1
|
Zeng K, Wang ZF, Su MR, Wang Y, Zhang ZY, Zhong H. Gender and Age Differences in Corpus Callosum Morphology: High-Altitude Adaptations in Native Tibetan Populations. J Craniofac Surg 2024:00001665-990000000-02289. [PMID: 39699584 DOI: 10.1097/scs.0000000000011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AND AIMS The corpus callosum is recognized as the largest interhemispheric white matter structure, coordinating distinct functions of the brain. High-altitude environments may influence the structure of the corpus callosum. This study aims to evaluate the morphologic characteristics of the corpus callosum in Tibetans residing on the Qinghai-Tibet Plateau while investigating the effects of sex, age, and high-altitude exposure on its morphology. MATERIALS AND METHODS The study comprised 262 healthy native Tibetan adults, including 113 men and 149 women. The length, height, area, and thickness of each subregion of the corpus callosum were measured, with the data normalized according to brain length and mid-sagittal cortical brain area. Statistical analyses were conducted utilizing nonparametric tests and partial correlation analysis. RESULTS Most normalized morphologic measurements indicated significant sex differences, particularly in the thickness of the rostrum (z=-3.199, P=0.001), genu (z=-3.133, P=0.002), body (z=-3.612, P<0.001), splenium (z=-2.279, P=0.02), and callosal length (z=-2.722, P=0.006), and area (z=-2.179, P=0.03). The callosal area (R2=0.084, P<0.001) demonstrated an inverted U-shaped trajectory throughout the lifespan, peaking at ∼40 years of age. CONCLUSIONS This study identified pronounced sex differences in the corpus callosum morphology among Tibetans. Despite living at high altitudes, the age-related trajectory of the callosal area resembled patterns observed in other populations, although peak ages differed by sex.
Collapse
Affiliation(s)
- Ke Zeng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhan-Fei Wang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Ming-Ran Su
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Yu Wang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Zhi-Ying Zhang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Hua Zhong
- Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Zhang W, Feng J, Liu W, Zhang S, Yu X, Liu J, Shan B, Ma L. Investigating Sea-Level Brain Predictors for Acute Mountain Sickness: A Multimodal MRI Study before and after High-Altitude Exposure. AJNR Am J Neuroradiol 2024; 45:809-818. [PMID: 38663991 PMCID: PMC11288600 DOI: 10.3174/ajnr.a8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND PURPOSE Acute mountain sickness is a series of brain-centered symptoms that occur when rapidly ascending to high altitude. Predicting acute mountain sickness before high-altitude exposure is crucial for protecting susceptible individuals. The present study aimed to evaluate the feasibility of predicting acute mountain sickness after high-altitude exposure by using multimodal brain MR imaging features measured at sea level. MATERIALS AND METHODS We recruited 45 healthy sea-level residents who flew to the Qinghai-Tibet Plateau (3650 m). We conducted T1-weighted structural MR imaging, resting-state fMRI, and arterial spin-labeling perfusion MR imaging both at sea level and high altitude. Acute mountain sickness was diagnosed for 5 days using Lake Louise Scoring. Logistic regression with Least Absolute Shrinkage and Selection Operator logistic regression was performed for predicting acute mountain sickness using sea-level MR imaging features. We also validated the predictors by using MR images obtained at high altitude. RESULTS The incidence rate of acute mountain sickness was 80.0%. The model achieved an area under the receiver operating characteristic curve of 86.4% (sensitivity = 77.8%, specificity = 100.0%, and P < .001) in predicting acute mountain sickness At sea level, valid predictors included fractional amplitude of low-frequency fluctuations (fALFF) and degree centrality from resting-state fMRI, mainly distributed in the somatomotor network. We further learned that the acute mountain sickness group had lower levels of fALFF in the somatomotor network at high altitude, associated with smaller changes in CSF volume and higher Lake Louise Scoring, specifically relating to fatigue and clinical function. CONCLUSIONS Our study found that the somatomotor network function detected by sea-level resting-state fMRI was a crucial predictor for acute mountain sickness and further validated its pathophysiologic impact at high altitude. These findings show promise for pre-exposure prediction, particularly for individuals in need of rapid ascent, and they offer insight into the potential mechanism of acute mountain sickness.
Collapse
Affiliation(s)
- Wei Zhang
- From the Beijing Engineering Research Center of Radiographic Techniques and Equipment (W.Z., B.S.), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology (W.Z., B.S.), University of Chinese Academy of Sciences, Beijing, China
- Cognitive Neuroimaging Centre (W.Z.), Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine (W.Z.), Nanyang Technological University, Singapore
| | - Jie Feng
- The Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenjia Liu
- Department of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shiyu Zhang
- Department of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Radiology (S.Z.), Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xiao Yu
- The Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Radiology (X.Y.), Beijing Jingmei Group General Hospital, Beijing, China
| | - Jie Liu
- Department of Radiology (J.L.), General Hospital of Tibet Military Region, Tibet, China
| | - Baoci Shan
- From the Beijing Engineering Research Center of Radiographic Techniques and Equipment (W.Z., B.S.), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology (W.Z., B.S.), University of Chinese Academy of Sciences, Beijing, China
| | - Lin Ma
- The Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
4
|
Xu Z, Li Q, Shen X. AZU1 (HBP/CAP37) and PRKCG (PKC-gamma) may be candidate genes affecting the severity of acute mountain sickness. BMC Med Genomics 2023; 16:28. [PMID: 36803152 PMCID: PMC9940399 DOI: 10.1186/s12920-023-01457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Acute Mountain Sickness (AMS) is one of the diseases that predispose to sudden ascent to high altitudes above 2500 m. Among the many studies on the occurrence and development of AMS, there are few studies on the severity of AMS. Some unidentified phenotypes or genes that determine the severity of AMS may be vital to elucidating the mechanisms of AMS. This study aims to explore the underlying genes or phenotypes associated with AMS severity and to provide evidence for a better understanding of the mechanisms of AMS. METHODS GSE103927 dataset was downloaded from the Gene Expression Omnibus database, and a total of 19 subjects were enrolled in the study. Subjects were divided into a moderate to severe AMS (MS-AMS, 9 subjects) group and a no or mild AMS (NM-AMS, 10 subjects) group based on the Lake Louise score (LLS). Various bioinformatics analyses were used to compare the differences between the two groups. Another dataset, Real-time quantitative PCR (RT-qPCR), and another grouping method were used to validate the analysis results. RESULT No statistically significant differences in phenotypic and clinical data existed between the MS-AMS and NM-AMS groups. Eight differential expression genes are associated with LLS, and their biological functions are related regulating of the apoptotic process and programmed cell death. The ROC curves showed that AZU1 and PRKCG had a better predictive performance for MS-AMS. AZU1 and PRKCG were significantly associated with the severity of AMS. The expression of AZU1 and PRKCG were significantly higher in the MS-AMS group compared to the NM-AMS group. The hypoxic environment promotes the expression of AZU1 and PRKCG. The results of these analyses were validated by an alternative grouping method and RT-qPCR results. AZU1 and PRKCG were enriched in the Neutrophil extracellular trap formation pathway, suggesting the importance of this pathway in influencing the severity of AMS. CONCLUSION AZU1 and PRKCG may be key genes influencing the severity of acute mountain sickness, and can be used as good diagnostic or predictive indicators of the severity of AMS. Our study provides a new perspective to explore the molecular mechanism of AMS.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu Province China
| |
Collapse
|
5
|
Roy B, Sahib AK, Kang D, Aysola RS, Kumar R. Brain tissue integrity mapping in adults with obstructive sleep apnea using T1-weighted and T2-weighted images. Ther Adv Neurol Disord 2022; 15:17562864221137505. [PMID: 36419869 PMCID: PMC9677310 DOI: 10.1177/17562864221137505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/21/2022] [Indexed: 03/14/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) is accompanied by both gray and white matter differences in brain areas that regulate autonomic, cognitive, and mood functions, which are deficient in the condition. Such tissue changes have been examined through diffusion tensor and diffusion kurtosis imaging-based procedures. However, poor in-plane spatial resolution of these techniques precludes precise determination of the extent of tissue injury. Tissue texture maps derived from the ratio of T1-weighted and T2-weighted images can provide more adequate in-plane assessment of brain tissue differences. Objectives To examine brain tissue integrity in recently diagnosed, treatment-naïve OSA subjects, relative to age- and sex-comparable control subjects using T1-weighted and T2-weighted images. Design A cross-sectional study. Methods We examined the extent of tissue changes in 106 OSA over 115 control subjects using high-resolution T1- and T2-weighted images collected from a 3.0-Tesla scanner (analysis of covariance; covariates: age, sex, body-mass-index, Pittsburgh sleep quality index, Epworth sleepiness scale, Beck Anxiety Inventory, and Beck Depression Inventory II; false discovery rate corrected; p < 0.01). Results OSA subjects showed significantly lowered tissue integrity in several brain regions, including the frontal, cingulate and insular cortices, cingulum bundle, thalamus, corpus callosum, caudate and putamen, pons, temporal, occipital, and parietal sites, cerebellar peduncles, and medial medullary sites, compared with controls. Conclusion OSA subjects show widespread lowered tissue integrity in autonomic, mood, and cognitive control sites over healthy controls. The pathological processes contributing to the alterations may include repetitive hypoxic and hypercarbic processes and excitotoxic injury, leading to altered brain tissue integrity in OSA.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ravi S Aysola
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 56-141 CHS, 10833 Le Conte Ave., Los Angeles, CA 90095-1763, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nat Commun 2021; 12:5987. [PMID: 34645793 PMCID: PMC8514510 DOI: 10.1038/s41467-021-26116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Following prolonged exposure to hypoxic conditions, for example, due to ascent to high altitude, stroke, or traumatic brain injury, cerebral edema can develop. The exact nature and genesis of hypoxia-induced edema in healthy individuals remain unresolved. We examined the effects of prolonged, normobaric hypoxia, induced by 16 h of exposure to simulated high altitude, on healthy brains using proton, dynamic contrast enhanced, and sodium MRI. This dual approach allowed us to directly measure key factors in the development of hypoxia-induced brain edema: (1) Sodium signals as a surrogate of the distribution of electrolytes within the cerebral tissue and (2) Ktrans as a marker of blood–brain–barrier integrity. The measurements point toward an accumulation of sodium ions in extra- but not in intracellular space in combination with an intact endothelium. Both findings in combination are indicative of ionic extracellular edema, a subtype of cerebral edema that was only recently specified as an intermittent, yet distinct stage between cytotoxic and vasogenic edemas. In sum, here a combination of imaging techniques demonstrates the development of ionic edemas following prolonged normobaric hypoxia in agreement with cascadic models of edema formation. Prolonged hypoxia, which can be due to stroke or ascent to high altitude, can lead to cerebral edema. Here, the authors used a combination of sodium and proton MRI and experimentally induced hypoxic conditions to identify the cause for brain swelling: Ionic edema, an intermediate between cytotoxic and vasogenic edema defined by sodium ion accumulation in extracellular space and an intact endothelium.
Collapse
|
7
|
Kühn S, Gerlach D, Noblé HJ, Weber F, Rittweger J, Jordan J, Limper U. An Observational Cerebral Magnetic Resonance Imaging Study Following 7 Days at 4554 m. High Alt Med Biol 2019; 20:407-416. [DOI: 10.1089/ham.2019.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sven Kühn
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Darius Gerlach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Hans-Jürgen Noblé
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Frank Weber
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| |
Collapse
|
8
|
Fisher O, Benson RA, Wayte S, Kimani PK, Hutchinson C, Imray CHE. Multimodal analysis of the effects of dexamethasone on high-altitude cerebral oedema: protocol for a pilot study. Trials 2019; 20:604. [PMID: 31651350 PMCID: PMC6813976 DOI: 10.1186/s13063-019-3681-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022] Open
Abstract
Background Acute mountain sickness (AMS) is a cluster of symptoms that commonly occur in those ascending to high altitudes. Symptoms can include headaches, nausea, insomnia and fatigue. Exposure to high altitude can also lead to high-altitude cerebral oedema (HACE), which is a potential cause of death whilst mountaineering. Generally, AMS precedes the development of HACE. Historical studies have demonstrated the effectiveness of regular dexamethasone administration in reducing the symptoms of AMS. However, the mechanism by which dexamethasone works to reduce symptoms AMS remains poorly understood. Further studies, simulating altitude using hypoxic tents, have characterised the effect of prolonged exposure to normobaric hypoxia on cerebral oedema and blood flow using MRI. This randomised trial assesses the effect of dexamethasone on hypoxia-induced cerebral oedema in healthy adult volunteers. Methods/design D4H is a double-blind placebo-controlled randomised trial assessing the effect of dexamethasone on hypoxia-induced cerebral oedema. In total, 20 volunteers were randomised in pairs to receive either 8.25 mg dexamethasone or normal saline placebo intravenously after 8 h of hypoxia with an FiO2 of 12%. Serial MRI images of the brain and spinal cord were obtained at hours 0, 7, 11, 22 and 26 of the study along with serum and urinary markers to correlate with the severity of cerebral oedema and the effect of the intervention. Discussion MRI has been used to identify changes in cerebral vasculature in the development of AMS and HACE. Dexamethasone is effective at reducing the symptoms of AMS; however, the mechanism of this effect is unknown. If this study demonstrates a clear objective benefit of dexamethasone in this setting, future studies may be able to demonstrate that dexamethasone is an effective therapy for oedema associated with brain and spinal cord ischaemia beyond AMS. Trial registration Clinicaltrials.gov, NCT03341676. Registered on 14 November 2017.
Collapse
Affiliation(s)
- O Fisher
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK. .,University of Warwick, Coventry, UK.
| | - R A Benson
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK.,University of Birmingham, Birmingham, UK
| | - S Wayte
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | | | - C Hutchinson
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK.,University of Warwick, Coventry, UK
| | - C H E Imray
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK.,University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Clarke AK, Cozzi M, Imray CHE, Wright A, Pagliarini S. Analysis of Retinal Segmentation Changes at High Altitude With and Without Acetazolamide. Invest Ophthalmol Vis Sci 2019; 60:36-40. [PMID: 30601929 DOI: 10.1167/iovs.18-24966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Our aim was to assess retinal venous diameter and segmented retinal layer thickness variation in acute systemic hypoxia with and without acetazolamide and to relate these changes to high altitude headache (HAH), as a proxy for intracerebral pathophysiology. Methods A total of 20 subjects participated in a 4-day ascent to the Margherita Hut (4,559 m) on Monte Rosa in the Italian Alps. Each participant was randomized to either oral acetazolamide 250 mg twice daily or placebo. A combination of digital imaging and optical coherence tomography was used to measure retinal vessel diameter and retinal layer thickness. Clinically-assessed HAH was recorded. Results A total of 18 participants had usable digital and OCT images, with 12 developing HAH. Significant thickening was seen only in the two inner layers of the retina, the retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) at P = 0.012 and P = 0.010, respectively, independent of acetazolamide. There was a significant positive correlation between HAH and both retinal venous diameter (T = 4.953, P = 0.001) and retinal artery diameter (T = 2.865, P = 0.015), with both unaffected by acetazolamide (F = 0.439, P = 0.518). Conclusions Retinal venous diameter correlates positively with HAH, adding further evidence for the proposed venous outflow limitation mechanism. The inner layers of the retina swelled disproportionately when compared to the outer layers under conditions of systemic hypoxia. Acetazolamide does not appear to influence altitudinal changes of retinal layers and vasculature.
Collapse
Affiliation(s)
| | - Mariano Cozzi
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | | | - Alex Wright
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sergio Pagliarini
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | | |
Collapse
|
10
|
Wang H, Zhu X, Xiang H, Liao Z, Gao M, Luo Y, Wu P, Zhang Y, Ren M, Zhao H, Xu M. Effects of altitude changes on mild-to-moderate closed-head injury in rats following acute high-altitude exposure. Exp Ther Med 2019; 17:847-856. [PMID: 30651871 DOI: 10.3892/etm.2018.7020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 11/05/2022] Open
Abstract
Mild-to-moderate closed-head injury (mmCHI) is an acute disease induced by high-altitudes. It is general practice to transfer patients to lower altitudes for treatment, but the pathophysiological changes at different altitudes following mmCHI remain unknown. The present study simulated acute high-altitude exposure (6,000 m above sea level) in rats to establish a model of mmCHI and recorded their vital signs. The rats were then randomly assigned into different altitude exposure groups (6,000, 4,500 and 3,000 m) and neurological severity score (NSS), body weight (BW), brain magnetic resonance imaging (MRI), brain water content (BWC) and the ratio of BW/BWC at 6, 12 and 24 h following mmCHI, and the glial fibrillary acidic protein levels were analysed in all groups. The results revealed that within the first 24 h following acute high-altitude exposure, mmCHI induced dehydration, brain oedema and neuronal damage. Brain injury in rats was significantly reversed following descent to 4,500 m compared with the results from 6,000 or 3,000 m. The results indicated that subjects should be transported as early as possible. Furthermore, avoiding large-span descent altitude was beneficial to reduce neurological impairment. The examination of brain-specific biomarkers and MRI may further be useful in determining the prognosis of high-altitude mmCHI. These results may provide guidance for rescuing high altitude injuries.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiyan Zhu
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hongyi Xiang
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhikang Liao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mou Gao
- Affiliated Bayi Brain Hospital P.L.A Army General Hospital, Beijing 100038, P.R. China
| | - Yetao Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yihua Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mingliang Ren
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hui Zhao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
11
|
Cramer NP, Korotcov A, Bosomtwi A, Xu X, Holman DR, Whiting K, Jones S, Hoy A, Dardzinski BJ, Galdzicki Z. Neuronal and vascular deficits following chronic adaptation to high altitude. Exp Neurol 2018; 311:293-304. [PMID: 30321497 DOI: 10.1016/j.expneurol.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 02/03/2023]
Abstract
We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000 m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8 months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alexandru Korotcov
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Asamoah Bosomtwi
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xiufen Xu
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Derek R Holman
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Molecular & Cell Biology Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, MD, United States
| | - Kathleen Whiting
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Neuroscience Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Scott Jones
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew Hoy
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bernard J Dardzinski
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Molecular & Cell Biology Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, MD, United States; Neuroscience Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
12
|
Peng SL, Ravi H, Sheng M, Thomas BP, Lu H. Searching for a truly "iso-metabolic" gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37:715-725. [PMID: 26980756 PMCID: PMC5381460 DOI: 10.1177/0271678x16638103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Hypercapnia challenge (e.g. inhalation of CO2) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO2 is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO2 inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly "iso-metabolic," by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO2). Measurement of global CMRO2 under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO2 (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO2/13% O2) did not change brain metabolism (CMRO2 change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO2 change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Harshan Ravi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Bioengineering, UT Arlington, Arlington, USA
| | - Min Sheng
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
13
|
Nicholson PD, Pulst SM. Centrally involved X-linked Charcot-Marie-Tooth disease presenting as a stroke-mimic. NEUROLOGY-GENETICS 2017; 3:e128. [PMID: 28097225 PMCID: PMC5217614 DOI: 10.1212/nxg.0000000000000128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick D Nicholson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Stefan M Pulst
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
14
|
Verges S, Rupp T, Villien M, Lamalle L, Troprés I, Poquet C, Warnking JM, Estève F, Bouzat P, Krainik A. Multiparametric Magnetic Resonance Investigation of Brain Adaptations to 6 Days at 4350 m. Front Physiol 2016; 7:393. [PMID: 27660613 PMCID: PMC5014870 DOI: 10.3389/fphys.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
Objective: Hypoxic exposure in healthy subjects can induce acute mountain sickness including headache, lethargy, cerebral dysfunction, and substantial cerebral structural alterations which, in worst case, can lead to potentially fatal high altitude cerebral edema. Within this context, the relationships between high altitude-induced cerebral edema, changes in cerebral perfusion, increased brain parenchyma volume, increased intracranial pressure, and symptoms remain unclear. Methods: In 11 subjects before and after 6 days at 4350 m, we performed multiparametric magnetic resonance investigations including anatomical, apparent diffusion coefficient and arterial spin labeling sequences. Results: After the altitude stay, while subjects were asymptomatic, white matter volume (+0.7 ± 0.4%, p = 0.005), diffusion (+1.7 ± 1.4%, p = 0.002), and cerebral blood flow (+28 ± 38%; p = 0.036) were significantly increased while cerebrospinal fluid volume was reduced (−1.4 ± 1.1%, p = 0.009). Optic nerve sheath diameter (used as an index of increased intracranial pressure) was unchanged from before (5.84 ± 0.53 mm) to after (5.92 ± 0.60 mm, p = 0.390) altitude exposure. Correlations were observed between increases in white matter volume and diffusion (rho = 0.81, p = 0.016) and between changes in CSF volume and changes in ONSD s (rho = −0.92, p = 0.006) and symptoms during the altitude stay (rho = −0.67, p = 0.031). Conclusions: These data demonstrate white matter alterations after several days at high altitude when subjects are asymptomatic that may represent the normal brain response to prolonged high altitude exposure.
Collapse
Affiliation(s)
- Samuel Verges
- HP2 Laboratory, Université Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Thomas Rupp
- HP2 Laboratory, Université Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France; Inter-Universitary Laboratory of Human Movement Biology, Université Savoie Mont BlancChambéry, France
| | - Marjorie Villien
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Laurent Lamalle
- U836, Institut National de la Santé et de la Recherche Médicale Grenoble, France
| | - Irène Troprés
- U836, Institut National de la Santé et de la Recherche Médicale Grenoble, France
| | - Camille Poquet
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Jan M Warnking
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - François Estève
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Pierre Bouzat
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Alexandre Krainik
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| |
Collapse
|
15
|
Chen J, Li J, Han Q, Lin J, Yang T, Chen Z, Zhang J. Long-term acclimatization to high-altitude hypoxia modifies interhemispheric functional and structural connectivity in the adult brain. Brain Behav 2016; 6:e00512. [PMID: 27688941 PMCID: PMC5036434 DOI: 10.1002/brb3.512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Structural and functional networks can be reorganized to adjust to environmental pressures and physiologic changes in the adult brain, but such processes remain unclear in prolonged adaptation to high-altitude (HA) hypoxia. This study aimed to characterize the interhemispheric functionally and structurally coupled modifications in the brains of adult HA immigrants. METHODS We performed resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in 16 adults who had immigrated to the Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea-level (SL) controls. A recently validated approach of voxel-mirrored homotopic connectivity (VMHC) was employed to examine the interhemispheric resting-state functional connectivity. Areas showing changed VMHC in HA immigrants were selected as regions of interest for follow-up DTI tractography analysis. The fiber parameters of fractional anisotropy and fiber length were obtained. Cognitive and physiological assessments were made and correlated with the resulting image metrics. RESULTS Compared with SL controls, VMHC in the bilateral visual cortex was significantly increased in HA immigrants. The mean VMHC value extracted within the visual cortex was positively correlated with hemoglobin concentration. Moreover, the path length of the commissural fibers connecting homotopic visual areas was increased in HA immigrants, covarying positively with VMHC. CONCLUSIONS These observations are the first to demonstrate interhemispheric functional and structural connectivity resilience in the adult brain after prolonged HA acclimatization independent of inherited and developmental effects, and the coupled modifications in the bilateral visual cortex indicate important neural compensatory mechanisms underlying visual dysfunction in physiologically well-acclimatized HA immigrants. The study of human central adaptation to extreme environments promotes the understanding of our brain's capacity for survival.
Collapse
Affiliation(s)
- Ji Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| | - Jinqiang Li
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Qiaoqing Han
- Department of Clinical PsychologyGulangyu Sanatorium of PLAXiamenFujianChina
| | - Jianzhong Lin
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Tianhe Yang
- Magnetic Resonance CenterThe Affiliated Zhongshan Hospital of Xiamen UniversityXiamenFujianChina
| | - Ziqian Chen
- Department of Medical ImagingFuzhou Dongfang HospitalXiamen UniversityFuzhouFujianChina
| | - Jiaxing Zhang
- Department of Physiology and NeurobiologyMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
16
|
DiPasquale DM, Muza SR, Gunn AM, Li Z, Zhang Q, Harris NS, Strangman GE. Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness. Brain Behav 2016; 6:e00437. [PMID: 27099800 PMCID: PMC4831417 DOI: 10.1002/brb3.437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION We hypothesized that cerebral alterations in edema, perfusion, and/or intracranial pressure (ICP) are related to the development of acute mountain sickness (AMS). METHODS To vary AMS, we manipulated ambient oxygen, barometric pressure, and exercise duration. Thirty-six subjects were tested before, during and after 8 h exposures in (1) normobaric normoxia (NN; 300 m elevation equivalent); (2) normobaric hypoxia (NH; 4400 m equivalent); and (3) hypobaric hypoxia (HH; 4400 m equivalent). After a passive 15 min ascent, each subject participated in either 10 or 60 min of cycling exercise at 50% of heart rate reserve. We measured tissue absorption and scattering via radio-frequency near-infrared spectroscopy (NIRS), optic nerve sheath diameter (ONSD) via ultrasound, and AMS symptoms before, during, and after environmental exposures. RESULTS We observed significant increases in NIRS tissue scattering of 0.35 ± 0.11 cm(-1) (P = 0.001) in subjects with AMS (i.e., AMS+), consistent with mildly increased cerebral edema. We also noted a small, but significant increase in total hemoglobin concentrations with AMS+, 3.2 ± 0.8 μmolL(-1) (P < 0.0005), consistent with increased cerebral perfusion. No effect of exercise duration was found, nor did we detect differences between NH and HH. ONSD assays documented a small but significant increase in ONSD (0.11 ± 0.02 mm; P < 0.0005) with AMS+, suggesting mildly elevated ICP, as well as further increased ONSD with longer exercise duration (P = 0.005). CONCLUSION In AMS+, we found evidence of cerebral edema, elevated cerebral perfusion, and elevated ICP. The observed changes were small but consistent with the reversible nature of AMS.
Collapse
Affiliation(s)
- Dana M DiPasquale
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Stephen R Muza
- Environmental Medicine and Military Performance Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts
| | - Andrea M Gunn
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Zhi Li
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Quan Zhang
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts; Center for Space Medicine Baylor College of Medicine Houston Texas
| | - N Stuart Harris
- Department of Emergency Medicine Division of Wilderness Medicine Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Gary E Strangman
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts; Center for Space Medicine Baylor College of Medicine Houston Texas
| |
Collapse
|
17
|
Hoffmann A, Kunze R, Helluy X, Milford D, Heiland S, Bendszus M, Pham M, Marti HH. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb. PLoS One 2016; 11:e0148441. [PMID: 26863147 PMCID: PMC4749302 DOI: 10.1371/journal.pone.0148441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.
Collapse
Affiliation(s)
- Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- * E-mail: (AH); (HHM)
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Xavier Helluy
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - David Milford
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
- * E-mail: (AH); (HHM)
| |
Collapse
|
18
|
Lawley JS, Levine BD, Williams MA, Malm J, Eklund A, Polaner DM, Subudhi AW, Hackett PH, Roach RC. Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness. J Appl Physiol (1985) 2016; 120:251-62. [DOI: 10.1152/japplphysiol.00370.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
The pathophysiology of acute mountain sickness and high-altitude cerebral edema, the cerebral forms of high-altitude illness, remain uncertain and controversial. Persistently elevated or pathological fluctuations in intracranial pressure are thought to cause symptoms similar to those reported by individuals suffering cerebral forms of high-altitude illness. This review first focuses on the basic physiology of the craniospinal system, including a detailed discussion of the long-term and dynamic regulation of intracranial pressure. Thereafter, we critically examine the available literature, based primarily on invasive pressure monitoring, that suggests intracranial pressure is acutely elevated at altitude due to brain swelling and/or elevated sagittal sinus pressure, but normalizes over time. We hypothesize that fluctuations in intracranial pressure occur around a slightly elevated or normal mean intracranial pressure, in conjunction with oscillations in arterial Po2 and arterial blood pressure. Then these modest fluctuations in intracranial pressure, in concert with direct vascular stretch due to dilatation and/or increased blood pressure transmission, activate the trigeminal vascular system and cause symptoms of acute mountain sickness. Elevated brain water (vasogenic edema) may be due to breakdown of the blood-brain barrier. However, new information suggests cerebral spinal fluid flux into the brain may be an important factor. Regardless of the source (or mechanisms responsible) for the excess brain water, brain swelling occurs, and a “tight fit” brain would be a major risk factor to produce symptoms; activities that produce large changes in brain volume and cause fluctuations in blood pressure are likely contributing factors.
Collapse
Affiliation(s)
- Justin S. Lawley
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Michael A. Williams
- Sandra and Malcolm Berman Brain & Spine Institute, Dept. of Neurology, Sinai Hospital, Baltimore, Maryland
| | - Jon Malm
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - David M. Polaner
- Departments of Anesthesiology and Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Andrew W. Subudhi
- Department of Biology, University of Colorado, Colorado Springs, Colorado
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
19
|
Feddersen B, Neupane P, Thanbichler F, Hadolt I, Sattelmeyer V, Pfefferkorn T, Waanders R, Noachtar S, Ausserer H. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab 2015; 35:1846-51. [PMID: 26082017 PMCID: PMC4635241 DOI: 10.1038/jcbfm.2015.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/16/2015] [Accepted: 05/15/2015] [Indexed: 11/09/2022]
Abstract
Symptoms of acute mountain sickness (AMS) may appear above 2,500 m altitude, if the time allowed for acclimatization is insufficient. As the mechanisms underlying brain adaptation to the hypobaric hypoxic environment are not fully understood, a prospective study was performed investigating neurophysiological changes by means of near infrared spectroscopy, electroencephalograpy (EEG), and transcranial doppler sonography at 100, 3,440 and 5,050 m above sea level in the Khumbu Himal, Nepal. Fourteen of the 26 mountaineers reaching 5,050 m altitude developed symptoms of AMS between 3,440 and 5,050 m altitude (Lake-Louise Score ⩾3). Their EEG frontal beta activity and occipital alpha activity increased between 100 and 3,440 m altitude, i.e., before symptoms appeared. Cerebral blood flow velocity (CBFV) in the anterior and middle cerebral arteries (MCAs) increased in all mountaineers between 100 and 3,440 m altitude. During further ascent to 5,050 altitude, mountaineers with AMS developed a further increase in CBFV in the MCA, whereas in all mountaineers CBFV decreased continuously with increasing altitude in the posterior cerebral arteries. These results indicate that hypobaric hypoxia causes different regional changes in CBFV despite similar electrophysiological changes.
Collapse
Affiliation(s)
- Berend Feddersen
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany.,Department of Palliative Medicine, Specialized Palliative Home Care Team, University of Munich, Munich, Germany
| | - Pritam Neupane
- Department of Internal Medicine, Sinai Hospital, Johns Hopkins University, Baltimore, Maryland, USA
| | - Florian Thanbichler
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Irmgard Hadolt
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Vera Sattelmeyer
- Klinik für Neurochirurgie, Dr Horst Schmidt Klinik, Wiesbaden, Germany
| | - Thomas Pfefferkorn
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Robb Waanders
- Department of Neuropsychology, Landeskrankenhaus Rankweil, Rankweil, Austria
| | - Soheyl Noachtar
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Harald Ausserer
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany.,Department of Neurology, Franz-Tappeiner Krankenhaus, Meran, Italy
| |
Collapse
|
20
|
Koundal S, Gandhi S, Kaur T, Trivedi R, Khushu S. Investigation of prolonged hypobaric hypoxia-induced change in rat brain using T2 relaxometry and diffusion tensor imaging at 7T. Neuroscience 2015; 289:106-13. [PMID: 25592421 DOI: 10.1016/j.neuroscience.2014.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The present study examines the change in water diffusion properties of the corpus callosum (CC) and the hippocampus, in response to prolonged hypobaric hypoxia (HH) stress, using in vivo magnetic resonance imaging (MRI) modalities such as T2 relaxometry and diffusion tensor imaging (DTI). Three groups of rats (n=7/group) were exposed to a simulated altitude of 6700m above sea level for the duration of 7, 14 and 21days, respectively. Data were acquired pre-exposure, post-exposure and after 1week of normoxic follow-up in each group. The increment in T2 values with no apparent diffusion coefficient (ADC) change in the CC after 7 and 14days of HH exposure indicated mixed (vasogenic and cytotoxic) edema formation. After 1week of normoxia, 7-day HH-exposed rats showed a decrease in ADC values in the CC, probably due to cytotoxic edema. A delayed decrease in ADC values was observed in the hippocampus after 1week normoxic follow-up in 7- and 14-day HH groups giving an insight of cytotoxic edema formation. Interestingly, 21-day HH-exposed rats did not show change in ADC values. The decrease in T2 values after 14 and 21days in the hippocampal region depicts iron deposition, which was confirmed by histopathology. This study successfully demonstrated the use of MRI modality to trace water diffusion changes in the brain due to prolonged HH exposure.
Collapse
Affiliation(s)
- S Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - S Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - T Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - R Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - S Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
21
|
Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab 2014; 34:1802-9. [PMID: 25160673 PMCID: PMC4269757 DOI: 10.1038/jcbfm.2014.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Abstract
The present study assessed the isolated and synergetic effects of hypoxic exposure and prolonged exercise on cerebral volume and subedema and symptoms of acute mountain sickness (AMS). Twelve healthy males performed three semirandomized blinded 11-hour sessions with (1) an inspiratory oxygen fraction (FiO2) of 12% and 4-hour cycling, (2) FiO2=21% and 4-hour cycling, and (3) FiO2=8.5% to 12% at rest (matching arterial oxygen saturation measured during the first hypoxic session). Volumetric, apparent diffusion coefficient (ADC), and arterial spin labelling 3T magnetic resonance imaging sequences were performed after 30 minutes and 10 hours in each session. Thirty minutes of hypoxia at rest induced a significant increase in white-matter volume (+0.8±1.0% compared with normoxia) that was exacerbated after 10 hours of hypoxia at rest (+1.5±1.1%) or with cycling (+1.6±1.1%). Total brain parenchyma volume increased significantly after 10 hours of hypoxia with cycling only (+1.3±1.1%). Apparent diffusion coefficient was significantly reduced after 10 hours of hypoxia at rest or with cycling. No significant change in cerebral blood flow was observed. These results demonstrate changes in white-matter volume as early as after 30 minutes of hypoxia that worsen after 10 hours, probably due to cytotoxic edema. Exercise accentuates the effect of hypoxia by increasing total brain volume. These changes do not however correlate with AMS symptoms.
Collapse
|
22
|
Update on High Altitude Cerebral Edema Including Recent Work on the Eye. High Alt Med Biol 2014; 15:112-22. [DOI: 10.1089/ham.2013.1142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
23
|
Lawley JS, Alperin N, Bagci AM, Lee SH, Mullins PG, Oliver SJ, Macdonald JH. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension. Ann Neurol 2014; 75:890-8. [PMID: 24788400 DOI: 10.1002/ana.24171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The study was undertaken to determine whether normobaric hypoxia causes elevated brain volume and intracranial pressure in individuals with symptoms consistent with acute mountain sickness (AMS). METHODS Thirteen males age = (26 (sd 6)) years were exposed to normobaric hypoxia (12% O2 ) and normoxia (21% O2 ). After 2 and 10 hours, AMS symptoms were assessed alongside ventricular and venous vessel volumes, cerebral blood flow, regional brain volumes, and intracranial pressure, using high-resolution magnetic resonance imaging. RESULTS In normoxia, neither lateral ventricular volume (R(2) = 0.07, p = 0.40) nor predominance of unilateral transverse venous sinus drainage (R(2) = 0.07, p = 0.45) was related to AMS symptoms. Furthermore, despite an increase in cerebral blood flow after 2 hours of hypoxia (hypoxia vs normoxia: Δ148ml/min(-1) , 95% confidence interval [CI] = 58 to 238), by 10 hours, when AMS symptoms had developed, cerebral blood flow was normal (Δ-51ml/min(-1) , 95% CI = -141 to 39). Conversely, at 10 hours brain volume was increased (Δ59ml, 95% CI = 8 to 110), predominantly due to an increase in gray matter volume (Δ73ml, 95% CI = 25 to 120). Therefore, cerebral spinal fluid volume was decreased (Δ-40ml, 95% CI = -67 to -14). The intracranial pressure response to hypoxia varied between individuals, and as hypothesized, the most AMS-symptomatic participants had the largest increases in intracranial pressure (AMS present, Δ7mmHg, 95% CI = -2.5 to 17.3; AMS not present, Δ-1mmHg, 95% CI = -3.3 to 0.5). Consequently, there was a significant relationship between the change in intracranial pressure and AMS symptom severity (R(2) = 0.71, p = 0.002). INTERPRETATION The data provide the strongest evidence to date to support the hypothesis that the "random" nature of AMS symptomology is explained by a variable intracranial pressure response to hypoxia.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health, and Exercise Sciences, Bangor University, Gwynedd, United Kingdom; Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX
| | | | | | | | | | | | | |
Collapse
|
24
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2013. [DOI: 10.1089/ham.2013.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Investigation of whole-brain white matter identifies altered water mobility in the pathogenesis of high-altitude headache. J Cereb Blood Flow Metab 2013; 33:1286-94. [PMID: 23736642 PMCID: PMC3734781 DOI: 10.1038/jcbfm.2013.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 11/08/2022]
Abstract
Elevated brain water is a common finding in individuals with severe forms of altitude illness. However, the location, nature, and a causative link between brain edema and symptoms of acute mountain sickness such as headache remains unknown. We examined indices of brain white matter water mobility in 13 participants after 2 and 10 hours in normoxia (21% O2) and hypoxia (12% O2) using magnetic resonance imaging. Using a whole-brain analysis (tract-based spatial statistics (TBSS)), mean diffusivity was reduced in the left posterior hemisphere after 2 hours and globally reduced throughout cerebral white matter by 10 hours in hypoxia. However, no changes in T2 relaxation time (T2) or fractional anisotropy were observed. The TBSS identified an association between changes in mean diffusivity, fractional anisotropy, and T2 both supra and subtentorially after 2 and 10 hours, with headache score after 10 hours in hypoxia. Region of interest-based analyses generally confirmed these results. These data indicate that acute periods of hypoxemia cause a shift of water into the intracellular space within the cerebral white matter, whereas no evidence of brain edema (a volumetric enlargement) is identifiable. Furthermore, these changes in brain water mobility are related to the intensity of high-altitude headache.
Collapse
|