1
|
Li Z, He Y, Zhang Q, Li B, Xiu R, Zhang H. Characterization of microcirculatory endothelial functions in a D-Galactose-induced aging model. Microvasc Res 2025; 157:104757. [PMID: 39490807 DOI: 10.1016/j.mvr.2024.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Microcirculation health is critical to human health, and aging is an important factor affecting microcirculation health. Although D-Galactose has been widely used in aging research models, there is a lack of relevant studies on D-Galactose simulating microcirculatory aging. Here, we explored microcirculatory endothelial function in D-Galactose-induced aging mice. METHODS Intraperitoneal injection of 150 mg/(kg·d) of D-Galactose was given to cause senescence in mice. Aging was evaluated by SA-β-gal (senescence-associated β-galactosidase) staining. The auricular skin and hepatic microcirculation of mice were observed and detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and microcirculation apparatus. The aging of microcirculation was analyzed from oxidative stress, endothelial impairment, inflammation, microvascular morphology and hemodynamics. RESULTS In aging mice, percentage of SA-β-gal positive area, oxidative stress products reactive oxygen species (ROS) and nitric oxide (NO), endothelial impairment marker syndecan-1 (SDC-1), stromal cell derived factor-1 (SDF-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the senescence-associated secretory phenotype (SASP) were all up-regulated. The tortuosity of microvessels increased in aging mice, the linear density did not change significantly, but the total length of narrow microvessels (TLNMV) increased and wide microvessels (TLWMV) decreased, speculate that vasomotor dysfunction may be present. Hemodynamically, both perfusion and velocity of blood flow were reduced in senescent mice, presumably due to endothelial dysfunction. CONCLUSION Microcirculatory endothelial dysfunction is induced by D-Galactose, leading to microcirculatory aging. In vivo, this is manifested by elevated levels of oxidative stress, impaired endothelial glycocalyx (eGC), and a greater production of chemokines and adhesive molecules. These changes cause vasomotor dysfunction and remodeling, ultimately leading to hemodynamic impairment.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhong He
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qiuju Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
3
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Hartmann DA, Coelho-Santos V, Shih AY. Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System. Annu Rev Physiol 2022; 84:331-354. [PMID: 34672718 PMCID: PMC10480047 DOI: 10.1146/annurev-physiol-061121-040127] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.
Collapse
Affiliation(s)
- David A Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Sato H, Takado Y, Toyoda S, Tsukamoto-Yasui M, Minatohara K, Takuwa H, Urushihata T, Takahashi M, Shimojo M, Ono M, Maeda J, Orihara A, Sahara N, Aoki I, Karakawa S, Isokawa M, Kawasaki N, Kawasaki M, Ueno S, Kanda M, Nishimura M, Suzuki K, Mitsui A, Nagao K, Kitamura A, Higuchi M. Neurodegenerative processes accelerated by protein malnutrition and decelerated by essential amino acids in a tauopathy mouse model. SCIENCE ADVANCES 2021; 7:eabd5046. [PMID: 34678069 PMCID: PMC8535828 DOI: 10.1126/sciadv.abd5046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein malnutrition is epidemiologically suggested as a potential risk factor for senile dementia, although molecular mechanisms linking dietary proteins and amino acids to neurodegeneration remain unknown. Here, we show that a low-protein diet resulted in down-regulated expression of synaptic components and a modest acceleration of brain atrophy in mice modeling neurodegenerative tauopathies. Notably, these abnormal phenotypes were robustly rescued by the administration of seven selected essential amino acids. The up-regulation of inflammation-associated gene expression and progressive brain atrophy in the tauopathy model were profoundly suppressed by treatment with these essential amino acids without modifications of tau depositions. Moreover, the levels of kynurenine, an initiator of a pathway inducing neuroinflammatory gliosis and neurotoxicity in the brain, were lowered by treatment through inhibition of kynurenine uptake in the brain. Our findings highlight the importance of specific amino acids as systemic mediators of brain homeostasis against neurodegenerative processes.
Collapse
Affiliation(s)
- Hideaki Sato
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | | | | | - Keiichiro Minatohara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Asumi Orihara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| | | | | | | | | | - Satoko Ueno
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | | | | | | | | | - Kenji Nagao
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Akihiko Kitamura
- Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Corresponding author. (M.H.); (A.K.)
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
- Corresponding author. (M.H.); (A.K.)
| |
Collapse
|
6
|
Sugashi T, Yuki H, Niizawa T, Takuwa H, Kanno I, Masamoto K. Three-dimensional microvascular network reconstruction from in vivo images with adaptation of the regional inhomogeneity in the signal-to-noise ratio. Microcirculation 2021; 28:e12697. [PMID: 33786951 DOI: 10.1111/micc.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Quantification of angiographic images with two-photon laser scanning fluorescence microscopy (2PLSM) relies on proper segmentation of the vascular images. However, the images contain inhomogeneities in the signal-to-noise ratio (SNR) arising from regional effects of light scattering and absorption. The present study developed a semiautomated quantification method for volume images of 2PLSM angiography by adjusting the binarization threshold according to local SNR along the vessel centerlines. METHODS A phantom model made with fluorescent microbeads was used to incorporate a region-dependent binarization threshold. RESULTS The recommended SNR for imaging was found to be 4.2-10.6 that provide the true size of imaged objects if the binarization threshold was fixed at 50% of SNR. However, angiographic images in the mouse cortex showed variable SNR up to 45 over the depths. To minimize the errors caused by variable SNR and a spatial extent of the imaged objects in an axial direction, the microvascular networks were three-dimensionally reconstructed based on the cross-sectional diameters measured along the vessel centerline from the XY-plane images with adapted binarization threshold. The arterial volume was relatively constant over depths of 0-500 µm, and the capillary volume (1.7% relative to the scanned volume) showed the larger volumes than the artery (0.8%) and vein (0.6%). CONCLUSIONS The present methods allow consistent segmentation of microvasculature by adapting the local inhomogeneity in the SNR, which will be useful for quantitative comparison of the microvascular networks, such as under disease conditions where SNR in the 2PLSM images varies over space and time.
Collapse
Affiliation(s)
- Takuma Sugashi
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
| | - Hiroya Yuki
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
| | - Tomoya Niizawa
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan
| | - Hiroyuki Takuwa
- Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Iwao Kanno
- Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Kazuto Masamoto
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan.,Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan.,Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
7
|
Nakagawa I, Park H, Kotsugi M, Myouchin K, Takeshima Y, Matsuda R, Yamada S, Park YS, Nakase H. Hypocapnia Induced by Hyperventilation with Indocyanine Green Kinetics Detects the Effect of Staged Carotid Angioplasty to Avoid Hyperperfusion in Patients with Impaired Cerebral Hemodynamic Reserve. Transl Stroke Res 2021; 13:77-87. [PMID: 33959854 DOI: 10.1007/s12975-021-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Cerebral hyperperfusion syndrome (CHS) is a serious complication following carotid artery stenting (CAS). Staged angioplasty (AP) could potentially prevent CHS and hyperperfusion phenomenon (HPP) after revascularization. However, methods for measuring the effects of staged AP on cerebral hemodynamic reserve have not been established. Here, we evaluated whether indocyanine green kinetics and near-infrared spectroscopy (ICG-NIRS) with hypocapnia induced by hyperventilation can detect the effects of staged AP on hemodynamic reserve to prevent CHS after CAS. Participants comprised 44 patients at high risk of CHS, whose ipsilateral cerebrovascular reactivity (CVR) was impaired on preoperative single photon emission computed tomography (SPECT). Patients were divided into a staged AP group (n=13) and a regular CAS group (n=31). In the staged AP group, stenting was performed 3 weeks after staged AP. In the regular CAS group, 16 cases (52%) showed HPP, and five (16%) presented with CHS after CAS, while no HPP or CHS occurred in the staged AP group (p=0.001). Changes in blood flow index (BFI) and time to peak (TTP) ratio during hypocapnia calculated from ICG-NIRS indicated a significant linear relationship with preprocedural CVR on SPECT (r=-0.710, 0.632, respectively; p<0.0001 each). BFI and TTP ratios during hypocapnia were significantly improved after staged AP (p<0.001 each). Furthermore, significant linear correlations were observed between BFI and TTP ratio during hypocapnia and postoperative asymmetry index AI (r=0.405, -0.475, respectively; p<0.01 each). Hypocapnia induced by hyperventilation under ICG-NIRS appears useful for detecting the effects of staged AP on hemodynamic reserve in patients at high risk of CHS.
Collapse
Affiliation(s)
- Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| | - HunSoo Park
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Masashi Kotsugi
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kaoru Myouchin
- Department of Radiology, Nara Medical University, Nara, Japan
| | - Yasuhiro Takeshima
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
8
|
Amin-Hanjani S, See AP, Du X, Rose-Finnell L, Pandey DK, Chen YF, Elkind MSV, Zipfel GJ, Liebeskind DS, Silver FL, Kasner SE, Gorelick PB, Charbel FT, Derdeyn CP. Natural History of Hemodynamics in Vertebrobasilar Disease: Temporal Changes in the VERiTAS Study Cohort. Stroke 2020; 51:3295-3301. [PMID: 33032489 DOI: 10.1161/strokeaha.120.029909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The role of regional hypoperfusion as a contributor to stroke risk in atherosclerotic vertebrobasilar disease has recently been confirmed by the observational VERiTAS (Vertebrobasilar Flow Evaluation and Risk of Transient Ischemic Attack and Stroke) Study. We examined the stability of hemodynamic status over time and its relationship to stroke risk in patients from this prospective cohort. METHODS VERiTAS enrolled patients with recently symptomatic ≥50% atherosclerotic stenosis/occlusion of vertebral and/or basilar arteries. Large vessel flow in the vertebrobasilar territory was assessed using quantitative magnetic resonance angiography, and patients were designated as low or normal flow based on distal territory regional flow, incorporating collateral capacity. Patients underwent standard medical management and follow-up for primary outcome event of vertebrobasilar territory stroke. Quantitative magnetic resonance angiography imaging was repeated at 6, 12, and 24 months. Flow status over time was examined relative to baseline and relative to subsequent stroke risk using a cause-specific proportional hazard model, with flow status treated as a time-varying covariate. Mean blood pressure was examined to assess for association with changes in flow status. RESULTS Over 19±8 months of follow-up, 132 follow-up quantitative magnetic resonance angiography studies were performed in 58 of the 72 enrolled patients. Of the 13 patients with serial imaging who had low flow at baseline, 7 (54%) had improvement to normal flow at the last follow-up. Of the 45 patients who had normal flow at baseline, 3 (7%) converted to low flow at the last follow-up. The mean blood pressure did not differ in patients with or without changes in flow status. The time-varying flow status remained a strong predictor of subsequent stroke (hazard ratio, 10.3 [95% CI, 2.2-48.7]). CONCLUSIONS There is potential both for improvement and worsening of hemodynamics in patients with atherosclerotic vertebrobasilar disease. Flow status, both at baseline and over time, is a risk factor for subsequent stroke, thus serving as an important prognostic marker. Registration: URL: https://clinicaltrials.gov. Unique identifier: NCT00590980.
Collapse
Affiliation(s)
- Sepideh Amin-Hanjani
- Department of Neurosurgery (S.A.-H., A.P.S., X.D., L.R.-F., F.T.C.), University of Illinois at Chicago
| | - Alfred P See
- Department of Neurosurgery (S.A.-H., A.P.S., X.D., L.R.-F., F.T.C.), University of Illinois at Chicago
| | - Xinjian Du
- Department of Neurosurgery (S.A.-H., A.P.S., X.D., L.R.-F., F.T.C.), University of Illinois at Chicago
| | - Linda Rose-Finnell
- Department of Neurosurgery (S.A.-H., A.P.S., X.D., L.R.-F., F.T.C.), University of Illinois at Chicago
| | - Dilip K Pandey
- Department of Neurology and Rehabilitation (D.K.P.), University of Illinois at Chicago
| | - Yi-Fan Chen
- Center for Clinical and Translational Science (Y.-F.C.), University of Illinois at Chicago
| | - Mitchell S V Elkind
- Departments of Neurology and Epidemiology, Columbia University, New York (M.S.V.E.)
| | - Gregory J Zipfel
- Departments of Neurosurgery and Neurology, Washington University in St Louis, MO (G.J.Z.)
| | - David S Liebeskind
- Department of Neurology, UCLA (University of California, Los Angeles) (D.S.L.)
| | - Frank L Silver
- Division of Neurology, Department of Medicine, University of Toronto, ON, Canada (F.L.S.)
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia (S.E.K.)
| | - Philip B Gorelick
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids (P.B.G.)
| | - Fady T Charbel
- Department of Neurosurgery (S.A.-H., A.P.S., X.D., L.R.-F., F.T.C.), University of Illinois at Chicago
| | - Colin P Derdeyn
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City (C.P.D.)
| | | |
Collapse
|
9
|
Nagai Y, Miyakawa N, Takuwa H, Hori Y, Oyama K, Ji B, Takahashi M, Huang XP, Slocum ST, DiBerto JF, Xiong Y, Urushihata T, Hirabayashi T, Fujimoto A, Mimura K, English JG, Liu J, Inoue KI, Kumata K, Seki C, Ono M, Shimojo M, Zhang MR, Tomita Y, Nakahara J, Suhara T, Takada M, Higuchi M, Jin J, Roth BL, Minamimoto T. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat Neurosci 2020; 23:1157-1167. [PMID: 32632286 DOI: 10.1038/s41593-020-0661-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/27/2020] [Indexed: 11/10/2022]
Abstract
The chemogenetic technology designer receptors exclusively activated by designer drugs (DREADDs) afford remotely reversible control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, sluggish kinetics, metabolic liabilities and potential off-target effects of CNO represent areas for improvement. Here, we provide a new high-affinity and selective agonist deschloroclozapine (DCZ) for muscarinic-based DREADDs. Positron emission tomography revealed that DCZ selectively bound to and occupied DREADDs in both mice and monkeys. Systemic delivery of low doses of DCZ (1 or 3 μg per kg) enhanced neuronal activity via hM3Dq within minutes in mice and monkeys. Intramuscular injections of DCZ (100 μg per kg) reversibly induced spatial working memory deficits in monkeys expressing hM4Di in the prefrontal cortex. DCZ represents a potent, selective, metabolically stable and fast-acting DREADD agonist with utility in both mice and nonhuman primates for a variety of applications.
Collapse
Affiliation(s)
- Yuji Nagai
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naohisa Miyakawa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kei Oyama
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Takuya Urushihata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi Fujimoto
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, NC, USA.
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
10
|
Urushihata T, Takuwa H, Seki C, Tachibana Y, Takahashi M, Kershaw J, Takado Y, Aoki I, Higuchi M, Ito H, Obata T. Water Diffusion in the Brain of Chronic Hypoperfusion Model Mice: A Study Considering the Effect of Blood Flow. Magn Reson Med Sci 2018; 17:318-324. [PMID: 29434092 PMCID: PMC6196298 DOI: 10.2463/mrms.mp.2017-0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: Chronic cerebral hypoperfusion model mice were created by unilateral common carotid artery occlusion (UCCAO) surgery, which does not cause cerebral infarction, but which does cause long-term reduction in cerebral blood flow (CBF) to the occluded side. Cognitive dysfunction in this mouse model has been demonstrated in behavioral experiments, but neuron density change was not found in a previous positron emission tomography (PET) study. As a next step, in this study we investigated the injury of neuronal fibers in chronic cerebral hypoperfusion model mice using diffusion tensor imaging (DTI). Methods: In diffusion-weighted imaging (DWI), not only the diffusion of water but also the capillary flow in the voxel, i.e., intravoxel incoherent motion (IVIM), contributes to the signal. Thus, we used DTI to evaluate DWI signal changes in the brains of chronic hypoperfusion model mice at 4 weeks after UCCAO while monitoring the possible influence of CBF change using arterial spin-labeling (ASL) MRI. Results: Simple t-tests indicated that there were significant differences in CBF between the control and occluded sides of the brain, but there was no significant difference for the mean diffusivity (MD) or fractional anisotropy (FA). However, as Pearson correlation analysis showed that MD was strongly correlated with CBF, analysis-of-covariance (ANCOVA) was then performed using CBF as a covariate and a significant difference in MD between the contra- and ipsilateral sides was found. Performing a similar procedure for the FA found no significant differences. Conclusion: The results suggest the injury of neuronal fibers due to chronic hypoperfusion. It is also suggested that CBF-related signal changes should be considered when DWI-based information is used for pathological diagnosis.
Collapse
Affiliation(s)
- Takuya Urushihata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology.,United Graduate School of Agricultural Science, Iwate University
| | - Hiroyuki Takuwa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Chie Seki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Yasuhiko Tachibana
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Manami Takahashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Jeff Kershaw
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Yuhei Takado
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University
| | - Takayuki Obata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
11
|
Derdeyn CP. Hemodynamics and oxygen extraction in chronic large artery steno-occlusive disease: Clinical applications for predicting stroke risk. J Cereb Blood Flow Metab 2018; 38:1584-1597. [PMID: 28925313 PMCID: PMC6125965 DOI: 10.1177/0271678x17732884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depending on the adequacy of collateral sources of blood flow, arterial stenosis or occlusion may lead to reduced perfusion pressure and ultimately reduced blood flow in the distal territory supplied by that vessel. There are two well-defined compensatory mechanisms to reduced pressure or flow - autoregulatory vasodilation and increased oxygen extraction fraction. Other changes, such as metabolic downregulation, are likely. The positive identification of autoregulatory vasodilation and increased oxygen extraction fraction in humans is an established risk factor for future ischemic stroke in some disease states such as atherosclerotic carotid stenosis and occlusion. The mechanisms by which ischemic stroke may occur are not clear, and may include an increased vulnerability to embolic events. The use of hemodynamic assessment to identify patients with occlusive vasculopathy at an increased risk for stroke is very appealing for several different patient populations, such as those with symptomatic intracranial atherosclerotic disease, moyamoya phenomenon, complete internal carotid artery occlusion, and asymptomatic cervical carotid artery stenosis. While there is very good data for stroke risk prediction in some of these groups, no intervention based on these tools has been proven effective yet. In this manuscript, we will review these topics above and identify areas for future research.
Collapse
Affiliation(s)
- Colin P Derdeyn
- Departments of Radiology and Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
12
|
Sato S, Kojima D, Shimada Y, Yoshida J, Fujimato K, Fujiwara S, Kobayashi M, Kubo Y, Yoshida K, Terasaki K, Tsutsui S, Miyoshi K, Ogasawara K. Preoperatively reduced cerebrovascular contractile reactivity to hypocapnia by hyperventilation is associated with cerebral hyperperfusion syndrome after arterial bypass surgery for adult patients with cerebral misery perfusion due to ischemic moyamoya disease. J Cereb Blood Flow Metab 2018; 38:1021-1031. [PMID: 29383984 PMCID: PMC5999000 DOI: 10.1177/0271678x18757621] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study examined whether preoperatively reduced cerebrovascular contractile reactivity to hypocapnia by hyperventilation is associated with development of cerebral hyperperfusion syndrome after arterial bypass surgery for adult patients with cerebral misery perfusion due to ischemic moyamoya disease. Among 65 adult patients with ischemic moyamoya disease, 19 had misery perfusion in the precentral region on preoperative 15O positron emission tomography and underwent arterial bypass surgery for that region. Brain technetium-99 m-labeled ethyl cysteinate dimer single-photon emission computed tomography (SPECT) was preoperatively performed with and without hyperventilation challenge and relative cerebrovascular contractile reactivity to hypocapnia (RCVCRhypocap) (%/mmHg) was calculated in the precentral region. Development of cerebral hyperperfusion syndrome was determined using perioperative changes of symptoms and brain N-isopropyl-p-[123I]-iodoamphetamine SPECT performed after surgery. RCVCRhypocap was significantly lower in the 6 patients with cerebral hyperperfusion syndrome (-2.85 ± 1.10%/mmHg) than in the 13 patients without cerebral hyperperfusion syndrome (0.18 ± 1.97%/mmHg; p = 0.0050). Multivariate analysis demonstrated low RCVCRhypocap as an independent predictor of cerebral hyperperfusion syndrome (95% confidence interval, 0.04-0.96; p = 0.0433). Preoperatively reduced cerebrovascular contractile reactivity to hypocapnia by hyperventilation is associated with development of cerebral hyperperfusion syndrome after arterial bypass surgery for adult patients with cerebral misery perfusion due to ischemic moyamoya disease.
Collapse
Affiliation(s)
- Shinpei Sato
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daigo Kojima
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan.,2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuyoshi Shimada
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan.,2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Jun Yoshida
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan.,2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kentaro Fujimato
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Shunrou Fujiwara
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masakazu Kobayashi
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan.,2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yoshitaka Kubo
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenji Yoshida
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazunori Terasaki
- 2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Shouta Tsutsui
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenya Miyoshi
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kuniaki Ogasawara
- 1 Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan.,2 Cyclotron Research Center, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
13
|
Takahashi M, Urushihata T, Takuwa H, Sakata K, Takado Y, Shimizu E, Suhara T, Higuchi M, Ito H. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow. Front Neurosci 2018; 11:723. [PMID: 29354026 PMCID: PMC5759369 DOI: 10.3389/fnins.2017.00723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI) can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF) alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.
Collapse
Affiliation(s)
- Manami Takahashi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Division of Thermo-Biosystem Relations, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazumi Sakata
- Division of Thermo-Biosystem Relations, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Cognitive Behavioral Therapy Center Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Ito
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|
15
|
Ito H, Takuwa H, Tajima Y, Kawaguchi H, Urushihata T, Taniguchi J, Ikoma Y, Seki C, Ibaraki M, Masamoto K, Kanno I. Changes in effective diffusivity for oxygen during neural activation and deactivation estimated from capillary diameter measured by two-photon laser microscope. J Physiol Sci 2017; 67:325-330. [PMID: 27344668 PMCID: PMC10718004 DOI: 10.1007/s12576-016-0466-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/14/2016] [Indexed: 12/15/2022]
Abstract
The relation between cerebral blood flow (CBF) and cerebral oxygen extraction fraction (OEF) can be expressed using the effective diffusivity for oxygen in the capillary bed (D) as OEF = 1 - exp(-D/CBF). The D value is proportional to the microvessel blood volume. In this study, changes in D during neural activation and deactivation were estimated from changes in capillary and arteriole diameter measured by two-photon microscopy in awake mice. Capillary and arteriole vessel diameter in the somatosensory cortex and cerebellum were measured under neural activation (sensory stimulation) and neural deactivation [crossed cerebellar diaschisis (CCD)], respectively. Percentage changes in D during sensory stimulation and CCD were 10.3 ± 7.3 and -17.5 ± 5.3 % for capillary diameter of <6 μm, respectively. These values were closest to the percentage changes in D calculated from previously reported human positron emission tomography data. This may indicate that thinner capillaries might play the greatest role in oxygen transport from blood to brain tissue.
Collapse
Affiliation(s)
- Hiroshi Ito
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Takuwa
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Yosuke Tajima
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroshi Kawaguchi
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takuya Urushihata
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Junko Taniguchi
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoko Ikoma
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chie Seki
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
| | - Kazuto Masamoto
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Center for Frontier Science and Engineering, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Iwao Kanno
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
16
|
Nishino A, Takuwa H, Urushihata T, Ito H, Ikoma Y, Matsuura T. Vasodilation Mechanism of Cerebral Microvessels Induced by Neural Activation under High Baseline Cerebral Blood Flow Level Results from Hypercapnia in Awake Mice. Microcirculation 2016; 22:744-52. [PMID: 26454149 DOI: 10.1111/micc.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We investigated the effects of the baseline CBF level at resting state on neurovascular coupling. METHODS Diameters of arterioles, capillaries, and venulas in awake mouse brain were measured by a two-photon microscope. Vasodilation in each of the cerebral vessels was caused by three experimental conditions: (1) sensory stimulation, (2) 5% CO2 inhalation (hypercapnia), (3) simultaneous exposure to sensory stimulation and 5% CO2 inhalation. CBF and CBV were also measured by a microscope and a CCD camera. RESULTS Increases in CBF and CBV were observed under all experimental conditions. After the increases in CBF and CBV due to hypercapnia, additional increases in CBF and CBV occurred during sensory stimulation. Diameter changes in arterioles were significantly larger than those in capillaries and venulas under both sensory stimulation and 5% CO2 inhalation. Additional vasodilation from sensory stimulation was observed under hypercapnia. The diameter change in each vessel type during sensory stimulation was maintained under simultaneous exposure to sensory stimulation and hypercapnia. CONCLUSIONS The diameter change of cerebral vessels during neural activation is reproducible regardless of whether baseline CBF has increased or not. Our finding directly demonstrates the concept of uncoupling between energy consumption and energy supply during cortical activation.
Collapse
Affiliation(s)
- Asuka Nishino
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroyuki Takuwa
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takuya Urushihata
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Ito
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Yoko Ikoma
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuya Matsuura
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.,Laboratory of Behavioral Physiology, Faculty of Engineering, Iwate University, Morioka, Japan
| |
Collapse
|
17
|
He XF, Lan Y, Zhang Q, Liu DX, Wang Q, Liang FY, Zeng JS, Xu GQ, Pei Z. Deferoxamine inhibits microglial activation, attenuates blood-brain barrier disruption, rescues dendritic damage, and improves spatial memory in a mouse model of microhemorrhages. J Neurochem 2016; 138:436-47. [PMID: 27167158 DOI: 10.1111/jnc.13657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages.
Collapse
Affiliation(s)
- Xiao-Fei He
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong-Xu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinmei Wang
- Key Laboratory on Assisted Circulation, Department of Cardiovascular Medicine, Ministry of Health, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng-Ying Liang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-Sheng Zeng
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Nishino A, Tajima Y, Takuwa H, Masamoto K, Taniguchi J, Wakizaka H, Kokuryo D, Urushihata T, Aoki I, Kanno I, Tomita Y, Suzuki N, Ikoma Y, Ito H. Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model. Sci Rep 2016; 6:25072. [PMID: 27116932 PMCID: PMC4846861 DOI: 10.1038/srep25072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/23/2016] [Indexed: 11/09/2022] Open
Abstract
We investigated the chronic effects of cerebral hypoperfusion on neuronal density and functional hyperemia using our misery perfusion mouse model under unilateral common carotid artery occlusion (UCCAO). Neuronal density evaluated 28 days after UCCAO using [(11)C]flumazenil-PET and histology indicated no neurologic deficit in the hippocampus and neocortex. CBF response to sensory stimulation was assessed using laser-Doppler flowmetry. Percentage changes in CBF response of the ipsilateral hemisphere to UCCAO were 18.4 ± 3.0%, 6.9 ± 2.8%, 6.8 ± 2.3% and 4.9 ± 2.4% before, and 7, 14 and 28 days after UCCAO, respectively. Statistical significance was found at 7, 14 and 28 days after UCCAO (P < 0.01). Contrary to our previous finding (Tajima et al. 2014) showing recovered CBF response to hypercapnia on 28 days after UCCAO using the same model, functional hyperemia was sustained and became worse 28 days after UCCAO.
Collapse
Affiliation(s)
- Asuka Nishino
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Yosuke Tajima
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Department of Neurosurgery, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu, Chiba 292-8535, Japan
| | - Hiroyuki Takuwa
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Kazuto Masamoto
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Brain Science Inspired Life Support Research Center, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Junko Taniguchi
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Daisuke Kokuryo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takuya Urushihata
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Ichio Aoki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Iwao Kanno
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Ikoma
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Hiroshi Ito
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
19
|
Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the determinants in maintaining the CBF homeostasis. PROGRESS IN BRAIN RESEARCH 2016; 225:77-97. [PMID: 27130412 DOI: 10.1016/bs.pbr.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain.
Collapse
Affiliation(s)
- I Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - K Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
20
|
Srinivasan VJ, Yu E, Radhakrishnan H, Can A, Climov M, Leahy C, Ayata C, Eikermann-Haerter K. Micro-heterogeneity of flow in a mouse model of chronic cerebral hypoperfusion revealed by longitudinal Doppler optical coherence tomography and angiography. J Cereb Blood Flow Metab 2015; 35:1552-60. [PMID: 26243708 PMCID: PMC4640323 DOI: 10.1038/jcbfm.2015.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022]
Abstract
Although microvascular dysfunction accompanies cognitive decline in aging, vascular dementia, and Alzheimer's disease, tools to study microvasculature longitudinally in vivo are lacking. Here, we use Doppler optical coherence tomography (OCT) and angiography for noninvasive, longitudinal imaging of mice with chronic cerebral hypoperfusion for up to 1 month. In particular, we optimized the OCT angiography method to selectively image red blood cell (RBC)-perfused capillaries, leading to a novel way of assessing capillary supply heterogeneity in vivo. After bilateral common carotid artery stenosis (BCAS), cortical blood flow measured by Doppler OCT dropped to half of baseline throughout the imaged tissue acutely. Microscopic imaging of the capillary bed with OCT angiography further revealed local heterogeneities in cortical flow supply during hypoperfusion. The number of RBC-perfused capillaries decreased, leading to increased oxygen diffusion distances in the days immediately after BCAS. Linear regression showed that RBC-perfused capillary density declined by 0.3% for a drop in flow of 1 mL/100 g per minute, and decreases in RBC-perfused capillary density as high as 25% were observed. Taken together, these results demonstrate the existence of local supply heterogeneity at the capillary level even at nonischemic global flow levels, and demonstrate a novel imaging method to assess this heterogeneity.
Collapse
Affiliation(s)
- Vivek J Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Esther Yu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Harsha Radhakrishnan
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Anil Can
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mihail Climov
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Conor Leahy
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
21
|
Sweet JG, Chan SL, Cipolla MJ. Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity. J Appl Physiol (1985) 2015; 119:817-23. [PMID: 26294749 DOI: 10.1152/japplphysiol.00467.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of hypertension and chronic hypoperfusion on brain parenchymal arteriole (PA) structure and function. PAs were studied isolated and pressurized from 18-wk-old Wistar-Kyoto (WKY18; n = 8) and spontaneously hypertensive stroke prone (SHRSP18; n = 8) and 5-wk-old prehypertensive (SHRSP5; n = 8) rats. In separate groups, unilateral common carotid artery occlusion (UCCAo) was performed for 4 wk to cause chronic hypoperfusion in 18-wk-old WKY (WKY18-CH; n = 8) and SHRSP (SHRSP18-CH; n = 8). UCCAo caused PAs to have significantly diminished myogenic tone (31 ± 3 vs. 14 ± 6% at 60 mmHg; P < 0.05) and reactivity to pressure from WKY18-CH vs. WKY18 animals. The effect of UCCAo was limited to normotensive animals, as there was little effect of chronic hypoperfusion on vascular reactivity or percent tone in PAs from SHRSP18 vs. SHRSP18-CH animals (53 ± 4 vs. 41 ± 3%; P > 0.05). However, PAs from SHRSP18 and SHRSP5 animals had significantly greater tone compared with WKY18, suggesting an effect of strain and not hypertension per se on PA vasoconstriction. Structurally, PAs from SHRSP18 and SHRSP5 animals had similar sized lumen diameters, but increased wall thickness and distensibility compared with WKY18. Interestingly, chronic hypoperfusion did not affect the structure of PAs from either WKY18-CH or SHRSP18-CH animals. Thus PAs responded to UCCAo with active vasodilation, but not structural remodeling, an effect that was absent in SHRSP. The increased tone of PAs from SHRSP animals, combined with lack of response to chronic hypoperfusion, may contribute to the propensity for ischemic lesions and increased perfusion deficit during hypertension.
Collapse
Affiliation(s)
- Julie G Sweet
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|