1
|
Niedowicz DM, Wang W, Prajapati P, Zhong Y, Fister S, Rogers CB, Sompol P, Powell DK, Patel I, Norris CM, Saatman KE, Nelson PT. Nicorandil treatment improves survival and spatial learning in aged granulin knockout mice. Brain Pathol 2025; 35:e13312. [PMID: 39438022 PMCID: PMC11961209 DOI: 10.1111/bpa.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in the human granulin (GRN) gene are associated with multiple diseases, including dementia disorders such as frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). We studied a Grn knockout (Grn-KO) mouse model in order to evaluate a potential therapeutic strategy for these diseases using nicorandil, a commercially available agonist for the ABCC9/Abcc9-encoded regulatory subunit of the "K+ATP" channel that is well-tolerated in humans. Aged (13 months) Grn-KO and wild-type (WT) mice were treated as controls or with nicorandil (15 mg/kg/day) in drinking water for 7 months, then tested for neurobehavioral performance, neuropathology, and gene expression. Mortality was significantly higher for aged Grn-KO mice (particularly females), but there was a conspicuous improvement in survival for both sexes treated with nicorandil. Grn-KO mice performed worse on some cognitive tests than WT mice, but Morris Water Maze performance was improved with nicorandil treatment. Neuropathologically, Grn-KO mice had significantly increased levels of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytosis but not ionized calcium binding adaptor molecule 1 (IBA-1)-immunoreactive microgliosis, indicating cell-specific inflammation in the brain. Expression of several astrocyte-enriched genes, including Gfap, were also elevated in the Grn-KO brain. Nicorandil treatment was associated with a subtle shift in a subset of detected brain transcript levels, mostly related to attenuated inflammatory markers. Nicorandil treatment improved survival outcomes, cognition, and inflammation in aged Grn-KO mice.
Collapse
Affiliation(s)
- Dana M. Niedowicz
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Wang‐Xia Wang
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Paresh Prajapati
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Yu Zhong
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shuling Fister
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Colin B. Rogers
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David K. Powell
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Indumati Patel
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
2
|
Liu S, Liu F, Lin Z, Yin W, Fang S, Piao Y, Liu L, Shen Y. Arteries and veins in awake mice using two-photon microscopy. J Anat 2025; 246:798-811. [PMID: 39034848 PMCID: PMC11996710 DOI: 10.1111/joa.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024] Open
Abstract
Distinguishing arteries from veins in the cerebral cortex is critical for studying hemodynamics under pathophysiological conditions, which plays an important role in the diagnosis and treatment of various vessel-related diseases. However, due to the complexity of the cerebral vascular network, it is challenging to identify arteries and veins in vivo. Here, we demonstrate an artery-vein separation method that employs a combination of multiple scanning modes of two-photon microscopy and a custom-designed stereoscopic fixation device for mice. In this process, we propose a novel method for determining the line scanning direction, which allows us to determine the blood flow directions. The vasculature branches have been identified using an optimized z-stack scanning mode, followed by the separation of blood vessel types according to the directions of blood flow and branching patterns. Using this strategy, the penetrating arterioles and penetrating venules in awake mice could be accurately identified and the type of cerebral thrombus has been also successfully isolated without any empirical knowledge or algorithms. Our research presents a new, more accurate, and efficient method for cortical artery-vein separation in awake mice, providing a useful strategy for the application of two-photon microscopy in the study of cerebrovascular pathophysiology.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - FangYue Liu
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoxiaonan Lin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanhua Fang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Piao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- National Health and Disease Human Brain Tissue Resource Center, Hangzhou, China
| |
Collapse
|
3
|
Chen Y, Wang L, Zhou Y, Wang Y, Qin W, Wang M, Liu B, Tian Q, Xu H, Shen H, Zheng C. Exendin-4 improves cerebral ischemia by relaxing microvessels, rapidly increasing cerebral blood flow after reperfusion. Basic Res Cardiol 2025; 120:423-441. [PMID: 40121575 DOI: 10.1007/s00395-025-01096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/25/2025]
Abstract
Intravenous thrombolysis remains the cornerstone for restoring cerebral reperfusion post-stroke. Despite recombinant tissue plasminogen activator (rtPA) achieving arterial reperfusion within 6 h, persistent microcirculatory blood flow reduction often hampers recovery. Exendin-4, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated potential for improving stroke outcomes, though its mechanisms remain partially unclear. This study investigated the role of Exendin-4 in restoring microcirculatory blood flow post-stroke. Using ischemic stroke models in 8-week-old male C57BL/6j mice, induced by transient middle cerebral artery occlusion or bilateral common carotid artery ligation, Exendin-4 (150 μg/kg) was administered intravenously. Infarct size and neurological deficits were evaluated using TTC staining and neurological severity scores. Real-time cerebral blood flow (CBF) and microvascular changes were measured with laser speckle imaging and two-photon microscopy. Mechanistic studies employed immunofluorescence and infrared differential interference contrast microscopy. Our findings demonstrated that Exendin-4 significantly reduced infarct size and improved neurological outcomes, independent of blood glucose levels. Immunofluorescence revealed GLP-1 receptor expression in arteriolar smooth muscle cells, endothelial cells, and pericytes. Exendin-4 enhanced microvascular blood flow via vasodilation, confirmed through real-time imaging. In vitro, Exendin-4 relaxed pre-constricted vessels, an effect that was abolished by eNOS and adenylate cyclase (AC) inhibitors. However, guanylate cyclase (GC) inhibition failed to block Exendin-4-induced vasodilation, suggesting a non-cGMP-dependent NO pathway may be involved. Furthermore, prostaglandin E2 (PGE2) signaling via EP4 receptors was identified as a critical contributor to Exendin-4's vasodilatory effect, highlighting the involvement of multiple signaling pathways. These findings suggest that Exendin-4 preserves cerebral microcirculation through a multifaceted mechanism involving GLP-1R-mediated AC-cAMP signaling, PGE2-EP4 signaling, and a non-cGMP-dependent NO pathway. This study positions GLP-1 receptor agonists as promising therapeutic candidates for enhancing cerebral microcirculation and improving outcomes following stroke.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Lei Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yutong Zhou
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yuguang Wang
- Department of Orthopedics, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Wei Qin
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Mingxiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Bo Liu
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Qian Tian
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Huisen Xu
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Hui Shen
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Chen Zheng
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Jin Y, He F, Rathore H, Sun Y, Zhang JA, Li X, Yin R, Zhu H, Xie C, Luan L. Longitudinal, Multimodal Tracking Reveals Lasting Neurovascular Impact of Individual Microinfarcts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417003. [PMID: 40163360 DOI: 10.1002/advs.202417003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Microinfarcts, the "invisible lesions", are prevalent in aged and injured brains and associated with cognitive impairments, yet their neurophysiological impact remains largely unknown. Using a multimodal chronic neural platform that combines functional microvasculature imaging with spatially resolved neural recording, the neurovascular effect of a single microinfarct is investigated. Unlike larger strokes, microinfarcts induced only temporary suppression of neural activity with minimal cell death, with recovery paralleling vasculature remodeling at the infarct core. Neural activity is more severely suppressed at the shallower cortical layer despite milder vascular damage compared to deeper layers, and the excitability of fast-spiking interneurons attenuation is accompanied by heightened bursting of regular spiking neurons. Spike phase locking at the low-gamma band is disrupted, indicating a lasting impairment of long-range assembly communication. These results highlight the subtle yet significant neurovascular disruptions of a single microinfarct.
Collapse
Affiliation(s)
- Yifu Jin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Haad Rathore
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
| | - Yingchu Sun
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Jia-Ao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Xinyu Li
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Neuroengineering Initiative, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
5
|
Garofalo S, Mormino A, Mazzarella L, Cocozza G, Rinaldi A, Di Pietro E, Di Castro MA, De Felice E, Maggi L, Chece G, Andolina D, Ventura R, Ielpo D, Piacentini R, Catalano M, Stefanini L, Limatola C. Platelets tune fear memory in mice. Cell Rep 2025; 44:115261. [PMID: 39903668 DOI: 10.1016/j.celrep.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Several lines of evidence have shown that platelet-derived factors are key molecules in brain-body communication in pathological conditions. Here, we identify platelets as key actors in the modulation of fear behaviors in mice through the control of inhibitory neurotransmission and plasticity in the hippocampus. Interfering with platelet number or activation reduces hippocampal serotonin (5-HT) and modulates fear learning and memory in mice, and this effect is reversed by serotonin replacement by serotonin precursor (5-HTP)/benserazide. In addition, we unravel that natural killer (NK) cells participate in this mechanism, regulating interleukin-13 (IL-13) levels in the gut, with effects on serotonin production by enterochromaffin cells and uptake by platelets. Both NK cells and platelet depletion reduce the activation of hippocampal inhibitory neurons and increase the long-term potentiation of synaptic transmission. Understanding the role of platelets in the modulation of neuro-immune interactions offers additional tools for the definition of the molecular and cellular elements involved in the growing field of brain-body communication.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Letizia Mazzarella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory affiliated with Istituto Pasteur, Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
6
|
Park L, Tsai YT, Lim HK, Faulhaber LD, Burleigh K, Faulhaber EM, Bose M, Shih AY, Hirayama AY, Turtle CJ, Annesley CE, Gardner RA, Gustafson HH, Gust J. Cytokine-mediated increase in endothelial-leukocyte interaction mediates brain capillary plugging during CAR T cell neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638920. [PMID: 40060404 PMCID: PMC11888194 DOI: 10.1101/2025.02.19.638920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
CD19-directed CAR T cells treat cancer, but also cause immune effector cell associated neurotoxicity syndrome (ICANS). Despite strong epidemiologic links between cytokine release syndrome and ICANS, it is uncertain how elevated systemic cytokines and activated immune cells cause brain dysfunction. We previously showed that leukocytes plug brain capillaries in an immunocompetent mouse model of CD19-CAR neurotoxicity. Here, we used the same model to explore how integrin activation and endothelial adhesion molecule expression contribute to capillary plugging. In vivo two-photon imaging revealed increased expression of ICAM-1 on brain capillaries, with spatially restricted VCAM-1 increases. TNF, IFN-γ, and IL-1β at concentrations equivalent to CAR T cell patient blood levels upregulated ICAM-1 and VCAM-1 in brain microendothelial cells. In mice, CAR T cells strongly upregulated VLA-4 (integrin α4β1) affinity to VCAM-1, but not affinity of LFA-1 (integrin αLβ2) to ICAM-1. Blocking integrin α4 but not integrin αL improved ICANS behavior in mice. In human CAR T cell patients, increased soluble ICAM-1 and VCAM-1 are associated with ICANS, and integrin α4 but not integrin αL is upregulated in CAR T cells after infusion. Our study highlights that cytokine-driven upregulation of endothelial-leukocyte adhesion may be sufficient to induce neurovascular dysfunction in CAR T cell patients.
Collapse
Affiliation(s)
- Lina Park
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Yu-Tung Tsai
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hyun-Kyoung Lim
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lila D. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katelyn Burleigh
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eli M. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Mahashweta Bose
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alexandre Y. Hirayama
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cameron J. Turtle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Royal North Shore Hospital, St. Leonards, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Colleen E. Annesley
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rebecca A. Gardner
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather H. Gustafson
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Juliane Gust
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Zhang X, Tao L, Nygaard AH, Dong Y, Groves T, Hong X, Goddard CM, He C, Postnov D, Allodi I, Lauritzen MJ, Cai C. Aging alters calcium signaling in vascular mural cells and drives remodeling of neurovascular coupling in the awake brain. J Cereb Blood Flow Metab 2025:271678X251320455. [PMID: 39947907 PMCID: PMC11826828 DOI: 10.1177/0271678x251320455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
Brain aging leads to reduced cerebral blood flow and cognitive decline, but how normal aging affects neurovascular coupling (NVC) in the awake brain is unclear. Here, we investigated NVC in relation to calcium changes in vascular mural cells (VMCs) in awake adult and aged mice. We show that NVC responses are reduced and prolonged in the aged brain and that this is more pronounced at the capillary level than in arterioles. However, the overall NVC response, measured as the time integral of vasodilation, is the same in the two age groups. In adult, but not in aged mice, the NVC response correlated with Ca2+ signaling in VMCs, while the overall Ca2+ kinetics were slower in aged than in adult mice. In particular, the rate of Ca2+ transport, and the Ca2+ sensitivity of VMCs were reduced in aged mice, explaining the reduced and prolonged vasodilation. Spontaneous locomotion was less frequent and reduced in aged mice as compared to young adult mice, and this was reflected in the 'slow but prolonged' NVC and vascular Ca2+ responses. Taken together, our data characterize the NVC in the aged, awake brain as slow but prolonged, highlighting the remodeling processes associated with aging.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lechan Tao
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Amalie H Nygaard
- Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yiqiu Dong
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Teddy Groves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Xiaoqi Hong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carolyn M Goddard
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Chen He
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry Postnov
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Copenhagen, Denmark
| | - Ilary Allodi
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Martin J Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Jin B, Xi P. Random Illumination Microscopy: faster, thicker, and aberration-insensitive. LIGHT, SCIENCE & APPLICATIONS 2025; 14:19. [PMID: 39743628 DOI: 10.1038/s41377-024-01687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The Extended Depth of Field (EDF) approach has been combined with Random Illumination Microscopy (RIM) to realize aberration-insensitive, fast super-resolution imaging with extended depth, which is a promising tool for dynamic imaging in larger and thicker live cells and tissues.
Collapse
Affiliation(s)
- Boya Jin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Morton RA, Kim TN. Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. NEUROPHOTONICS 2025; 12:S14602. [PMID: 39583344 PMCID: PMC11582905 DOI: 10.1117/1.nph.12.s1.s14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Multiphoton microscopy (MPM) has become a preferred technique for intravital imaging deep in living tissues with subcellular detail, where resolution and working depths are typically optimized utilizing high numerical aperture, water-immersion objectives with long focusing distances. However, this approach requires the maintenance of water between the specimen and the objective lens, which can be challenging or impossible for many intravital preparations with complex tissues and spatial arrangements. We introduce the novel use of cohesive hyaluronan gel (HG) as an immersion medium that can be used in place of water within existing optical setups to enable multiphoton imaging with equivalent quality and far superior stability. We characterize and compare imaging performance, longevity, and feasibility of preparations in various configurations. This combination of HG with MPM is highly accessible and opens the doors to new intravital imaging applications.
Collapse
Affiliation(s)
- Ryan A. Morton
- University of California San Francisco, Department of Ophthalmology, San Francisco, California, United States
| | - Tyson N. Kim
- University of California San Francisco, Department of Ophthalmology, San Francisco, California, United States
- UCSF-UC Berkeley Graduate Group in Bioengineering, San Francisco/Berkeley, California, United States
| |
Collapse
|
10
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
11
|
Yang L, Zhao W, Kan Y, Ren C, Ji X. From Mechanisms to Medicine: Neurovascular Coupling in the Diagnosis and Treatment of Cerebrovascular Disorders: A Narrative Review. Cells 2024; 14:16. [PMID: 39791717 PMCID: PMC11719775 DOI: 10.3390/cells14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear. However, the complexity of the underlying mechanism remains unclear. This review discusses basic and clinical experimental evidence on how neural activity sensitively communicates with the vasculature to cause spatial changes in blood flow in cerebrovascular diseases. A deeper understanding of how neurovascular unit-related cells participate in NVC regulation is necessary to better understand blood flow and nerve activity recovery in cerebrovascular diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
| | - Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
12
|
Wu M, Yang H, Liu S, Jiang L, Liang T, Wang Y, Zhu M, Song X, Liu H, Shen J, Wang S, Zhu X, Qu CK, Cheng L, Jiang H, Ni F. Enhanced engraftment of human haematopoietic stem cells via mechanical remodelling mediated by the corticotropin-releasing hormone. Nat Biomed Eng 2024:10.1038/s41551-024-01316-1. [PMID: 39715892 DOI: 10.1038/s41551-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/01/2024] [Indexed: 12/25/2024]
Abstract
The engraftment of haematopoietic stem and progenitor cells (HSPCs), particularly in cord-blood transplants, remains challenging. Here we report the role of the corticotropin-releasing hormone (CRH) in enhancing the homing and engraftment of human-cord-blood HSPCs in bone marrow through mechanical remodelling. By using microfluidics, intravital two-photon imaging and long-term-engraftment assays, we show that treatment with CRH substantially enhances HSPC adhesion, motility and mechanical remodelling, ultimately leading to improved bone-marrow homing and engraftment in immunodeficient mice. CRH induces Ras homologue gene family member A (RhoA)-dependent nuclear translocation of the yes-associated protein (YAP), which upregulates the expression of genes encoding extracellular-matrix proteins (notably, thrombospondin-2 (THBS2)). This process guides the mechanical remodelling of HSPCs via modulation of the actin cytoskeleton and the extracellular matrix, with THBS2 interacting with the integrin αvβ3 and coordinating the nuclear translocation of YAP upon CRH/CRH-receptor-1 (CRH/CRHR1) signalling. Overall, the CRH/CRHR1/RhoA/YAP/THBS2/αvβ3 axis has a central role in modulating HSPC behaviour via a mechanical feedback loop involving THBS2, αvβ3, the actin cytoskeleton and YAP signalling. Our findings may suggest avenues for optimizing the transplantation of HSPCs.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoxiang Yang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lai Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hao Liu
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Jinghao Shen
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Shuangzi Wang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hongyuan Jiang
- The CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Klein SP, Decraene B, De Sloovere V, Kempen B, Meyfroidt G, Depreitere B. The Pressure Reactivity Index as a Measure for Cerebrovascular Autoregulation: Validation in a Porcine Cranial Window Model. Neurosurgery 2024; 95:1450-1456. [PMID: 38861643 DOI: 10.1227/neu.0000000000003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Pressure reactivity index (PRx) has been proposed as a metric associated with cerebrovascular autoregulatory (CA) function and has been thoroughly investigated in clinical research. In this study, PRx is validated in a porcine cranial window model, developed to visualize pial arteriolar autoregulation and its limits. METHODS We measured arterial blood pressure, intracranial pressure, pial arteriolar diameter, and red blood cell (RBC) velocity in a closed cranial window piglet model during gradual balloon catheter-induced arterial hypotension (n = 10) or hypertension (n = 10). CA limits were derived through piecewise linear regression of calculated RBC flux vs cerebral perfusion pressure (CPP), leading for each arteriole to 1 lower limit of autoregulation (LLA) and 2 upper limits of autoregulation (ULA1 and ULA2). Autoregulation limits were compared with PRx thresholds, and receiver operating curve analysis was performed with and without CPP binning. A linear mixed effects model of PRx was performed. RESULTS Receiver operating curve analysis indicated an area under the curve (AUC) for LLA prediction by a PRx of 0.65 (95% CI: 0.64-0.67) and 0.77 (95% CI: 0.69-0.86) without and with CPP binning, respectively. The AUC for ULA1 prediction by PRx was 0.69 (95% CI: 0.68-0.69) without and 0.75 (95% CI: 0.68-0.82) with binning. The AUC for ULA2 prediction was 0.55 (95% CI: 0.55-0.58) without and 0.63 (95% CI 0.53-0.72) with binning. The sensitivity and specificity of binned PRx were 65%/90% for LLA, 69%/71% for ULA1, and 59%/74% for ULA2, showing wide interindividual variability. In the linear mixed effects model, pial arteriolar diameter changes were significantly associated with PRx changes ( P = .002), whereas RBC velocity ( P = .28) and RBC flux ( P = .24) were not. CONCLUSION We conclude that PRx is predominantly determined by pial arteriolar diameter changes and moderately predicts CA limits. Performance to detect the CA limits varied highly on an individual level. Active therapeutic strategies based on PRx and the associated correlation metrics should incorporate these limitations.
Collapse
Affiliation(s)
- Samuel P Klein
- Neurosurgery Center Limburg, Jessa Hospital, Hasselt , Belgium
| | | | | | - Bavo Kempen
- Neurosurgery, University Hospitals Leuven, Leuven , Belgium
| | - Geert Meyfroidt
- Intensive Care Medicine, University Hospitals Leuven, Leuven , Belgium
| | | |
Collapse
|
14
|
Charest J, Walsh M, Genois É, Sévigny E, Schwarz PO, Gagnon L, Desjardins M. Comparison of compartmental analytical Blood-Oxygen-Level-Dependent functional Magnetic Resonance Imaging models against Monte Carlo simulations performed over cortical micro-angiograms. NMR IN BIOMEDICINE 2024; 37:e5252. [PMID: 39245649 DOI: 10.1002/nbm.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) arises from a physiological and physical cascade of events taking place at the level of the cortical microvasculature which constitutes a medium with complex geometry. Several analytical models of the BOLD contrast have been developed, but these have not been compared directly against detailed bottom-up modeling methods. Using a 3D modeling method based on experimentally measured images of mice microvasculature and Monte Carlo simulations, we quantified the accuracy of two analytical models to predict the amplitude of the BOLD response from 1.5 to 7 T, for different echo time (TE) and for both gradient echo and spin echo acquisition protocols. We also showed that accounting for the tridimensional structure of the microvasculature results in more accurate prediction of the BOLD amplitude, even if the values for SO2 were averaged across individual vascular compartments. A secondary finding is that modeling the venous compartment as two individual compartments results in more accurate prediction of the BOLD amplitude compared with standard homogenous venous modeling, arising from the bimodal distribution of venous SO2 across the microvasculature in our data.
Collapse
Affiliation(s)
- Jordan Charest
- Department of Physics, Engineering Physics and Optics, Université Laval, Quebec, Canada
| | - Mathieu Walsh
- Department of Physics, Engineering Physics and Optics, Université Laval, Quebec, Canada
| | - Élie Genois
- Department of Physics, Université de Sherbrooke, Sherbrooke, Canada
| | - Emmanuelle Sévigny
- Department of Radiology and Nuclear Medicine, Université Laval, Quebec, Canada
| | | | - Louis Gagnon
- Department of Physics, Engineering Physics and Optics, Université Laval, Quebec, Canada
- Department of Radiology and Nuclear Medicine, Université Laval, Quebec, Canada
| | - Michèle Desjardins
- Department of Physics, Engineering Physics and Optics, Université Laval, Quebec, Canada
- Oncology Division, Centre de recherche du CHU de Québec-Université Laval, Quebec, Canada
| |
Collapse
|
15
|
Zhang YY, Li JZ, Xie HQ, Jin YX, Wang WT, Zhao B, Jia JM. High-resolution vasomotion analysis reveals novel arteriole physiological features and progressive modulation of cerebral vascular networks by stroke. J Cereb Blood Flow Metab 2024; 44:1330-1348. [PMID: 38820436 PMCID: PMC11542124 DOI: 10.1177/0271678x241258576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Spontaneous cerebral vasomotion, characterized by ∼0.1 Hz rhythmic contractility, is crucial for brain homeostasis. However, our understanding of vasomotion is limited due to a lack of high-precision analytical methods to determine single vasomotion events at basal levels. Here, we developed a novel strategy that integrates a baseline smoothing algorithm, allowing precise measurements of vasodynamics and concomitant Ca2+ dynamics in mouse cerebral vasculature imaged by two-photon microscopy. We identified several previously unrecognized vasomotion properties under different physiological and pathological conditions, especially in ischemic stroke, which is a highly harmful brain disease that results from vessel occlusion. First, the dynamic characteristics between SMCs Ca2+ and corresponding arteriolar vasomotion are correlated. Second, compared to previous diameter-based estimations, our radius-based measurements reveal anisotropic vascular movements, enabling a more precise determination of the latency between smooth muscle cell (SMC) Ca2+ activity and vasoconstriction. Third, we characterized single vasomotion event kinetics at scales of less than 4 seconds. Finally, following pathological vasoconstrictions induced by ischemic stroke, vasoactive arterioles entered an inert state and persisted despite recanalization. In summary, we developed a highly accurate technique for analyzing spontaneous vasomotion, and our data suggested a potential strategy to reduce stroke damage by promoting vasomotion recovery.
Collapse
Affiliation(s)
- Yi-Yi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin-Ze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hui-Qi Xie
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Xiao Jin
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wen-Tao Wang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
16
|
Sato Y, Li Y, Kato Y, Kanoke A, Sun JY, Nishijima Y, Wang RK, Stryker M, Endo H, Liu J. Type 2 diabetes remodels collateral circulation and promotes leukocyte adhesion following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619748. [PMID: 39484619 PMCID: PMC11526934 DOI: 10.1101/2024.10.23.619748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with impaired leptomeningeal collateral compensation and poor stroke outcome. Neutrophils tethering and rolling on endothelium after stroke can also independently reduce flow velocity. However, the chronology and topological changes in collateral circulation in T2DM is not yet defined. Here, we describe the spatial and temporal blood flow dynamics and vessel remodeling in pial arteries and veins and leukocyte-endothelial adhesion following middle cerebral artery (MCA) stroke using two-photon microscopy in awake control and T2DM mice. Relative to control mice prior to stroke, T2DM mice already exhibited smaller pial vessels with reduced flow velocity. Following stroke, T2DM mice displayed persistently reduced blood flow in pial arteries and veins, resulting in a poor recovery of downstream penetrating arterial flow and a sustained deficit in microvascular flow. There was also persistent increase of leukocyte adhesion to the endothelium of veins, coincided with elevated neutrophils infiltration into brain parenchyma in T2DM mice compared to control mice after stroke. Our data suggest that T2DM-induced increase in chronic inflammation may contribute to the remodeling of leptomeningeal collateral circulation and the observed hemodynamics deficiency that potentiates poor stroke outcome.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuya Kato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jennifer Y Sun
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- University College London, Institute of Ophthalmology, London, UK
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ruikang K. Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Stryker
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
| |
Collapse
|
17
|
Wang W, Wen J, Sheng Y, Wei C, Kong C, Liu Y, Wei X, Yang Z. Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning. JOURNAL OF BIOPHOTONICS 2024; 17:e202400186. [PMID: 39218434 DOI: 10.1002/jbio.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.
Collapse
Affiliation(s)
- Wenlong Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Junpeng Wen
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Yuke Sheng
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Chiyi Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Cihang Kong
- Institutes for Translational Brain Research, Fudan University, Shanghai, China
| | - Yalong Liu
- Guangzhou Yangming Laser Technology Co., Ltd, Guangzhou, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
19
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-degenerate two-photon imaging of deep rodent cortex using indocyanine green in the water absorption window. BIOMEDICAL OPTICS EXPRESS 2024; 15:5053-5066. [PMID: 39296386 PMCID: PMC11407249 DOI: 10.1364/boe.520977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two excitation sources with temporally overlapped pulses at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
20
|
Ball JD, Hills E, Altaf A, Ramesh P, Green M, Surti FBS, Minhas JS, Robinson TG, Bond B, Lester A, Hoiland R, Klein T, Liu J, Nasr N, Junejo RT, Müller M, Lecchini-Visintini A, Mitsis G, Burma JS, Smirl JD, Pizzi MA, Manquat E, Lucas SJE, Mullinger KJ, Mayhew S, Bailey DM, Rodrigues G, Soares PP, Phillips AA, Prokopiou PC, C Beishon L. Neurovascular coupling methods in healthy individuals using transcranial doppler ultrasonography: A systematic review and consensus agreement. J Cereb Blood Flow Metab 2024:271678X241270452. [PMID: 39113406 PMCID: PMC11572172 DOI: 10.1177/0271678x241270452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 11/20/2024]
Abstract
Neurovascular coupling (NVC) is the perturbation of cerebral blood flow (CBF) to meet varying metabolic demands induced by various levels of neural activity. NVC may be assessed by Transcranial Doppler ultrasonography (TCD), using task activation protocols, but with significant methodological heterogeneity between studies, hindering cross-study comparisons. Therefore, this review aimed to summarise and compare available methods for TCD-based healthy NVC assessments. Medline (Ovid), Scopus, Web of Science, EMBASE (Ovid) and CINAHL were searched using a predefined search strategy (PROSPERO: CRD42019153228), generating 6006 articles. Included studies contained TCD-based assessments of NVC in healthy adults. Study quality was assessed using a checklist, and findings were synthesised narratively. 76 studies (2697 participants) met the review criteria. There was significant heterogeneity in the participant position used (e.g., seated vs supine), in TCD equipment, and vessel insonated (e.g. middle, posterior, and anterior cerebral arteries). Larger, more significant, TCD-based NVC responses typically included a seated position, baseline durations >one-minute, extraneous light control, and implementation of previously validated protocols. In addition, complementary, combined position, vessel insonated and stimulation type protocols were associated with more significant NVC results. Recommendations are detailed here, but further investigation is required in patient populations, for further optimisation of TCD-based NVC assessments.
Collapse
Affiliation(s)
- James D Ball
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Eleanor Hills
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Afzaa Altaf
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Pranav Ramesh
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Matthew Green
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Farhaana BS Surti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Bert Bond
- Public Health and Sports Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alice Lester
- Public Health and Sports Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ryan Hoiland
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Timo Klein
- Institute of Sports Science, University of Rostock, Rostock, Germany
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Poitiers, France
| | - Rehan T Junejo
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Martin Müller
- Department of Neurology and Neurorehabilitation, Lucerne Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| | | | - Georgios Mitsis
- School of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Joel S Burma
- Sport Injury Research Prevention Center, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Sport Injury Research Prevention Center, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Pizzi
- Department of Neurology, University of Florida, Florida, USA
| | - Elsa Manquat
- Department of Anaesthesia and Critical Care, Hospital Lariboisière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Samuel JE Lucas
- School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Steve Mayhew
- School of Psychology, Aston University, Aston, UK
| | - Damian M Bailey
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Gabriel Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Pedro Paulo Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Prokopis C Prokopiou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Tomita Y, Yagi M, Seki F, Komaki Y, Matsumoto M, Nakamura M. Cerebrospinal Fluid Dynamics Analysis Using Time-Spatial Labeling Inversion Pulse (Time-SLIP) Magnetic Resonance Imaging in Mice. J Clin Med 2024; 13:4550. [PMID: 39124818 PMCID: PMC11312514 DOI: 10.3390/jcm13154550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Abnormalities in cerebrospinal fluid (CSF) dynamics cause diverse conditions, such as hydrocephalus, but the underlying mechanism is still unknown. Methods to study CSF dynamics in small animals have not been established due to the lack of an evaluation system. Therefore, the purpose of this research study is to establish the time-spatial labeling inversion pulse (Time-SLIP) MRI technique for the evaluation of CSF dynamics in mice. Methods: We performed the Time-SLIP technique on 10 wild-type mice and 20 Tiptoe-walking Yoshimura (TWY) mice, a mouse model of ossification of the posterior longitudinal ligament (OPLL). We defined the stir distance as the distance of CSF stirring and calculated the mean ± standard deviation. The intraclass correlation coefficient of intraobserver reliability was also calculated. Furthermore, in TWY mice, the correlation coefficient between stir distance and canal stenosis ratio (CSR) was calculated. Results: The stir distance was significantly lower in TWY mice at 12 weeks and 17 weeks of age (1.20 ± 0.16, 1.21 ± 0.06, and 1.21 ± 0.15 mm at 12 weeks and 1.32 ± 0.21, 1.28 ± 0.23, and 1.38 ± 0.31 mm at 17 weeks for examiners A, B, and C). The intrarater reliability of the three examiners was excellent (>0.90) and there was a strongly negative correlation between stir distance and CSR in TWY mice (>-0.80). Conclusions: In this study, we established the Time-SLIP technique in experimental mice. This technique allows for a better understanding of CSF dynamics in small laboratory animals.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, School of Medicine, International University of Health and Welfare, Chiba 286-8520, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bioimaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Kanagawa, Japan
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bioimaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Kanagawa, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| |
Collapse
|
22
|
Glück C, Zhou Q, Droux J, Chen Z, Glandorf L, Wegener S, Razansky D, Weber B, El Amki M. Pia-FLOW: Deciphering hemodynamic maps of the pial vascular connectome and its response to arterial occlusion. Proc Natl Acad Sci U S A 2024; 121:e2402624121. [PMID: 38954543 PMCID: PMC11252916 DOI: 10.1073/pnas.2402624121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The pial vasculature is the sole source of blood supply to the neocortex. The brain is contained within the skull, a vascularized bone marrow with a unique anatomical connection to the brain meninges. Recent developments in tissue clearing have enabled detailed mapping of the entire pial and calvarial vasculature. However, what are the absolute flow rate values of those vascular networks? This information cannot accurately be retrieved with the commonly used bioimaging methods. Here, we introduce Pia-FLOW, a unique approach based on large-scale transcranial fluorescence localization microscopy, to attain hemodynamic imaging of the whole murine pial and calvarial vasculature at frame rates up to 1,000 Hz and spatial resolution reaching 5.4 µm. Using Pia-FLOW, we provide detailed maps of flow velocity, direction, and vascular diameters which can serve as ground-truth data for further studies, advancing our understanding of brain fluid dynamics. Furthermore, Pia-FLOW revealed that the pial vascular network functions as one unit for robust allocation of blood after stroke.
Collapse
Affiliation(s)
- Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Jeanne Droux
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Lukas Glandorf
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Susanne Wegener
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
| | - Mohamad El Amki
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| |
Collapse
|
23
|
Marks K, Ahn SJ, Rai N, Anfray A, Iadecola C, Anrather J. A minimally invasive thrombotic stroke model to study circadian rhythm in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598243. [PMID: 38915621 PMCID: PMC11195071 DOI: 10.1101/2024.06.10.598243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Experimental stroke models in rodents are essential for mechanistic studies and therapeutic development. However, these models have several limitations negatively impacting their translational relevance. Here we aimed to develop a minimally invasive thrombotic stroke model through magnetic particle delivery that does not require craniotomy, is amenable to reperfusion therapy, can be combined with in vivo imaging modalities, and can be performed in awake mice. We found that the model results in reproducible cortical infarcts within the middle cerebral artery (MCA) with cytologic and immune changes similar to that observed with more invasive distal MCA occlusion models. Importantly, the injury produced by the model was ameliorated by tissue plasminogen activator (tPA) administration. We also show that MCA occlusion in awake animals results in bigger ischemic lesions independent of day/night cycle. Magnetic particle delivery had no overt effects on physiologic parameters and systemic immune biomarkers. In conclusion, we developed a novel stroke model in mice that fulfills many requirements for modeling human stroke.
Collapse
|
24
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
25
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier. ACS NANO 2024; 18:12716-12736. [PMID: 38718220 PMCID: PMC11112986 DOI: 10.1021/acsnano.3c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Collapse
Affiliation(s)
- Zih-An Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiung-Yin Huang
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Kuo-Chen Wei
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, New Taipei Municipal TuCheng
Hospital, New Taipei City 23652, Taiwan
| | - Yun Yen
- Center
for Cancer Translational Research, Tzu Chi
University, Hualien 970374, Taiwan
- Cancer
Center, Taipei Municipal WanFang Hospital, Taipei 116081, Taiwan
| | - I-Ting Chien
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sabiha Runa
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- SRS Medical Communications,
LLC, Cleveland, Ohio 44124, United States
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
27
|
Hsu TI, Chen YP, Zhang RL, Chen ZA, Wu CH, Chang WC, Mou CY, Chan HWH, Wu SH. Overcoming the Blood-Brain Tumor Barrier with Docetaxel-Loaded Mesoporous Silica Nanoparticles for Treatment of Temozolomide-Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21722-21735. [PMID: 38629735 PMCID: PMC11071047 DOI: 10.1021/acsami.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.
Collapse
Affiliation(s)
- Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Rong-Lin Zhang
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Wen-Chang Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Yuan Mou
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
28
|
Pierzchala K, Hadjihambi A, Mosso J, Jalan R, Rose CF, Cudalbu C. Lessons on brain edema in HE: from cellular to animal models and clinical studies. Metab Brain Dis 2024; 39:403-437. [PMID: 37606786 PMCID: PMC10957693 DOI: 10.1007/s11011-023-01269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.
Collapse
Affiliation(s)
- Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Christopher F Rose
- Hépato-Neuro Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, QC, Montreal, H3T 1J4, Canada
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| |
Collapse
|
29
|
Mester JR, Rozak MW, Dorr A, Goubran M, Sled JG, Stefanovic B. Network response of brain microvasculature to neuronal stimulation. Neuroimage 2024; 287:120512. [PMID: 38199427 DOI: 10.1016/j.neuroimage.2024.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Neurovascular coupling (NVC), or the adjustment of blood flow in response to local increases in neuronal activity is a hallmark of healthy brain function, and the physiological foundation for functional magnetic resonance imaging (fMRI). However, it remains only partly understood due to the high complexity of the structure and function of the cerebrovascular network. Here we set out to understand NVC at the network level, i.e. map cerebrovascular network reactivity to activation of neighbouring neurons within a 500×500×500 μm3 cortical volume (∼30 high-resolution 3-nL fMRI voxels). Using 3D two-photon fluorescence microscopy data, we quantified blood volume and flow changes in the brain vessels in response to spatially targeted optogenetic activation of cortical pyramidal neurons. We registered the vessels in a series of image stacks acquired before and after stimulations and applied a deep learning pipeline to segment the microvascular network from each time frame acquired. We then performed image analysis to extract the microvascular graphs, and graph analysis to identify the branch order of each vessel in the network, enabling the stratification of vessels by their branch order, designating branches 1-3 as precapillary arterioles and branches 4+ as capillaries. Forty-five percent of all vessels showed significant calibre changes; with 85 % of responses being dilations. The largest absolute CBV change was in the capillaries; the smallest, in the venules. Capillary CBV change was also the largest fraction of the total CBV change, but normalized to the baseline volume, arterioles and precapillary arterioles showed the biggest relative CBV change. From linescans along arteriole-venule microvascular paths, we measured red blood cell velocities and hematocrit, allowing for estimation of pressure and local resistance along these paths. While diameter changes following neuronal activation gradually declined along the paths; the pressure drops from arterioles to venules increased despite decreasing resistance: blood flow thus increased more than local resistance decreases would predict. By leveraging functional volumetric imaging and high throughput deep learning-based analysis, our study revealed distinct hemodynamic responses across the vessel types comprising the microvascular network. Our findings underscore the need for large, dense sampling of brain vessels for characterization of neurovascular coupling at the network level in health and disease.
Collapse
Affiliation(s)
- James R Mester
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Matthew W Rozak
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Adrienne Dorr
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Maged Goubran
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - John G Sled
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, Zhu Y, Li X, Li T, Zhou L, Gao Q, Zheng G, Zhao B, Li X, Zhu Y, Wu J, Li W, Zhao J, Ge WP, Xu T, Jia JM. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci 2024; 27:232-248. [PMID: 38168932 PMCID: PMC10849963 DOI: 10.1038/s41593-023-01515-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shiyu Peng
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jinze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xu Hu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianrui Zhang
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yaping Ge
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhu Zhu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xian Xiao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yunxu Zhu
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Zhou
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qingzhu Gao
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Guoxiao Zheng
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiangqing Li
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yanming Zhu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wensheng Li
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwei Zhao
- Department of Anatomy, Histology, and Embryology, Research Center of Systemic Medicine, School of Basic Medicine, and Department of Pathology of the Sir Run-Run Shaw Hospital, The Cryo-EM Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Tian Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
31
|
Mikkelsen SH, Skøtt MV, Gutierrez E, Postnov DD. Laser speckle imaging of the hippocampus. BIOMEDICAL OPTICS EXPRESS 2024; 15:1268-1277. [PMID: 38404300 PMCID: PMC10890870 DOI: 10.1364/boe.507371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024]
Abstract
Research on hippocampal blood flow is essential for gaining insight into its involvement in learning and memory and its role in age-related cognitive impairment and dementia. In this study, we applied laser speckle contrast imaging (LSCI) and dynamic light scattering imaging (DLSI) to monitor perfusion in mouse hippocampus via a chronic, optically transparent window. LSCI scans showed hippocampal blood vessels appear more out of focus than similar caliber vessels in the mouse cortex. We hypothesize that it is caused by the inverse vascular topology and increased contribution of multiply-scattered photons detected from the upper layers of the hippocampus. We support the hypothesis with DLSI, showing a 1300% increased contribution of multiple-scattering unordered dynamics regime in large hippocampal vessels.
Collapse
Affiliation(s)
- Signe H. Mikkelsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Mia V. Skøtt
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
32
|
Roy A, Ben-Yakar A. Numerical study of a convective cooling strategy for increasing safe power levels in two-photon brain imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:540-557. [PMID: 38404347 PMCID: PMC10890868 DOI: 10.1364/boe.507517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Two-photon excitation fluorescence microscopy has become an effective tool for tracking neural activity in the brain at high resolutions thanks to its intrinsic optical sectioning and deep penetration capabilities. However, advanced two-photon microscopy modalities enabling high-speed and/or deep-tissue imaging necessitate high average laser powers, thus increasing the susceptibility of tissue heating due to out-of-focus absorption. Despite cooling the cranial window by maintaining the objective at a fixed temperature, average laser powers exceeding 100-200 mW have been shown to exhibit the potential for altering physiological responses of the brain. This paper proposes an enhanced cooling technique for inducing a laminar flow to the objective immersion layer while implementing duty cycles. Through a numerical study, we analyze the efficacy of heat dissipation of the proposed method and compare it with that of the conventional, fixed-temperature objective cooling technique. The results show that improved cooling could be achieved by choosing appropriate flow rates and physiologically relevant immersion cooling temperatures, potentially increasing safe laser power levels by up to three times (3×). The proposed active cooling method can provide an opportunity for faster scan speeds and enhanced signals in nonlinear deep brain imaging.
Collapse
Affiliation(s)
- Aditya Roy
- The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton Street, Stop C2200, Austin, Texas 78712, USA
| | - Adela Ben-Yakar
- The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton Street, Stop C2200, Austin, Texas 78712, USA
- The University of Texas at Austin, Department of Biomedical Engineering, 107 West Dean Keeton Street, Stop C0800, Austin, Texas 78712, USA
- The University of Texas at Austin, Department of Electrical and Computer Engineering, 2501 Speedway, Austin, Texas 78712, USA
| |
Collapse
|
33
|
Zhou A, Mihelic SA, Engelmann SA, Tomar A, Dunn AK, Narasimhan VM. A Deep Learning Approach for Improving Two-Photon Vascular Imaging Speeds. Bioengineering (Basel) 2024; 11:111. [PMID: 38391597 PMCID: PMC10886311 DOI: 10.3390/bioengineering11020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
A potential method for tracking neurovascular disease progression over time in preclinical models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature with capillary-level resolution. However, obtaining high-quality, three-dimensional images with traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies. Here, we present a convolutional neural network-based (PSSR Res-U-Net architecture) algorithm for fast upscaling of low-resolution or sparsely sampled images and combine it with a segmentation-less vectorization process for 3D reconstruction and statistical analysis of vascular network structure. In doing so, we also demonstrate that the use of semi-synthetic training data can replace the expensive and arduous process of acquiring low- and high-resolution training pairs without compromising vectorization outcomes, and thus open the possibility of utilizing such approaches for other MPM tasks where collecting training data is challenging. We applied our approach to images with large fields of view from a mouse model and show that our method generalizes across imaging depths, disease states and other differences in neurovasculature. Our pretrained models and lightweight architecture can be used to reduce MPM imaging time by up to fourfold without any changes in underlying hardware, thereby enabling deployability across a range of settings.
Collapse
Affiliation(s)
- Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Samuel A Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway C0930, Austin, TX 78712, USA
- Department of Statistics and Data Sciences, The University of Texas at Austin, 105 E. 24th St D9800, Austin, TX 78712, USA
| |
Collapse
|
34
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-Degenerate Two-Photon Imaging of Deep Rodent Cortex using Indocyanine Green in the water absorption window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575485. [PMID: 38293101 PMCID: PMC10827096 DOI: 10.1101/2024.01.13.575485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two synchronized excitation sources at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L. Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
35
|
Lampejo AO, Hodges NA, Rozenblum M, Murfee WL. Time-Lapse Observation of Cell Dynamics During Angiogenesis Using the Rat Mesentery Culture Model. Methods Mol Biol 2024; 2711:63-75. [PMID: 37776449 DOI: 10.1007/978-1-0716-3429-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The ability to track cells and their interactions with other cells during physiological processes offers a powerful tool for scientific discovery. An ex vivo model that enables real-time investigation of cell migration during angiogenesis in adult microvascular networks would enable observation of endothelial cell dynamics during capillary sprouting. Angiogenesis is defined as the growth of new blood vessels from existing ones and involves multiple cell types including endothelial cells, pericytes, and interstitial cells. The incorporation of these cell types in a physiologically relevant environment, however, represents a challenge for biomimetic model development. Recently, our laboratory has developed the rat mesentery culture model, which enables investigation of angiogenesis in an intact tissue. The objective of this chapter is to detail a protocol for tracking cellular dynamics during angiogenesis using the rat mesentery tissue culture model. The method involves harvesting mesentery tissues from adult SD-EGFP rats, culturing them in MEM + 10% fetal bovine serum, and imaging network regions over the time course of angiogenesis. In example applications, time-lapse comparison of microvascular networks in cultured tissues confirmed dramatic increases in GFP-positive capillary sprouting and GFP-positive segment density. Additionally, tracking of individual capillary sprout extensions revealed their ability to "jump" by disconnecting from one vessel segment and reconnecting to another segment in the network. GFP-positive sprouts were also capable of undergoing subsequent regression. The representative results support the use of the rat mesentery culture model for identifying and tracking cellular dynamics during angiogenesis in intact microvascular networks.
Collapse
Affiliation(s)
- Arinola O Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Maximillian Rozenblum
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Yao P, Liu R, Broggini T, Thunemann M, Kleinfeld D. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing. Nat Protoc 2023; 18:3732-3766. [PMID: 37914781 PMCID: PMC11033548 DOI: 10.1038/s41596-023-00893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 11/03/2023]
Abstract
Two-photon microscopy, combined with the appropriate optical labelling, enables the measurement and tracking of submicrometer structures within brain cells, as well as the spatiotemporal mapping of spikes in individual neurons and of neurotransmitter release in individual synapses. Yet, the spatial resolution of two-photon microscopy rapidly degrades as imaging is attempted at depths of more than a few scattering lengths into tissue, i.e., below the superficial layers that constitute the top 300-400 µm of the neocortex. To obviate this limitation, we shape the focal volume, generated by the excitation beam, by modulating the incident wavefront via guidestar-assisted adaptive optics. Here, we describe the construction, calibration and operation of a two-photon microscope that incorporates adaptive optics to restore diffraction-limited resolution at depths close to 900 µm in the mouse cortex. Our setup detects a guidestar formed by the excitation of a red-shifted dye in blood serum, used to directly measure the wavefront. We incorporate predominantly commercially available optical, optomechanical, mechanical and electronic components, and supply computer-aided design models of other customized components. The resulting adaptive optics two-photon microscope is modular and allows for expanded imaging and optical excitation capabilities. We demonstrate our methodology in the mouse neocortex by imaging the morphology of somatostatin-expressing neurons that lie 700 µm beneath the pia, calcium dynamics of layer 5b projection neurons and thalamocortical glutamate transmission to L4 neurons. The protocol requires ~30 d to complete and is suitable for users with graduate-level expertise in optics.
Collapse
Affiliation(s)
- Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - David Kleinfeld
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Faakye J, Nyúl-Tóth Á, Gulej R, Csik B, Tarantini S, Shanmugarama S, Prodan C, Mukli P, Yabluchanskiy A, Conley S, Toth P, Csiszar A, Ungvari Z. Imaging the time course, morphology, neuronal tissue compression, and resolution of cerebral microhemorrhages in mice using intravital two-photon microscopy: insights into arteriolar, capillary, and venular origin. GeroScience 2023; 45:2851-2872. [PMID: 37338779 PMCID: PMC10643488 DOI: 10.1007/s11357-023-00839-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 μm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 μm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 μm to ~ 100 μm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.
Collapse
Affiliation(s)
- Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
38
|
Delafontaine-Martel P, Zhang C, Lu X, Damseh R, Lesage F, Marchand PJ. Targeted capillary photothrombosis via multiphoton excitation of Rose Bengal. J Cereb Blood Flow Metab 2023; 43:1713-1725. [PMID: 36647768 PMCID: PMC10581236 DOI: 10.1177/0271678x231151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023]
Abstract
Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity. In an attempt to alleviate these hurdles, we present here a novel methodology enabling transient occlusions of targeted microvascular segments through multiphoton excitation of Rose Bengal, an established photothrombotic agent. With n = 7 mice C57BL/6 J (5 males and 2 females) and 95 photothrombosis trials, we demonstrate the ability of triggering reversible blockages by illuminating a capillary segment during ∼300 s at 1000 nm, using a standard Ti:Sapphire femtosecond laser. Furthermore, we performed concurrent Optical Coherence Microscopy (OCM) angiography imaging of the microvascular network to highlight the specificity of the targeted occlusion and its duration. Through comparison with a control group, we conclude that blood flow cessation is indeed created by the photothrombotic agent via multiphoton excitation and is temporary, followed by a flow recovery in less than 24 h. Moreover, Immunohistology points toward a stalling mechanism driven by adherence of the neutrophil in the vascular lumen. This observation seems to be promoted by the inflammation locally created via multiphoton activation of Rose Bengal.
Collapse
Affiliation(s)
- Patrick Delafontaine-Martel
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Cong Zhang
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Xuecong Lu
- Research Center, Montreal Heart Institute, Montreal, Canada
- DeGroote School of Business – McMaster University, Ontario, Canada
| | - Rafat Damseh
- Research Center, Montreal Heart Institute, Montreal, Canada
- College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Frédéric Lesage
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Paul J Marchand
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada
- Research Center, Montreal Heart Institute, Montreal, Canada
- École polytechnique fédérale de Lausanne- EPFL, Lausanne, Switzerland
| |
Collapse
|
39
|
Engelmann SA, Tomar A, Woods AL, Dunn AK. Pulse train gating to improve signal generation for in vivo two-photon fluorescence microscopy. NEUROPHOTONICS 2023; 10:045006. [PMID: 37937198 PMCID: PMC10627479 DOI: 10.1117/1.nph.10.4.045006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Significance Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structures and functions in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using the gating of high repetition rate ultrafast pulse trains to increase the signal level. Aim We investigate how the signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach An electro-optic modulator with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier is used to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare the signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train at the same average power. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging, we find that pulse gating results in a 2.95-fold increase in the SNR and a 1.37-fold increase in the SBR on average when imaging mouse cortical vasculature at depths ranging from 950 to 1050 μ m . Conclusions We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structures through two-photon microscopy.
Collapse
Affiliation(s)
- Shaun A Engelmann
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Alankrit Tomar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Aaron L Woods
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
40
|
Ventimiglia T, Linninger AA. Mesh-free high-resolution simulation of cerebrocortical oxygen supply with fast Fourier preconditioning. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3735. [PMID: 37246333 PMCID: PMC10524481 DOI: 10.1002/cnm.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023]
Abstract
Oxygen transfer from blood vessels to cortical brain tissue is representative of a class of problems with mixed-domain character. Large-scale efficient computation of tissue oxygen concentration is dependent on the manner in which the tubular network of blood vessels is coupled to the tissue mesh. Models which explicitly resolve the interface between the tissue and vasculature with a contiguous mesh are prohibitively expensive for very dense cerebral microvasculature. We propose a mixed-domain mesh-free technique whereby a vascular anatomical network (VAN) represented as a thin directed graph serves for convection of blood oxygen, and the surrounding extravascular tissue is represented as a Cartesian grid of 3D voxels throughout which oxygen is transported by diffusion. We split the network and tissue meshes by the Schur complement method of domain decomposition to obtain a reduced set of system equations for the tissue oxygen concentration at steady state. The use of a Cartesian grid allows the corresponding matrix equation to be solved approximately with a fast Fourier transform-based Poisson solver, which serves as an effective preconditioner for Krylov subspace iteration. The performance of this method enables the steady-state simulation of cortical oxygen perfusion for anatomically accurate vascular networks down to single micron resolution without the need for supercomputers.
Collapse
Affiliation(s)
- Thomas Ventimiglia
- Department of Mathematical Sciences, Northern Illinois University, Dekalb, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andreas A Linninger
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Travasso RDM, Coelho-Santos V. Image-based angio-adaptation modelling: a playground to study cerebrovascular development. Front Physiol 2023; 14:1223308. [PMID: 37565149 PMCID: PMC10411953 DOI: 10.3389/fphys.2023.1223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Rui D. M. Travasso
- Department of Physics, Center for Physics of the University of Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
42
|
Li J, Wu X, Fu Y, Nie H, Tang Z. Two-photon microscopy: application advantages and latest progress for in vivo imaging of neurons and blood vessels after ischemic stroke. Rev Neurosci 2023; 34:559-572. [PMID: 36719181 DOI: 10.1515/revneuro-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Two-photon microscopy (TPM) plays an important role in the study of the changes of the two important components of neurovascular units (NVU) - neurons and blood vessels after ischemic stroke (IS). IS refers to sudden neurological dysfunction caused by focal cerebral ischemia, which is one of the leading causes of death and disability worldwide. TPM is a new and rapidly developing high-resolution real-time imaging technique used in vivo that has attracted increasing attention from scientists in the neuroscience field. Neurons and blood vessels are important components of neurovascular units, and they undergo great changes after IS to respond to and compensate for ischemic injury. Here, we introduce the characteristics and pre-imaging preparations of TPM, and review the common methods and latest progress of TPM in the neuronal and vascular research for injury and recovery of IS in recent years. With the review, we clearly recognized that the most important advantage of TPM in the study of ischemic stroke is the ability to perform chronic longitudinal imaging of different tissues at a high resolution in vivo. Finally, we discuss the limitations of TPM and the technological advances in recent years.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
43
|
Pian Q, Alfadhel M, Tang J, Lee GV, Li B, Fu B, Ayata Y, Yaseen MA, Boas DA, Secomb TW, Sakadzic S. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076003. [PMID: 37484973 PMCID: PMC10362155 DOI: 10.1117/1.jbo.28.7.076003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
Significance The accurate large-scale mapping of cerebral microvascular blood flow velocity is crucial for a better understanding of cerebral blood flow (CBF) regulation. Although optical imaging techniques enable both high-resolution microvascular angiography and fast absolute CBF velocity measurements in the mouse cortex, they usually require different imaging techniques with independent system configurations to maximize their performances. Consequently, it is still a challenge to accurately combine functional and morphological measurements to co-register CBF speed distribution from hundreds of microvessels with high-resolution microvascular angiograms. Aim We propose a data acquisition and processing framework to co-register a large set of microvascular blood flow velocity measurements from dynamic light scattering optical coherence tomography (DLS-OCT) with the corresponding microvascular angiogram obtained using two-photon microscopy (2PM). Approach We used DLS-OCT to first rapidly acquire a large set of microvascular velocities through a sealed cranial window in mice and then to acquire high-resolution microvascular angiograms using 2PM. The acquired data were processed in three steps: (i) 2PM angiogram coregistration with the DLS-OCT angiogram, (ii) 2PM angiogram segmentation and graphing, and (iii) mapping of the CBF velocities to the graph representation of the 2PM angiogram. Results We implemented the developed framework on the three datasets acquired from the mice cortices to facilitate the coregistration of the large sets of DLS-OCT flow velocity measurements with 2PM angiograms. We retrieved the distributions of red blood cell velocities in arterioles, venules, and capillaries as a function of the branching order from precapillary arterioles and postcapillary venules from more than 1000 microvascular segments. Conclusions The proposed framework may serve as a useful tool for quantitative analysis of large microvascular datasets obtained by OCT and 2PM in studies involving normal brain functioning, progression of various diseases, and numerical modeling of the oxygen advection and diffusion in the realistic microvascular networks.
Collapse
Affiliation(s)
- Qi Pian
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammed Alfadhel
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Jianbo Tang
- Southern University of Science and Technology, Department of Biomedical Engineering, Shenzhen, China
| | - Grace V. Lee
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
| | - Baoqiang Li
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Brain Cognition and Brain Disease Institute; Shenzhen Fundamental Research Institutions, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Yagmur Ayata
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammad Abbas Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Timothy W. Secomb
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Physiology, Tucson, Arizona, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
44
|
Giblin J, Kura S, Nunuez JLU, Zhang J, Kureli G, Jiang J, Boas DA, Chen IA. High throughput detection of capillary stalling events with Bessel beam two-photon microscopy. NEUROPHOTONICS 2023; 10:035009. [PMID: 37705938 PMCID: PMC10495839 DOI: 10.1117/1.nph.10.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Significance Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.
Collapse
Affiliation(s)
- John Giblin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juan Luis Ugarte Nunuez
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juncheng Zhang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Gulce Kureli
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - John Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Ichun A. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
45
|
Guo Y, Wang L, Luo Z, Zhu Y, Gao X, Weng X, Wang Y, Yan W, Qu J. Dynamic Volumetric Imaging of Mouse Cerebral Blood Vessels In Vivo with an Ultralong Anti-Diffracting Beam. Molecules 2023; 28:4936. [PMID: 37446598 DOI: 10.3390/molecules28134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Volumetric imaging of a mouse brain in vivo with one-photon and two-photon ultralong anti-diffracting (UAD) beam illumination was performed. The three-dimensional (3D) structure of blood vessels in the mouse brain were mapped to a two-dimensional (2D) image. The speed of volumetric imaging was significantly improved due to the long focal length of the UAD beam. Comparing one-photon and two-photon UAD beam volumetric imaging, we found that the imaging depth of two-photon volumetric imaging (80 μm) is better than that of one-photon volumetric imaging (60 μm), and the signal-to-background ratio (SBR) of two-photon volumetric imaging is two times that of one-photon volumetric imaging. Therefore, we used two-photon UAD volumetric imaging to perform dynamic volumetric imaging of mouse brain blood vessels in vivo, and obtained the blood flow velocity.
Collapse
Affiliation(s)
- Yong Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Luwei Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Ziyi Luo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yinru Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xinwei Gao
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Wei Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
46
|
Xiao S, Giblin JT, Boas DA, Mertz J. High-throughput deep tissue two-photon microscopy at kilohertz frame rates. OPTICA 2023; 10:763-769. [PMID: 38882052 PMCID: PMC11178336 DOI: 10.1364/optica.487272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 06/18/2024]
Abstract
High-speed laser scanning microscopes are essential for monitoring fast biological phenomena. However, existing strategies that achieve millisecond time resolution with two-photon microscopes (2PMs) are generally technically challenging and suffer from compromises among imaging field of view, excitation efficiency, and depth penetration in thick tissue. Here, we present a versatile solution that enables a conventional video-rate 2PM to perform 2D scanning at kilohertz frame rates over large fields of view. Our system is based on implementation of a scan multiplier unit that provides inertia-free multiplication of the scanning speed while preserving all the benefits of standard 2PM. We demonstrate kilohertz subcellular-resolution 2PM imaging with an order of magnitude higher imaging throughput than previously achievable and penetration depths exceeding 500 μm, which we apply to the study of neurovascular coupling dynamics in the mouse brain.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - John T. Giblin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
47
|
Chen R, Tong S, Miao P. Deep-learning-based 3D blood flow reconstruction in transmissive laser speckle imaging. OPTICS LETTERS 2023; 48:2913-2916. [PMID: 37262242 DOI: 10.1364/ol.489480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Transmissive laser speckle imaging (LSI) is useful for monitoring large field-of-view (FOV) blood flow in thick tissues. However, after longer transmissions, the contrast of the transmitted speckle images is more likely to be blurred by multiple scattering, resulting in decreased accuracy and spatial resolution of deep vessels. This study proposes a deep-learning-based strategy for high spatiotemporal resolution three-dimensional (3D) reconstruction from a single transilluminated laser speckle contrast image, providing more structural and functional details without multifocus two-dimensional (2D) imaging or 3D optical imaging with point/line scanning. Based on the correlation transfer equation, a large training dataset is generated by convolving vessel masks with depth-dependent point spread functions (PSF). The UNet and ResNet are used for deblurring and depth estimation. The blood flow in the reconstructed 3D vessels is estimated by a depth-dependent contrast model. The proposed method is evaluated with simulated data and phantom experiments, achieving high-fidelity structural reconstruction with a depth-independent estimation of blood flow. This fast 3D blood flow imaging technique is suitable for real-time monitoring of thick tissue and the diagnosis of vascular diseases.
Collapse
|
48
|
Walek KW, Stefan S, Lee JH, Puttigampala P, Kim AH, Park SW, Marchand PJ, Lesage F, Liu T, Huang YWA, Boas DA, Moore C, Lee J. Near-lifespan longitudinal tracking of brain microvascular morphology, topology, and flow in male mice. Nat Commun 2023; 14:2982. [PMID: 37221202 PMCID: PMC10205707 DOI: 10.1038/s41467-023-38609-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
In age-related neurodegenerative diseases, pathology often develops slowly across the lifespan. As one example, in diseases such as Alzheimer's, vascular decline is believed to onset decades ahead of symptomology. However, challenges inherent in current microscopic methods make longitudinal tracking of such vascular decline difficult. Here, we describe a suite of methods for measuring brain vascular dynamics and anatomy in mice for over seven months in the same field of view. This approach is enabled by advances in optical coherence tomography (OCT) and image processing algorithms including deep learning. These integrated methods enabled us to simultaneously monitor distinct vascular properties spanning morphology, topology, and function of the microvasculature across all scales: large pial vessels, penetrating cortical vessels, and capillaries. We have demonstrated this technical capability in wild-type and 3xTg male mice. The capability will allow comprehensive and longitudinal study of a broad range of progressive vascular diseases, and normal aging, in key model systems.
Collapse
Affiliation(s)
- Konrad W Walek
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Jang-Hoon Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | | | - Anna H Kim
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Seong Wook Park
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Paul J Marchand
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Yu-Wen Alvin Huang
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
49
|
Lim HK, Bae S, Han K, Kang BM, Jeong Y, Kim SG, Suh M. Seizure-induced neutrophil adhesion in brain capillaries leads to a decrease in postictal cerebral blood flow. iScience 2023; 26:106655. [PMID: 37168551 PMCID: PMC10164910 DOI: 10.1016/j.isci.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Cerebral hypoperfusion has been proposed as a potential cause of postictal neurological dysfunction in epilepsy, but its underlying mechanism is still unclear. We show that a 30% reduction in postictal cerebral blood flow (CBF) has two contributing factors: the early hypoperfusion up to ∼30 min post-seizure was mainly induced by arteriolar constriction, while the hypoperfusion that persisted for over an hour was due to increased capillary stalling induced by neutrophil adhesion to brain capillaries, decreased red blood cell (RBC) flow accompanied by constriction of capillaries and venules, and elevated intercellular adhesion molecule-1 (ICAM-1) expression. Administration of antibodies against the neutrophil marker Ly6G and against LFA-1, which mediates adhesive interactions with ICAM-1, prevented neutrophil adhesion and recovered the prolonged CBF reductions to control levels. Our findings provide evidence that seizure-induced neutrophil adhesion to cerebral microvessels via ICAM-1 leads to prolonged postictal hypoperfusion, which may underlie neurological dysfunction in epilepsy.
Collapse
Affiliation(s)
- Hyun-Kyoung Lim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Sungjun Bae
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kayoung Han
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Bok-Man Kang
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- IMNEWRUN Inc, N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon 16419, South Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
50
|
Qiu B, Zhao Z, Wang N, Feng Z, Chen XJ, Chen W, Sun W, Ge WP, Wang Y. A systematic observation of vasodynamics from different segments along the cerebral vasculature in the penumbra zone of awake mice following cerebral ischemia and recanalization. J Cereb Blood Flow Metab 2023; 43:665-679. [PMID: 36524693 PMCID: PMC10108196 DOI: 10.1177/0271678x221146128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Different segments of the cerebral vascular network may react distinctly to brain ischemia and recanalization. However, there are limited systematic observations of these vascular responses in mice under a physiological state following ischemic stroke. Herein, we aimed to investigate the vasodynamics among several segments along the cerebral vessels in awake mice following cerebral ischemia/recanalization via two-photon imaging. Plasma in the blood vessels were labelled with fluorescein isothiocyanate dextran. Smooth muscle cells and pericytes were labelled via a genetic mouse line (PDGFRβ-tdTomato). We observed a no-reflow phenomenon in downstream microcirculation, and the vasodynamics of different segments of larger cerebral vessels varied in the penumbra area following cerebral ischemia-reperfusion. Despite obtaining reperfusion from the middle cerebral artery, there were significant constrictions of the downstream blood vessels in the ischemic penumbra zone. Interestingly, we observed an extensive constriction of the capillaries 3 hours following recanalization, both at the site covered by pericyte soma and by the pericyte process alone. In addition, we did not observe a significant positive correlation between the changed capillary diameter and pericyte coverage along the capillary. Taken together, abnormal constrictions and vasodynamics of cerebral large and small vessels may directly contribute to microcirculation failure following recanalization in ischemic stroke.
Collapse
Affiliation(s)
- Baoshan Qiu
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Zichen Zhao
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Ziyan Feng
- Chinese Institute for Brain Research,
Beijing, China
| | - Xing-jun Chen
- Chinese Institute for Brain Research,
Beijing, China
- Academy for Advanced Interdisciplinary
Studies (AAIS), Peking University, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research,
Beijing, China
- School of Basic Medical Sciences, Capital
Medical University, Beijing, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research,
Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
- China National Clinical Research Centre for
Neurological Diseases, Beijing, China
- Advanced Innovation Centre for Human Brain
Protection, Capital Medical University, Beijing, China
- National Centre for Neurological Diseases,
Beijing, China
| |
Collapse
|