95:5 er in 71-98% yields. DFT calculations indicated that substituents at C2 and C6 in the terminal Ar group of the catalyst 9k play a key role in controlling the stereochemical outcome.
Collapse
Affiliation(s)
- Masaki Kawaguchi
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho , Koganei city , 184-8588 , Tokyo , Japan
| | - Katsuhiro Nakano
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science , Rikkyo University , 3-34-1, Nishi-Ikebukuro , Toshima-ku , 171-8501 , Tokyo , Japan
| | - Keisuke Hosoya
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho , Koganei city , 184-8588 , Tokyo , Japan
| | - Tatsuya Orihara
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho , Koganei city , 184-8588 , Tokyo , Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science , Rikkyo University , 3-34-1, Nishi-Ikebukuro , Toshima-ku , 171-8501 , Tokyo , Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho , Koganei city , 184-8588 , Tokyo , Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho , Koganei city , 184-8588 , Tokyo , Japan
| |
Collapse
|
15
|
MDN-0170, a New Napyradiomycin from Streptomyces sp. Strain CA-271078. Mar Drugs 2016; 14:md14100188. [PMID: 27763545 PMCID: PMC5082336 DOI: 10.3390/md14100188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023] Open
Abstract
A new napyradiomycin, MDN-0170 (1), was isolated from the culture broth of the marine-derived actinomycete strain CA-271078, together with three known related compounds identified as 4-dehydro-4a-dechloronapyradiomycin A1 (2), napyradiomycin A1 (3) and 3-chloro-6,8-dihydroxy-8-α-lapachone (4). The structure of the new compound was determined using a combination of spectroscopic techniques, including 1D and 2D NMR and electrospray-time of flight mass spectrometry (ESI-TOF MS). The relative configuration of compound 1, which contains two independent stereoclusters, has been established by molecular modelling in combination with nOe and coupling constant analyses. Biosynthetic arguments also allowed us to propose its absolute stereochemistry. The antimicrobial properties of the compounds isolated were evaluated against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Aspergillus fumigatus, and Candida albicans. The potent bioactivity previously reported for compounds 2 and 3 against methicillin-sensitive S. aureus has been extended to methicillin-resistant strains in this report.
Collapse
|
16
|
Pazhanimurugan R, Radhakrishnan M, Shanmugasundaram T, Gopikrishnan V, Balagurunathan R. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities. World J Microbiol Biotechnol 2016; 32:161. [PMID: 27562595 DOI: 10.1007/s11274-016-2121-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/07/2016] [Indexed: 11/29/2022]
Abstract
The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources.
Collapse
Affiliation(s)
- Raasaiyah Pazhanimurugan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, Tamil Nadu, 600 119, India
| | - Thangavel Shanmugasundaram
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India
| | - Venugopal Gopikrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, Tamil Nadu, 600 119, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
17
|
Wu C, Du C, Gubbens J, Choi YH, van Wezel GP. Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28. JOURNAL OF NATURAL PRODUCTS 2015; 78:2355-2363. [PMID: 26438963 DOI: 10.1021/acs.jnatprod.5b00276] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with antimicrobial activity against Bacillus subtilis. The metabolite-guided genome mining of Streptomyces sp. MBT28 combined with proteomics identified a gene cluster with an indole prenyltransferase that catalyzes the conversion of tryptophan into 7-prenylisatin. This study underlines the applicability of NMR-based metabolomics in facilitating the discovery of novel antibiotics.
Collapse
Affiliation(s)
| | | | - Jacob Gubbens
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | |
Collapse
|
18
|
Abstract
Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed.
Collapse
Affiliation(s)
- Natalie Netz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
19
|
|
20
|
Satou R, Izumikawa M, Katsuyama Y, Matsui M, Takagi M, Shin-ya K, Ohnishi Y. Isolation, structural elucidation and biosynthesis of 3-hydroxy-6-dimethylallylindolin-2-one, a novel prenylated indole derivative from Actinoplanes missouriensis. J Antibiot (Tokyo) 2013; 67:231-6. [DOI: 10.1038/ja.2013.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 11/09/2022]
|
21
|
Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs 2013; 11:2113-25. [PMID: 23771045 PMCID: PMC3721223 DOI: 10.3390/md11062113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/16/2022] Open
Abstract
Three new napyradiomycins (1-3) were isolated from the culture broth of a marine-derived actinomycete strain SCSIO 10428, together with six known related analogues napyradiomycin A1 (4), 18-oxonapyradiomycin A1 (5), napyradiomycin B1 (6), napyradiomycin B3 (7), naphthomevalin (8), and napyradiomycin SR (9). The strain SCSIO 10428 was identified as a Streptomyces species by the sequence analysis of its 16S rRNA gene. The structures of new compounds 1-3, designated 4-dehydro-4a-dechlorona pyradiomycin A1 (1), 3-dechloro-3-bromonapyradiomycin A1 (2), and 3-chloro-6, 8-dihydroxy-8-α-lapachone (3), respectively, were elucidated by comparing their 1D and 2D NMR spectroscopic data with known congeners. None of the napyradiomycins 1-9 showed antioxidative activities. Napyradiomycins 1-8 displayed antibacterial activities against three Gram-positive bacteria Staphylococcus and Bacillus strains with MIC values ranging from 0.25 to 32 μg mL⁻¹, with the exception that compound 3 had a MIC value of above 128 μg mL⁻¹ against Staphylococcus aureus ATCC 29213. Napyradiomycins 2, 4, 6, and 7 exhibited moderate cytotoxicities against four human cancer cell lines SF-268, MCF-7, NCI-H460, and HepG-2 with IC₅₀ values below 20 μM, while the IC₅₀ values for other five napyradiomycins 1, 3, 5, 8 and 9 were above 20 μM.
Collapse
|
22
|
Ozaki T, Nishiyama M, Kuzuyama T. Novel tryptophan metabolism by a potential gene cluster that is widely distributed among actinomycetes. J Biol Chem 2013; 288:9946-9956. [PMID: 23430264 PMCID: PMC3617294 DOI: 10.1074/jbc.m112.436451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The characterization of potential gene clusters is a promising strategy for the identification of novel natural products and the expansion of structural diversity. However, there are often difficulties in identifying potential metabolites because their biosynthetic genes are either silenced or expressed only at a low level. Here, we report the identification of a novel metabolite that is synthesized by a potential gene cluster containing an indole prenyltransferase gene (SCO7467) and a flavin-dependent monooxygenase (FMO) gene (SCO7468), which were mined from the genome of Streptomyces coelicolor A3(2). We introduced these two genes into the closely related Streptomyces lividans TK23 and analyzed the culture broths of the transformants. This process allowed us to identify a novel metabolite, 5-dimethylallylindole-3-acetonitrile (5-DMAIAN) that was overproduced in the transformant. Biochemical characterization of the recombinant SCO7467 and SCO7468 demonstrated the novel l-tryptophan metabolism leading to 5-DMAIAN. SCO7467 catalyzes the prenylation of l-tryptophan to form 5-dimethylallyl-l-tryptophan (5-DMAT). This enzyme is the first actinomycetes prenyltransferase known to catalyze the addition of a dimethylallyl group to the C-5 of tryptophan. SCO7468 then catalyzes the conversion of 5-DMAT into 5-dimethylallylindole-3-acetaldoxime (5-DMAIAOx). An aldoxime-forming reaction catalyzed by the FMO enzyme was also identified for the first time in this study. Finally, dehydration of 5-DMAIAOx presumably occurs to yield 5-DMAIAN. This study provides insight into the biosynthesis of prenylated indoles that have been purified from actinomycetes.
Collapse
Affiliation(s)
- Taro Ozaki
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Subramanian S, Shen X, Yuan Q, Yan Y. Identification and biochemical characterization of a 5-dimethylallyl tryptophan synthase in Streptomyces coelicolor A3(2). Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, McGrath J, Quinn J, Gilbert JA. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:4. [PMID: 22587810 PMCID: PMC3348665 DOI: 10.1186/2042-5783-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
Background The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. Results We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. Conclusions The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.
Collapse
Affiliation(s)
- Peter E Larsen
- Argonne National Laboratory, 9700, S, Cass Ave, Argonne, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haste NM, Farnaes L, Perera VR, Fenical W, Nizet V, Hensler ME. Bactericidal kinetics of marine-derived napyradiomycins against contemporary methicillin-resistant Staphylococcus aureus. Mar Drugs 2011; 9:680-689. [PMID: 21731557 PMCID: PMC3124980 DOI: 10.3390/md9040680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/05/2022] Open
Abstract
There is an urgent need for new antibiotics to treat hospital- and community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections. Previous work has indicated that both terrestrial and marine-derived members of the napyradiomycin class possess potential anti-staphylococcal activities. These compounds are unique meroterpenoids with unusual levels of halogenation. In this paper we report the evaluation of two previously described napyradiomycin derivatives, A80915A (1) and A80915B (2) produced by the marine-derived actinomycete, Streptomyces sp. strain CNQ-525, for their specific activities against contemporary and clinically relevant MRSA. Reported are studies of the in vitro kinetics of these chemical scaffolds in time-kill MRSA assays. Both napyradiomycin derivatives demonstrate potent and rapid bactericidal activity against contemporary MRSA strains. These data may help guide future development and design of analogs of the napyradiomycins that could potentially serve as useful anti-MRSA therapeutics.
Collapse
Affiliation(s)
- Nina M. Haste
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; E-Mails: (N.M.H.); (W.F.); (V.N.)
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
| | - Lauge Farnaes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
| | - Varahenage R. Perera
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
| | - William Fenical
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; E-Mails: (N.M.H.); (W.F.); (V.N.)
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; E-Mails: (N.M.H.); (W.F.); (V.N.)
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
| | - Mary E. Hensler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-858-534-2325; Fax: +1-858-534-5611
| |
Collapse
|
26
|
Gallagher KA, Fenical W, Jensen PR. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Curr Opin Biotechnol 2010; 21:794-800. [PMID: 20951024 DOI: 10.1016/j.copbio.2010.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/16/2010] [Indexed: 01/06/2023]
Abstract
Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA
| | | | | |
Collapse
|
27
|
Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Res Microbiol 2010; 161:335-45. [PMID: 20403429 DOI: 10.1016/j.resmic.2010.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces.
Collapse
Affiliation(s)
- Alapati Kavitha
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur 522510, India
| | | | | | | |
Collapse
|
28
|
Terpenoids produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J Antibiot (Tokyo) 2010; 63:245-50. [DOI: 10.1038/ja.2010.30] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Biochemical characterization of a novel indole prenyltransferase from Streptomyces sp. SN-593. J Bacteriol 2010; 192:2839-51. [PMID: 20348259 DOI: 10.1128/jb.01557-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing of Streptomyces species has highlighted numerous potential genes of secondary metabolite biosynthesis. The mining of cryptic genes is important for exploring chemical diversity. Here we report the metabolite-guided genome mining and functional characterization of a cryptic gene by biochemical studies. Based on systematic purification of metabolites from Streptomyces sp. SN-593, we isolated a novel compound, 6-dimethylallylindole (DMAI)-3-carbaldehyde. Although many 6-DMAI compounds have been isolated from a variety of organisms, an enzyme catalyzing the transfer of a dimethylallyl group to the C-6 indole ring has not been reported so far. A homology search using known prenyltransferase sequences against the draft sequence of the Streptomyces sp. SN-593 genome revealed the iptA gene. The IptA protein showed 27% amino acid identity to cyanobacterial LtxC, which catalyzes the transfer of a geranyl group to (-)-indolactam V. A BLAST search against IptA revealed much-more-similar homologs at the amino acid level than LtxC, namely, SAML0654 (60%) from Streptomyces ambofaciens ATCC 23877 and SCO7467 (58%) from S. coelicolor A3(2). Phylogenetic analysis showed that IptA was distinct from bacterial aromatic prenyltransferases and fungal indole prenyltransferases. Detailed kinetic analyses of IptA showed the highest catalytic efficiency (6.13 min(-1) microM(-1)) for L-Trp in the presence of dimethylallyl pyrophosphate (DMAPP), suggesting that the enzyme is a 6-dimethylallyl-L-Trp synthase (6-DMATS). Substrate specificity analyses of IptA revealed promiscuity for indole derivatives, and its reaction products were identified as novel 6-DMAI compounds. Moreover, DeltaiptA mutants abolished the production of 6-DMAI-3-carbaldehyde as well as 6-dimethylallyl-L-Trp, suggesting that the iptA gene is involved in the production of 6-DMAI-3-carbaldehyde.
Collapse
|
30
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 27:165-237. [DOI: 10.1039/b906091j] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 2009; 13:180-8. [DOI: 10.1016/j.cbpa.2009.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/24/2022]
|