1
|
Ji S, Li C, Liu M, Liu Y, Jiang L. Targeting New Functions and Applications of Bacterial Two-Component Systems. Chembiochem 2024; 25:e202400392. [PMID: 38967093 DOI: 10.1002/cbic.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.
Collapse
Affiliation(s)
- Shixia Ji
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Conggang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ling Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Kansari M, Idiris F, Szurmant H, Kubař T, Schug A. Mechanism of activation and autophosphorylation of a histidine kinase. Commun Chem 2024; 7:196. [PMID: 39227740 PMCID: PMC11371814 DOI: 10.1038/s42004-024-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Histidine kinases (HK) are one of the main prokaryotic signaling systems. Two structurally conserved catalytic domains inside the HK enable autokinase, phosphotransfer, and phosphatase activities. Here, we focus on a detailed mechanistic understanding of the functional cycle of the WalK HK by a multi-scale simulation approach, consisting of classical as well as hybrid QM/MM molecular dynamics simulation. Strikingly, a conformational transition induced solely in DHp leads to the correct activated conformation in CA crucial for autophosphorylation. This finding explains how variable sensor domains induce the transition from inactive to active state. The subsequent autophosphorylation inside DHp proceeds via a penta-coordinated transition state to a protonated phosphohistidine intermediate. This intermediate is consequently deprotonated by a suitable nearby base. The reaction energetics are controlled by the final proton acceptor and presence of a magnesium cation. The slow rates of the process result from the high energy barrier of the conformational transition between inactive and active states. The phosphorylation step exhibits a lower barrier and down-the-hill energetics. Thus, our work suggests a detailed mechanistic model for HK autophosphorylation.
Collapse
Affiliation(s)
- Mayukh Kansari
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Fathia Idiris
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hendrik Szurmant
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Schug
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany.
- Faculty of Biology, University of Duisburg/Essen, Essen, Germany.
| |
Collapse
|
3
|
Ahsan R, Kifayat S, Pooniya KK, Kularia S, Adimalla BS, Sanapalli BKR, Sanapalli V, Sigalapalli DK. Bacterial Histidine Kinase and the Development of Its Inhibitors in the 21st Century. Antibiotics (Basel) 2024; 13:576. [PMID: 39061258 PMCID: PMC11274179 DOI: 10.3390/antibiotics13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS) pathway, which is responsible for the regulation of a number of processes connected to bacterial pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacteriostatic/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK has always been an amenable strategy due to the conserved binding sites of the domains across bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence and discusses the available inhibitors of BHK, which is a specific response regulator with essential structural features.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sumaiya Kifayat
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Krishan Kumar Pooniya
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sunita Kularia
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Bhavani Sailu Adimalla
- Department of Pharmaceutical Analysis, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, Guntur 522213, Andhra Pradesh, India;
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India;
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India
| | | |
Collapse
|
4
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
5
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
6
|
Zeng H, Cheng M, Liu J, Hu C, Lin S, Cui R, Li H, Ye W, Wang L, Huang W. Pyrimirhodomyrtone inhibits Staphylococcus aureus by affecting the activity of NagA. Biochem Pharmacol 2023; 210:115455. [PMID: 36780990 DOI: 10.1016/j.bcp.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The epidemic of methicillin-resistant Staphylococcus aureus (MRSA) infections has created a critical health threat. The drug resistance of MRSA makes the development of drugs with new modes of action particularly urgent. In this study, we found that a natural product derivative pyrimirhodomyrtone (PRM) exerted antibacterial activity against S. aureus, including MRSA, both in vitro and in vivo. Genetic and biochemical studies revealed the interaction between PRM and N-acetylglucosamine-6-phosphate deacetylase (NagA) and the inhibitory effect of PRM on its deacetylation activity. We also found that PRM causes depolarization and destroys the integrity of the cell membrane. The elucidation of the antibacterial mechanism will inspire the subsequent development of new anti-MRSA drugs based on PRM.
Collapse
Affiliation(s)
- Huan Zeng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China; Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Minjing Cheng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jingyi Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chunxia Hu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shilin Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Ruiqin Cui
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Wencai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Wei Huang
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Department of Clinical Microbiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
7
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
8
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
9
|
Dysregulation of Cell Envelope Homeostasis in Staphylococcus aureus Exposed to Solvated Lignin. Appl Environ Microbiol 2022; 88:e0054822. [PMID: 35852361 PMCID: PMC9361832 DOI: 10.1128/aem.00548-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lignin is an aromatic plant cell wall polymer that facilitates water transport through the vasculature of plants and is generated in large quantities as an inexpensive by-product of pulp and paper manufacturing and biorefineries. Although lignin's ability to reduce bacterial growth has been reported previously, its hydrophobicity complicates the ability to examine its biological effects on living cells in aqueous growth media. We recently described the ability to solvate lignin in Good's buffers with neutral pH, a breakthrough that allowed examination of lignin's antimicrobial effects against the human pathogen Staphylococcus aureus. These analyses showed that lignin damages the S. aureus cell membrane, causes increased cell clustering, and inhibits growth synergistically with tunicamycin, a teichoic acid synthesis inhibitor. In the present study, we examined the physiological and transcriptomic responses of S. aureus to lignin. Intriguingly, lignin restored the susceptibility of genetically resistant S. aureus isolates to penicillin and oxacillin, decreased intracellular pH, impaired normal cell division, and rendered cells more resistant to detergent-induced lysis. Additionally, transcriptome sequencing (RNA-Seq) differential expression (DE) analysis of lignin-treated cultures revealed significant gene expression changes (P < 0.05 with 5% false discovery rate [FDR]) related to the cell envelope, cell wall physiology, fatty acid metabolism, and stress resistance. Moreover, a pattern of concurrent up- and downregulation of genes within biochemical pathways involved in transmembrane transport and cell wall physiology was observed, which likely reflects an attempt to tolerate or compensate for lignin-induced damage. Together, these results represent the first comprehensive analysis of lignin's antibacterial activity against S. aureus. IMPORTANCE S. aureus is a leading cause of skin and soft tissue infections. The ability of S. aureus to acquire genetic resistance to antibiotics further compounds its ability to cause life-threatening infections. While the historical response to antibiotic resistance has been to develop new antibiotics, bacterial pathogens are notorious for rapidly acquiring genetic resistance mechanisms. As such, the development of adjuvants represents a viable way of extending the life span of current antibiotics to which pathogens may already be resistant. Here, we describe the phenotypic and transcriptomic response of S. aureus to treatment with lignin. Our results demonstrate that lignin extracted from sugarcane and sorghum bagasse restores S. aureus susceptibility to β-lactams, providing a premise for repurposing these antibiotics in treatment of resistant S. aureus strains, possibly in the form of topical lignin/β-lactam formulations.
Collapse
|
10
|
Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front Chem 2022; 10:866392. [PMID: 35860627 PMCID: PMC9289397 DOI: 10.3389/fchem.2022.866392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prevalence of antimicrobial-resistant pathogens significantly limited the number of effective antibiotics available clinically, which urgently requires new drug targets to screen, design, and develop novel antibacterial drugs. Two-component system (TCS), which is comprised of a histidine kinase (HK) and a response regulator (RR), is a common mechanism whereby bacteria can sense a range of stimuli and make an appropriate adaptive response. HKs as the sensor part of the bacterial TCS can regulate various processes such as growth, vitality, antibiotic resistance, and virulence, and have been considered as a promising target for antibacterial drugs. In the current review, we highlighted the structural basis and functional importance of bacterial TCS especially HKs as a target in the discovery of new antimicrobials, and summarize the latest research progress of small-molecule HK-inhibitors as potential novel antimicrobial drugs reported in the past decade.
Collapse
Affiliation(s)
- Hongtong Chen
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengqi Yu
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Guoqing Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hong
- Beijing Institute of Collaborative Innovation, Beijing, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
12
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
13
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021. [PMID: 34475315 PMCID: PMC8387214 DOI: 10.1007/s12038-021-00209-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid-1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
14
|
Lade H, Kim JS. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:398. [PMID: 33917043 PMCID: PMC8067735 DOI: 10.3390/antibiotics10040398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens and continues to be a leading cause of morbidity and mortality worldwide. MRSA is a commensal bacterium in humans and is transmitted in both community and healthcare settings. Successful treatment remains a challenge, and a search for new targets of antibiotics is required to ensure that MRSA infections can be effectively treated in the future. Most antibiotics in clinical use selectively target one or more biochemical processes essential for S. aureus viability, e.g., cell wall synthesis, protein synthesis (translation), DNA replication, RNA synthesis (transcription), or metabolic processes, such as folic acid synthesis. In this review, we briefly describe the mechanism of action of antibiotics from different classes and discuss insights into the well-established primary targets in S. aureus. Further, several components of bacterial cellular processes, such as teichoic acid, aminoacyl-tRNA synthetases, the lipid II cycle, auxiliary factors of β-lactam resistance, two-component systems, and the accessory gene regulator quorum sensing system, are discussed as promising targets for novel antibiotics. A greater molecular understanding of the bacterial targets of antibiotics has the potential to reveal novel therapeutic strategies or identify agents against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| |
Collapse
|
15
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
16
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85. [PMID: 34475315 PMCID: PMC8387214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 04/04/2024]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
17
|
Prieto JM, Rapún-Araiz B, Gil C, Penadés JR, Lasa I, Latasa C. Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Sci Rep 2020; 10:17939. [PMID: 33087792 PMCID: PMC7577973 DOI: 10.1038/s41598-020-74873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by Staphylococcus aureus pose a serious and sometimes fatal health issue. With the aim of exploring a novel therapeutic approach, we chose GraXRS, a Two-Component System (TCS) that determines bacterial resilience against host innate immune barriers, as an alternative target to disarm S. aureus. Following a drug repurposing methodology, and taking advantage of a singular staphylococcal strain that lacks the whole TCS machinery but the target one, we screened 1.280 off-patent FDA-approved drug for GraXRS inhibition. Reinforcing the connection between this signaling pathway and redox sensing, we found that antioxidant and redox-active molecules were capable of reducing the expression of the GraXRS regulon. Among all the compounds, verteporfin (VER) was really efficient in enhancing PMN-mediated bacterial killing, while topical administration of such drug in a murine model of surgical wound infection significantly reduced the bacterial load. Experiments relying on the chemical mimicry existing between VER and heme group suggest that redox active residue C227 of GraS participates in the inhibition exerted by this FDA-approved drug. Based on these results, we propose VER as a promising candidate for sensitizing S. aureus that could be helpful to combat persistent or antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Beatriz Rapún-Araiz
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Cristina Latasa
- RECOMBINA SL, Calle Nueva, 8 local 10, Mutilva 31192, Navarra, Spain.
| |
Collapse
|
18
|
Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics (Basel) 2020; 9:antibiotics9100635. [PMID: 32977461 PMCID: PMC7598275 DOI: 10.3390/antibiotics9100635] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.
Collapse
|
19
|
Swain A, Gnanasekar P, Prava J, Rajeev AC, Kesarwani P, Lahiri C, Pan A. A Comparative Genomics Approach for Shortlisting Broad-Spectrum Drug Targets in Nontuberculous Mycobacteria. Microb Drug Resist 2020; 27:212-226. [PMID: 32936741 DOI: 10.1089/mdr.2020.0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many members of nontuberculous mycobacteria (NTM) are opportunistic pathogens causing several infections in animals. The incidence of NTM infections and emergence of drug-resistant NTM strains are rising worldwide, emphasizing the need to develop novel anti-NTM drugs. The present study is aimed to identify broad-spectrum drug targets in NTM using a comparative genomics approach. The study identified 537 core proteins in NTM of which 45 were pathogen specific and essential for the survival of pathogens. Furthermore, druggability analysis indicated that 15 were druggable among those 45 proteins. These 15 proteins, which were core proteins, pathogen-specific, essential, and druggable, were considered as potential broad-spectrum candidates. Based on their locations in cytoplasm and membrane, targets were classified as drug and vaccine targets. The identified 15 targets were different enzymes, carrier proteins, transcriptional regulator, two-component system protein, ribosomal, and binding proteins. The identified targets could further be utilized by researchers to design inhibitors for the discovery of antimicrobial agents.
Collapse
Affiliation(s)
- Aishwarya Swain
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Jyoti Prava
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Athira C Rajeev
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pragya Kesarwani
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
20
|
Rocha FR, Regis WFM, Duarte S, Muniz FWMG, Rodrigues LKA. Effect of bioactive compounds on the regulation of quorum sensing network-associated genes and virulence in Streptococcus mutans-A systematic review. Arch Oral Biol 2020; 119:104893. [PMID: 32961379 DOI: 10.1016/j.archoralbio.2020.104893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to systematically review the literature on the effect of bioactive compounds and their regulation of quorum sensing (QS)-related and/or -regulated-virulence genes expression in Streptococcus mutans. DESIGN The search strategy was conducted through the electronic databases Pubmed, Scopus, and Web of Science for studies reporting the effects of natural and synthetic bioactive compounds on the regulation of QS-associated and/or -regulated genes of S. mutans. RESULTS After full-text reading, 19 studies met the inclusion criteria, in most of them, QS-inhibitors from synthetic origin were evaluated, 16 articles described the effect of the compounds on biofilm formation cultivated in vitro and five studies described these effects on adhesion of biofilm-producing cells. Only 2 studies analyzed the potential target-component of the QS. CONCLUSIONS Mostly, the bioactive compounds affected the expression of QS-associated and/or -regulated genes and virulence traits (e.g. adhesion, biofilm formation, acid stress tolerance) of S. mutans. Further studies are necessary to elucidate the target-specific QS-system constituent used by bioactive compounds to achieve QS inhibition as well as validate the use of these compounds in controlling dental caries.
Collapse
Affiliation(s)
- Francisco R Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Zip Code: 60430-270, Brazil
| | - Wanessa F M Regis
- Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, United States
| | - Francisco W M G Muniz
- Department of Periodontology, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lidiany K A Rodrigues
- Department of Operative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Zip Code: 60430-170, Brazil.
| |
Collapse
|
21
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
22
|
Igarashi M. New natural products to meet the antibiotic crisis: a personal journey. J Antibiot (Tokyo) 2019; 72:890-898. [PMID: 31462681 DOI: 10.1038/s41429-019-0224-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
The use of natural products and their derivatives has evolved as a promising approach for the treatment of various infectious diseases, particularly to combat drug-resistant microbial strains. In addition, these natural products characterized by the presence of novel structures and mechanisms of action may provide guidance toward the development of potential new chemotherapies. In the present review, antimicrobial resistance (AMR) is briefly introduced and research focused on the identification and characterization of actinomycete metabolites for antimicrobial activity is discussed. Three compounds, i.e., walkmycin B, waldiomycin, and signamycin B, with novel mechanisms of action as histidine kinase inhibitors, were isolated from the metabolites of actinomycetes. New antituberculosis antibiotics, tuberlactomicin A and caprazamycins, were discovered, and amycolamicin was identified as an antimethicillin-resistant Staphylococus aureus antibiotic. The discovery of these compounds encourages the discovery and investigation of more natural products active against antimicrobial-resistant species, thus providing scaffold for the development of effective drugs against various AMR species.
Collapse
Affiliation(s)
- Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
23
|
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. MEDCHEMCOMM 2019; 10:1057-1067. [PMID: 31391878 PMCID: PMC6644389 DOI: 10.1039/c9md00015a] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field.
Collapse
Affiliation(s)
- Amber M Scharnow
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - Amy E Solinski
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| |
Collapse
|
24
|
De Silva PM, Kumar A. Signal Transduction Proteins in Acinetobacter baumannii: Role in Antibiotic Resistance, Virulence, and Potential as Drug Targets. Front Microbiol 2019; 10:49. [PMID: 30761101 PMCID: PMC6363711 DOI: 10.3389/fmicb.2019.00049] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a notorious pathogen in health care settings around the world, primarily due to high resistance to antibiotics. A. baumannii also shows an impressive capability to adapt to harsh conditions in clinical settings, which contributes to its persistence in such conditions. Following their traditional role, the Two Component Systems (TCSs) present in A. baumannii play a crucial role in sensing and adapting to the changing environmental conditions. This provides A. baumannii with a greater chance of survival even in unfavorable conditions. Since all the TCSs characterized to date in A. baumannii play a role in its antibiotic resistance and virulence, understanding the underlying molecular mechanisms behind TCSs can help with a better understanding of the pathways that regulate these phenotypes. This can also guide efforts to target TCSs as novel drug targets. In this review, we discuss the roles of TCSs in A. baumannii, their molecular mechanisms, and most importantly, the potential of using small molecule inhibitors of TCSs as potential novel drug targets.
Collapse
Affiliation(s)
- P Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Manitoba Chemosensory Biology Group, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Kemung HM, Tan LTH, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH. Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs. Front Microbiol 2018; 9:2221. [PMID: 30319563 PMCID: PMC6165876 DOI: 10.3389/fmicb.2018.02221] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
Collapse
Affiliation(s)
- Hefa Mangzira Kemung
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| |
Collapse
|
26
|
The Two-Component Signaling System VraSR ss Is Critical for Multidrug Resistance and Full Virulence in Streptococcus suis Serotype 2. Infect Immun 2018; 86:IAI.00096-18. [PMID: 29685990 DOI: 10.1128/iai.00096-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis has received increasing attention for its involvement in severe human infections worldwide as well as in multidrug resistance. Two-component signaling systems (TCSSs) play important roles in bacterial adaptation to various environmental stimuli. In this study, we identified a novel TCSS located in S. suis serotype 2 (SS2), designated VraSRSS, which is involved in bacterial pathogenicity and susceptibility to antimicrobials. Our data demonstrated that the yvqFSS gene, located upstream of vraSRSS , shared the same promoter with the TCSS genes, which was directly regulated by VraSRSS, as shown in electrophoretic mobility shift assays. Notably, YvqFSS and VraSRSS constitute a novel multidrug resistance module of SS2 that participates in resistance to certain groups of antimicrobials. Further analyses showed that VraSRSS inactivation significantly attenuated bacterial virulence in animal models, which, coupled with the significant activation of VraSRSS expression observed in host blood, strongly suggested that VraSRSS is an important regulator of SS2 pathogenicity. Indeed, RNA-sequencing analyses identified 106 genes that were differentially expressed between the wild-type and ΔvraSRSS strains, including genes involved in capsular polysaccharide (CPS) biosynthesis. Subsequent studies confirmed that VraSRSS indirectly regulated the transcription of CPS gene clusters and, thus, controlled the CPS thickness shown by transmission electron microscopy. Decreased CPS biosynthesis caused by vraSRSS deletion subsequently increased bacterial adhesion to epithelial cells and attenuated antiphagocytosis against macrophages, which partially clarified the pathogenic mechanism mediated by VraSRSS Taken together, our data suggest that the novel TCSS, VraSRSS, plays critical roles for multidrug resistance and full virulence in SS2.
Collapse
|
27
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
28
|
Premnath P, Reck M, Wittstein K, Stadler M, Wagner-Döbler I. Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains. BMC Microbiol 2018; 18:24. [PMID: 29580208 PMCID: PMC5870221 DOI: 10.1186/s12866-018-1170-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. Results The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. Conclusions We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability. Electronic supplementary material The online version of this article (10.1186/s12866-018-1170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Premnath
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Reck
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Kathrin Wittstein
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
29
|
Takada H, Yoshikawa H. Essentiality and function of WalK/WalR two-component system: the past, present, and future of research. Biosci Biotechnol Biochem 2018. [PMID: 29514560 DOI: 10.1080/09168451.2018.1444466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The WalK/WalR two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved in gram-positive bacteria, including several important pathogens. The WalK/WalR TCS appears to be involved in the growth of most bacterial species encoding it. Previous studies have indicated conserved functions of this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism. Because of such effects on essential functions, this system is considered a potential target for anti-infective therapeutics. In this review, we discuss the role of WalK/WalR TCS in different bacterial cells, focusing on the function of the genes in its regulon as well as the variations in walRK operon structure, its auxiliary proteins, and the composition of its regulon. We also discuss recent experimental data addressing its essential function and the potential type of signal being sensed by B. subtilis. This review also focuses on the potential future research.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan.,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
30
|
Takada H, Shiwa Y, Takino Y, Osaka N, Ueda S, Watanabe S, Chibazakura T, Su'etsugu M, Utsumi R, Yoshikawa H. Essentiality of WalRK for growth in Bacillus subtilis and its role during heat stress. MICROBIOLOGY-SGM 2018; 164:670-684. [PMID: 29465029 DOI: 10.1099/mic.0.000625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
WalRK is an essential two-component signal transduction system that plays a central role in coordinating cell wall synthesis and cell growth in Bacillus subtilis. However, the physiological role of WalRK and its essentiality for growth have not been elucidated. We investigated the behaviour of WalRK during heat stress and its essentiality for cell proliferation. We determined that the inactivation of the walHI genes which encode the negative modulator of WalK, resulted in growth defects and eventual cell lysis at high temperatures. Screening of suppressor mutations revealed that the inactivation of LytE, an dl-endopeptidase, restored the growth of the ΔwalHI mutant at high temperatures. Suppressor mutations that reduced heat induction arising from the walRK regulon were also mapped to the walK ORF. Therefore, we hypothesized that overactivation of LytE affects the phenotype of the ΔwalHI mutant. This hypothesis was corroborated by the overexpression of the negative regulator of LytE, IseA and PdaC, which rescued the growth of the ΔwalHI mutant at high temperatures. Elucidating the cause of the temperature sensitivity of the ΔwalHI mutant could explain the essentiality of WalRK. We proved that the constitutive expression of lytE or cwlO using a synthetic promoter uncouples these expressions from WalRK, and renders WalRK nonessential in the pdaC and iseA mutant backgrounds. We propose that the essentiality of WalRK is derived from the coordination of cell wall metabolism with cell growth by regulating dl-endopeptidase activity under various growth conditions.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuta Takino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shuhei Ueda
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara-shi, Nara 631-8505, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masayuki Su'etsugu
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryutaro Utsumi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara-shi, Nara 631-8505, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
31
|
Steiner BD, Eberly AR, Hurst MN, Zhang EW, Green HD, Behr S, Jung K, Hadjifrangiskou M. Evidence of Cross-Regulation in Two Closely Related Pyruvate-Sensing Systems in Uropathogenic Escherichia coli. J Membr Biol 2018; 251:65-74. [PMID: 29374286 DOI: 10.1007/s00232-018-0014-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
Two-component systems (TCSs) dictate many bacterial responses to environmental change via the activation of a membrane-embedded sensor kinase, which has molecular specificity for a cognate response regulator protein. However, although the majority of TCSs operate through seemingly strict cognate protein-protein interactions, there have been several reports of TCSs that violate this classical model of signal transduction. Our group has recently demonstrated that some of these cross-interacting TCSs function in a manner that imparts a fitness advantage to bacterial pathogens. In this study, we describe interconnectivity between the metabolite-sensing TCSs YpdA/YpdB and BtsS/BtsR in uropathogenic Escherichia coli (UPEC). The YpdA/YpdB and BtsS/BtsR TCSs have been previously reported to interact in K12 E. coli, where they alter the expression of putative transporter genes yhjX and yjiY, respectively. These target genes are both upregulated in UPEC during acute and chronic murine models of urinary tract infection, as well as in response to pyruvate and serine added to growth media in vitro. Here, we show that proper regulation of yhjX in UPEC requires the presence of all components from both of these TCSs. By utilizing plasmid-encoded luciferase reporters tracking the activity of the yhjX and yjiY promoters, we demonstrate that deletions in one TCS substantially alter transcriptional activity of the opposing system's target gene. However, unlike in K12 E. coli, single gene deletions in the YpdA/YpdB system do not alter yjiY gene expression in UPEC, suggesting that niche and lifestyle-specific pressures may be selecting for differential cross-regulation of TCSs in pathogenic and non-pathogenic E. coli.
Collapse
Affiliation(s)
- Bradley D Steiner
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allison R Eberly
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | - Melanie N Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | - Ellisa W Zhang
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | | | - Stefan Behr
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA.
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN, USA.
| |
Collapse
|
32
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
33
|
Cardona ST, Choy M, Hogan AM. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. J Membr Biol 2017; 251:75-89. [DOI: 10.1007/s00232-017-9995-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 01/22/2023]
|
34
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Utsumi R. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Biosci Biotechnol Biochem 2017; 81:1663-1669. [PMID: 28743208 DOI: 10.1080/09168451.2017.1350565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.
Collapse
Affiliation(s)
- Ryutaro Utsumi
- a Department of Bioscience, Graduate School of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
36
|
Lehning CE, Heidelberger JB, Reinhard J, Nørholm MHH, Draheim RR. A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors. ACS Synth Biol 2017; 6:1315-1326. [PMID: 28372360 DOI: 10.1021/acssynbio.6b00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-existing compound libraries could reveal small molecules that inhibit stimulus-perception by virulence-modulating receptors, reduce signal output from essential receptors or identify artificial stimulatory ligands for novel SHKs that are involved in virulence. Those small molecules could possess desirable therapeutic properties to combat MDR. We propose that a modular screening platform in which the periplasmic domain of the targeted receptors are fused to the cytoplasmic domain of a well-characterized receptor that governs fluorescence reporter genes could be employed to rapidly screen currently existing small molecule libraries. Here, we have examined two previously created Tar-EnvZ chimeras and a novel NarX-EnvZ chimera. We demonstrate that it is possible to couple periplasmic stimulus-perceiving domains to an invariable cytoplasmic domain that governs transcription of a dynamic fluorescent reporter system. Furthermore, we show that aromatic tuning, or repositioning the aromatic residues at the end of the second transmembrane helix (TM2), modulates baseline signal output from the tested chimeras and even restores output from a nonfunctional NarX-EnvZ chimera. Finally, we observe an inverse correlation between baseline signal output and the degree of response to cognate stimuli. In summary, we propose that the platform described here, a fluorescent Escherichia coli reporter strain with plasmid-based expression of the aromatically tuned chimeric receptors, represents a synthetic biology approach to rapidly screen pre-existing compound libraries for receptor-modulating activities.
Collapse
Affiliation(s)
- Christina E. Lehning
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | | - John Reinhard
- Buchmann
Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438, Frankfurt, Germany
| | - Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | |
Collapse
|
37
|
Lv Z, Zhao D, Chang J, Liu H, Wang X, Zheng J, Huang R, Lin Z, Shang Y, Ye L, Wu Y, Han S, Qu D. Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis. Front Microbiol 2017; 8:549. [PMID: 28408903 PMCID: PMC5374206 DOI: 10.3389/fmicb.2017.00549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56–6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan UniversityShanghai, China
| | - Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen UniversityShenzhen, China
| | - Renzheng Huang
- Department of Gastroenterology, Zhongshan Hospital of Fudan UniversityShanghai, China
| | - Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| |
Collapse
|
38
|
Eguchi Y, Okajima T, Tochio N, Inukai Y, Shimizu R, Ueda S, Shinya S, Kigawa T, Fukamizo T, Igarashi M, Utsumi R. Angucycline antibiotic waldiomycin recognizes common structural motif conserved in bacterial histidine kinases. J Antibiot (Tokyo) 2016; 70:251-258. [PMID: 27999439 DOI: 10.1038/ja.2016.151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Two-component signal transduction systems (TCSs), composed of a histidine kinase sensor (HK) and its cognate response regulator, sense and respond to environmental changes and are related to the virulence of pathogens. TCSs are potential targets for alternative antibiotics and anti-virulence agents. Here we found that waldiomycin, an angucycline antibiotic that inhibits a growth essential HK, WalK, in Gram-positive bacteria, also inhibits several class I HKs from the Gram-negative Escherichia coli. NMR analyses and site-directed mutagenesis studies using the osmo-sensing EnvZ, a prototypical HK of E. coli, showed that waldiomycin directly binds to both H-box and X-region, which are the two conserved regions in the dimerization-inducing and histidine-containing phosphotransfer (DHp) domain of HKs. Waldiomycin inhibits phosphorylation of the conserved histidine in the H-box. Analysis of waldiomycin derivatives suggests that the angucyclic ring, situated near the H-box in the waldiomycin-EnvZ DHp domain complex model, is responsible for the inhibitory activity. We demonstrate that waldiomycin is an HK inhibitor binding to the H-box region and has the potential of inhibiting a broad spectrum of HKs.
Collapse
Affiliation(s)
- Yoko Eguchi
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan.,Department of Science and Technology on Food Safety, Kindai University, Kinokawa, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan.,Department of Chemistry, Osaka Medical College, Takatsuki, Japan
| | - Naoya Tochio
- Research Center for the Mathematics on Chromatin Live Dynamics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan.,RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | - Yoichi Inukai
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Riko Shimizu
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Shuhei Ueda
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Shoko Shinya
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Takanori Kigawa
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | - Tamo Fukamizo
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | | | - Ryutaro Utsumi
- Department of Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
39
|
Fakhruzzaman M, Inukai Y, Yanagida Y, Kino H, Igarashi M, Eguchi Y, Utsumi R. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J GEN APPL MICROBIOL 2016; 61:177-84. [PMID: 26582287 DOI: 10.2323/jgam.61.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two-component signal transduction systems (TCSs) represent one of the primary means by which bacteria sense and respond to changes in their environment, both intra- and extracellular. The highly conserved WalK (histidine kinase)/WalR (response regulator) TCS is essential for cell wall metabolism of low G+C Gram-positive bacteria and acts as a master regulatory system in controlling and coordinating cell wall metabolism with cell division. Waldiomycin, a WalK inhibitor, has been discovered by screening metabolites from actinomycetes and belongs to the family of angucycline antibiotics. In the present study, we have shown that waldiomycin inhibited autophosphorylation of WalK histidine kinases in vitro from Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans at half-maximal inhibitory concentrations of 10.2, 8.8, 9.2, and 25.8 μM, respectively. Quantitative RT-PCR studies of WalR regulon genes have suggested that waldiomycin repressed the WalK/WalR system in B. subtilis and S. aureus cells. Morphology of waldiomycin-treated S. aureus cells displayed increased aggregation instead of proper cellular dissemination. Furthermore, autolysis profiles of S. aureus cells revealed that waldiomycin-treated cells were highly resistant to Triton X-100- and lysostaphin-induced lysis. These phenotypes are consistent with those of cells starved for the WalK/WalR system, indicating that waldiomycin inhibited the autophosphorylation activity of WalK in cells. We have also confirmed that waldiomycin inhibits WalK autophosphorylation in vivo by actually observing the phosphorylated WalK ratio in cells using Phos-tag SDS-PAGE. The results of our current study strongly suggest that waldiomycin targets WalK histidine kinases and inhibits the WalR regulon genes expression, thereby affecting both cell wall metabolism and cell division.
Collapse
Affiliation(s)
- Md Fakhruzzaman
- Department of Bioscience, Graduate School of Agriculture, Kinki University
| | | | | | | | | | | | | |
Collapse
|
40
|
Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci Rep 2016; 6:26085. [PMID: 27173778 PMCID: PMC4865847 DOI: 10.1038/srep26085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/15/2016] [Indexed: 01/21/2023] Open
Abstract
Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.
Collapse
|
41
|
NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med Chem 2016; 8:257-69. [PMID: 26910612 DOI: 10.4155/fmc.15.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown. METHODS & RESULTS The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant. NH125 killed persister cells of a variety of Staphylococcus aureus strains. Similar to 16-BAC, NH125 killed MRSA persisters by inducing rapid membrane permeabilization and caused the rupture of GUVs, whereas walrycin B did not kill MRSA persisters or induce membrane permeabilization and did not affect GUVs. CONCLUSION NH125 kills MRSA persisters by interacting with and disrupting membranes in a detergent-like manner.
Collapse
|
42
|
Bem AE, Velikova N, Pellicer MT, Baarlen PV, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 2015; 10:213-24. [PMID: 25436989 DOI: 10.1021/cb5007135] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In this review, we discuss the biological importance of TCSs and bacterial HKs for the discovery of novel antibacterials, as well as published TCS and HK inhibitors that can be used as a starting point for structure-based approaches to develop novel antibacterials.
Collapse
Affiliation(s)
- Agnieszka E. Bem
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Nadya Velikova
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
| | - M. Teresa Pellicer
- R&D Department Interquim, Ferrer HealthTech, Joan Buscalla 10, 08137-Sant Cugat del Valles Barcelona, Spain
| | - Peter van Baarlen
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Alberto Marina
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
- Centro de Investigacion
Biomedica en Red de Enfermedades Raras (CIBER-ISCIII), Jaume Roig 11, 46010-Valencia, Spain
| | - Jerry M. Wells
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
43
|
Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg Microbes Infect 2015; 4:e1. [PMID: 26038759 PMCID: PMC4317670 DOI: 10.1038/emi.2015.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/26/2014] [Accepted: 11/24/2014] [Indexed: 01/16/2023]
Abstract
Both Staphylococcus aureus and Staphylococcus epidermidis can form biofilms on natural surfaces or abiotic surfaces, such as medical implants, resulting in biofilm-associated diseases that are refractory to antibiotic treatment. We previously reported a promising antibacterial compound (Compound 2) and its derivatives with bactericidal and anti-biofilm activities against both S. epidermidis and S. aureus. We have further evaluated the antibacterial activities of four Compound 2 derivatives (H2-38, H2-39, H2-74 and H2-81) against 163 clinical strains of S. epidermidis and S. aureus, including methicillin-susceptible and methicillin-resistant strains, as well as biofilm-forming and non-biofilm-forming strains. The four derivatives inhibited the planktonic growth of all of the clinical staphylococcal isolates, including methicillin-resistant S. aureus and methicillin-resistant S. epidermidis and displayed bactericidal activities against both immature (6 h) and mature (24 h) biofilms formed by the strong biofilm-forming strains. The derivatives, which all target YycG, will help us to develop new antimicrobial agents against multidrug-resistant staphylococci infections and biofilm-associated diseases.
Collapse
Affiliation(s)
- Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Yanfeng Zhao
- Department of Laboratory Medicine, Affiliated Gulou Hospital, Medical College of Nanjing University , Nanjing 210008, Jiangsu, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing 210009, Jiangsu, China
| | - Ting Gong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Youcong Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Haiyan Han
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Tao Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen , Tübingen 72076, Germany
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing 210009, Jiangsu, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| |
Collapse
|
44
|
Ayala E, Downey JS, Mashburn-Warren L, Senadheera DB, Cvitkovitch DG, Goodman SD. A biochemical characterization of the DNA binding activity of the response regulator VicR from Streptococcus mutans. PLoS One 2014; 9:e108027. [PMID: 25229632 PMCID: PMC4168254 DOI: 10.1371/journal.pone.0108027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 02/03/2023] Open
Abstract
Two-component systems (TCSs) are ubiquitous among bacteria and are among the most elegant and effective sensing systems in nature. They allow for efficient adaptive responses to rapidly changing environmental conditions. In this study, we investigated the biochemical characteristics of the Streptococcus mutans protein VicR, an essential response regulator that is part of the VicRK TCS. We dissected the DNA binding requirements of the recognition sequences for VicR in its phosphorylated and unphosphorylated forms. In doing so, we were able to make predictions for the expansion of the VicR regulon within S. mutans. With the ever increasing number of bacteria that are rapidly becoming resistant to even the antibiotics of last resort, TCSs such as the VicRK provide promising targets for a new class of antimicrobials.
Collapse
Affiliation(s)
- Eduardo Ayala
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
| | - Jennifer S. Downey
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Dilani B. Senadheera
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Steven D. Goodman
- Department of Molecular and Computational Biology, Division of Biomedical Science, Herman Ostrow School of Dentistry, The University of Southern California, Los Angeles, California, United States of America
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
45
|
Liu H, Zhao D, Chang J, Yan L, Zhao F, Wu Y, Xu T, Gong T, Chen L, He N, Wu Y, Han S, Qu D. Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl Microbiol Biotechnol 2014; 98:6003-13. [PMID: 24737057 PMCID: PMC4057637 DOI: 10.1007/s00253-014-5685-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/27/2022]
Abstract
Treating staphylococcal biofilm-associated infections is challenging. Based on the findings that compound 2 targeting the HK domain of Staphylococcus epidermidis YycG has bactericidal and antibiofilm activities against staphylococci, six newly synthesized derivatives were evaluated for their antibacterial activities. The six derivatives of compound 2 inhibited autophosphorylation of recombinant YycG′ and the IC50 values ranged from 24.2 to 71.2 μM. The derivatives displayed bactericidal activity against planktonic S. epidermidis or Staphylococcus aureus strains in the MIC range of 1.5–3.1 μM. All the derivatives had antibiofilm activities against the 6- and 24-h biofilms of S. epidermidis. Compared to the prototype compound 2, they had less cytotoxicity for Vero cells and less hemolytic activity for human erythrocytes. The derivatives showed antibacterial activities against clinical methicillin-resistant staphylococcal isolates. The structural modification of YycG inhibitors will assist the discovery of novel agents to eliminate biofilm infections and multidrug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Njoroge JW, Sperandio V. Interference with Bacterial Cell-to-Cell Chemical Signaling in Development of New Anti-Infectives. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 2013; 13:699-706. [PMID: 23871261 PMCID: PMC3795836 DOI: 10.1016/j.coph.2013.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023]
Abstract
Infections caused by bacterial biofilms are a significant global health problem, causing considerable patient morbidity and mortality and contributing to the economic burden of infectious disease. This review describes diverse strategies to combat bacterial biofilms, focusing firstly on small molecule interference with bacterial communication and signaling pathways, including quorum sensing and two-component signal transduction systems. Secondly we discuss enzymatic approaches to the degradation of extracellular matrix components to effect biofilm dispersal. Both of these approaches are based upon non-microbicidal mechanisms of action, and thereby do not place a direct evolutionary pressure on the bacteria to develop resistance. Such approaches have the potential to, in combination with conventional antibiotics, play an important role in the eradication of biofilm based bacterial infections.
Collapse
Affiliation(s)
- Meghan S. Blackledge
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
48
|
Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 2013; 5:1265-84. [DOI: 10.4155/fmc.13.58] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a considerable and increasing global problem. The development of new antibiotics is not keeping pace with the rapid evolution of resistance to almost all clinically available drugs, and novel strategies are required to fight bacterial infections. One such strategy is the control of pathogenic behaviors, as opposed to simply killing bacteria. Bacterial two-component system (TCS) signal transduction pathways control many pathogenic bacterial behaviors, such as virulence, biofilm formation and antibiotic resistance and are, therefore, an attractive target for the development of new drugs. This review presents an overview of TCS that are potential targets for such a strategy, describes small-molecules inhibitors of TCS identified to date and discusses assays for the identification of novel inhibitors. The future perspective for the identification and use of inhibitors of TCS to potentially provide new therapeutic options for the treatment of drug-resistant bacterial infections is discussed.
Collapse
|
49
|
Igarashi M, Watanabe T, Hashida T, Umekita M, Hatano M, Yanagida Y, Kino H, Kimura T, Kinoshita N, Inoue K, Sawa R, Nishimura Y, Utsumi R, Nomoto A. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J Antibiot (Tokyo) 2013; 66:459-64. [DOI: 10.1038/ja.2013.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 11/09/2022]
|
50
|
Abstract
The synthesis of the bacterial peptidoglycan has been recognized for over 50 years as fertile ground for antibacterial discovery. Initially, empirical screening of natural products for inhibition of bacterial growth detected many chemical classes of antibiotics whose specific mechanisms of action were eventually dissected and defined. Of the nontoxic antibiotics discovered, most were found to be inhibitors of either protein synthesis or cell wall synthesis, which led to more directed screening for inhibitors of these pathways. Directed screening and design programs for cell wall inhibitors have been undertaken since the 1960s. In that time it has become clear that, while certain steps and intermediates have yielded selective inhibitors and are established targets, other potential targets have not yielded inhibitors whose antibacterial activity is proven to be solely due to that inhibition. Why has this search been so problematic? Are the established targets still worth pursuing? This review will attempt to answer these and other questions and evaluate the viability of targets related to peptidoglycan synthesis.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, Springfield, New Jersey 07081, USA.
| |
Collapse
|