1
|
Yao L, Peng P, Ding T, Yi J, Liang J. m 6A-Induced lncRNA MEG3 Promotes Cerebral Ischemia-Reperfusion Injury Via Modulating Oxidative Stress and Mitochondrial Dysfunction by hnRNPA1/Sirt2 Axis. Mol Neurobiol 2024; 61:6893-6908. [PMID: 38358439 DOI: 10.1007/s12035-024-04005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Ischemic stroke remains one of the major causes of serious disability and death globally. LncRNA maternally expressed gene 3 (MEG3) is elevated in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes cells. The objective of this study is to investigate the mechanism underlying MEG3-regulated cerebral ischemia/reperfusion (I/R) injury. MCAO/R mouse model and OGD/R-treated HT-22 cell model were established. The cerebral I/R injury was monitored by TTC staining, neurological scoring, H&E and TUNEL assay. The levels of MEG3, hnRNPA1, Sirt2 and other key molecules were detected by qRT-PCR and western blot. Mitochondrial dysfunction was assessed by transmission Electron Microscopy (TEM), JC-1 and MitoTracker staining. Oxidative stress was monitored using commercial kits. Bioinformatics analysis, RIP, RNA pull-down assays and RNA FISH were employed to detect the interactions among MEG3, hnRNPA1 and Sirt2. The m6A modification of MEG3 was assessed by MeRIP-qPCR. MEG3 promoted MCAO/R-induced brain injury by modulating mitochondrial fragmentation and oxidative stress. It also facilitated OGD/R-induced apoptosis, mitochondrial dysfunction and oxidative stress in HT-22 cells. Mechanistically, direct associations between MEG3 and hnRNPA1, as well as between hnRNPA1 and Sirt2, were observed in HT-22 cells. MEG3 regulated Sirt2 expression in a hnRNPA1-dependent manner. Functional studies showed that MEG3/Sirt2 axis contributed to OGD/R-induced mitochondrial dysfunction and oxidative stress in HT-22 cells. Additionally, METTL3 was identified as the m6A transferase responsible for the m6A modification of MEG3. m6A-induced lncRNA MEG3 promoted cerebral I/R injury via modulating oxidative stress and mitochondrial dysfunction by hnRNPA1/Sirt2 axis.
Collapse
Affiliation(s)
- Ling Yao
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Pei Peng
- Department of Medicine Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, P.R. China
| | - Tao Ding
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Jing Yi
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Ji Liang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China.
| |
Collapse
|
2
|
Sola-Sevilla N, Puerta E. SIRT2 as a potential new therapeutic target for Alzheimer's disease. Neural Regen Res 2024; 19:124-131. [PMID: 37488853 PMCID: PMC10479864 DOI: 10.4103/1673-5374.375315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years, bringing a heavy burden to individuals and society due to the lack of an effective treatment. In this context, sirtuin 2, the sirtuin with the highest expression in the brain, has emerged as a potential therapeutic target for neurodegenerative diseases. This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology, microtubule stability, neuroinflammation, myelin formation, autophagy, and oxidative stress. The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease. However, its presence in different cell types and its enormous variety of substrates leads to apparently contradictory conclusions when it comes to understanding its specific functions. Further studies in sirtuin 2 research with selective sirtuin 2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target. This will contribute to the development of new treatment strategies, not only for Alzheimer's disease but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
3
|
Lu W, Hou D, Chen X, Zhong P, Liu X, Wu D. Elevated SIRT2 of serum exosomes is positively correlated with diagnosis of acute ischemic stroke patients. BMC Neurol 2023; 23:321. [PMID: 37684620 PMCID: PMC10485972 DOI: 10.1186/s12883-023-03348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Silent Information Regulator 2 (SIRT2) protein inhibition has been shown to play a neuroprotective role in acute ischemic stroke (AIS) in mice. However, its role in AIS patients has not been fully understood. In this study, we aimed to analyze SIRT2 protein expression in serum exosomes of AIS and non-AIS patients, and evaluate its potential role in diagnosis and prognosis of AIS. METHODS Serum exosomes from 75 non-AIS subjects and 75 AIS patients were isolated. The SIRT2 protein levels in exosomes were analyzed using enzyme linked immunosorbent assay (ELISA). The National Institutes of Health Stroke Scale (NIHSS) was used to evaluate the severity of the disease. The modified Rankin Scale (mRS) was employed to assess the functional outcomes of the patients at 3-months following stroke onset. RESULTS The SIRT2 protein concentration of serum exosomes were higher in AIS patients than non-AIS patients (p < 0.001). Furthermore, the receiver operative characteristic curve (ROC) demonstrated that higher serum exosome SIRT2 could differentiate AIS patients from non-AIS patients with a sensitivity of 81.3% and a specificity of 75.3%. The area under the curve was 0.838 (95% CI: 0.775, 0.902). Additionally, higher SIRT2 concentration of serum exosomes were associated with NIHSS ≥ 4 (p < 0.001) and mRS ≥ 3 (p = 0.025) in AIS patients. The ROC analysis showed SIRT2 could discriminate stroke with NIHSS ≥ 4 from mild stroke (NIHSS < 4) with a sensitivity of 75.0% and a specificity of 69.6%. The area under the curve was 0.771 (95% CI: 0.661,0.881). Similarly, the test showed SIRT2 could differentiate between AIS patients with mRS ≥ 3 from those with mRS < 3 with a sensitivity of 78.3% and a specificity of 51.9%. The area under the curve was 0.663 (95% CI: 0.531,0.796). The logistic regression analysis revealed that SIRT2 concentration in serum exosomes can independently predict the diagnosis of AIS (odd ratio = 1.394, 95%CI 1.231-1.577, p < 0.001) and higher NIHSS scores (≥ 4) (odd ratio = 1.258, 95%CI 1.084-1.460, p = 0.002). However, it could not independently predict the prognosis of AIS (odd ratio = 1.065, 95%CI 0.983-1.154, p = 0.125). CONCLUSION The elevation of SIRT2 in serum exosomes may be a valuable biomarker of AIS, which may be a potential diagnostic tool to facilitate decision making for AIS patients.
Collapse
Affiliation(s)
- Wenmei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, China
| | - Duanlu Hou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, China
| | - Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai Yangpu District Shidong Hospital, 999 Shiguang Road, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, China.
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, China.
| |
Collapse
|
4
|
Liu Y, Wang L, Yang G, Chi X, Liang X, Zhang Y. Sirtuins: Promising Therapeutic Targets to Treat Ischemic Stroke. Biomolecules 2023; 13:1210. [PMID: 37627275 PMCID: PMC10452362 DOI: 10.3390/biom13081210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke is a major cause of mortality and disability globally, with ischemic stroke (IS) accounting for over 80% of all stroke cases. The pathological process of IS involves numerous signal molecules, among which are the highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes known as sirtuins (SIRTs). SIRTs modulate various biological processes, including cell differentiation, energy metabolism, DNA repair, inflammation, and oxidative stress. Importantly, several studies have reported a correlation between SIRTs and IS. This review introduces the general aspects of SIRTs, including their distribution, subcellular location, enzyme activity, and substrate. We also discuss their regulatory roles and potential mechanisms in IS. Finally, we describe the current therapeutic methods based on SIRTs, such as pharmacotherapy, non-pharmacological therapeutic/rehabilitative interventions, epigenetic regulators, potential molecules, and stem cell-derived exosome therapy. The data collected in this study will potentially contribute to both clinical and fundamental research on SIRTs, geared towards developing effective therapeutic candidates for future treatment of IS.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China;
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| |
Collapse
|
5
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
6
|
Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol 2023; 14:1174180. [PMID: 37215138 PMCID: PMC10196137 DOI: 10.3389/fimmu.2023.1174180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuroinflammation and neuroimmunology-associated disorders, including ischemic stroke and neurodegenerative disease, commonly cause severe neurologic function deficits, including bradypragia, hemiplegia, aphasia, and cognitive impairment, and the pathological mechanism is not completely clear. SIRT2, an NAD+-dependent deacetylase predominantly localized in the cytoplasm, was proven to play an important and paradoxical role in regulating ischemic stroke and neurodegenerative disease. This review summarizes the comprehensive mechanism of the crucial pathological functions of SIRT2 in apoptosis, necroptosis, autophagy, neuroinflammation, and immune response. Elaborating on the mechanism by which SIRT2 participates in neuroinflammation and neuroimmunology-associated disorders is beneficial to discover novel effective drugs for diseases, varying from vascular disorders to neurodegenerative diseases.
Collapse
|
7
|
Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci 2022; 307:120870. [PMID: 35948118 DOI: 10.1016/j.lfs.2022.120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Sirtuins perform an important effect on the neural cell fate following stroke. Several mechanisms that have been correlated with stroke are oxidative stress, apoptosis, necrosis and autophagy. Autophagy is usually regarded as unitary of the neural cell survival mechanisms. Recently, the importance of the sirtuins effect on autophagy by antioxidant agents for stroke treatment mentioned in various studies. One of these agents is melatonin. Melatonin can modulate autophagy by changing on sirtuin pathways. Melatonin and its metabolites adjust various sirtuins pathways related to apoptosis, proliferation, metastases, autophagy and inflammation in case of stroke. In this review, we will discuss about the modulation of autophagy by melatonin via sirtuins in stroke.
Collapse
|
8
|
Eid M, Dzreyan V, Demyanenko S. Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol 2022; 13:782684. [PMID: 35574497 PMCID: PMC9092253 DOI: 10.3389/fphys.2022.782684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+- dependent histone deacetylases. They are involved in a variety of biological pathways and are thought to be a promising target for treating several human disorders. Although evidence is piling up to support the neuroprotective role of SIRTs in ischemic stroke, the role of different sirtuin isoforms needs further investigation. We studied the effects of photothrombotic stroke (PTS) on the expression and localization of sirtuins SIRT1 and SIRT2 in neurons and astrocytes of the penumbra and tested the activity of their selective and non-selective inhibitors. SIRT1 levels significantly decreased in the penumbra cells nuclei and increased in their cytoplasm. This indicated a redistribution of SIRT1 from the nucleus to the cytoplasm after PTS. The expression and intracellular distribution of SIRT1 were also observed in astrocytes. Photothrombotic stroke caused a sharp increase in SIRT2 levels in the cytoplasmic fraction of the penumbra neurons. SIRT2 was not expressed in the penumbra astrocytes. SIRT1 and SIRT2 did not co-localize with TUNEL-positive apoptotic cells. Mice were injected with EX-527, a selective SIRT1 inhibitor; SirReal2, selective SIRT2 inhibitor or salermide, a nonspecific inhibitor of SIRT1 and SIRT2. These inhibitors did not demonstrate any change in the infarction volume or the apoptotic index, compared to the control samples. The studies presented indicate the involvement of these sirtuins in the response of brain cells to ischemia in the first 24 h, but the alterations in their expression and change in the localization of SIRT1 are not related to the regulation of penumbra cell apoptosis in the acute period after PTS.
Collapse
Affiliation(s)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | |
Collapse
|
9
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
10
|
Sevoflurane Improves Hemorrhagic Shock and Resuscitation-Induced Cognitive Impairments and Mitochondrial Dysfunctions through SIRT1-Mediated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9771743. [PMID: 35528522 PMCID: PMC9068312 DOI: 10.1155/2022/9771743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (IRI) induced by hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Previous studies indicated the neuroprotective effect of sevoflurane postconditioning (SP) in cerebral IRI. However, the mechanisms still remain elusive. Cerebral IRI models with SP were established by using HSR with C57BL/6 mice (male, 3-month-old) in vivo and by using oxygen glucose deprivation and reoxygenation (OGD/R) with HT22 cells in vitro. Postoperative cognition was evaluated by the Morris water maze, novel object recognition, and elevated plus maze tests. The role of SIRT1 was determined by using siRNA, a sensitive inhibitor (EX527), or an overexpression shRNA-GFP lentivirus. IRI caused significant disabilities of spatial learning and memory associated with enhanced cerebral infarct and neuronal apoptosis, which were effectively attenuated by SP. IRI also made a significant decrease of SIRT1 accompanied by oxidative stress, mitochondria dysfunction, and inactivated autophagy. SP or genetically overexpressing SIRT1 significantly suppressed defective autophagy, mitochondrial oxidative injury, and neuronal death caused by HSR or OGD/R. However, genetic suppression or pharmacological inhibition of SIRT1 significantly reversed the impact of SP treatment on mitochondrial DNA transcription ability and autophagy. Our results demonstrate that the loss of SIRT1 causes a sequential chain of mitochondrial dysfunction, defective autophagy, and neuronal apoptosis after IRI in the preclinical stroke models. Sevoflurane postconditioning treatment could effectively attenuate pathophysiological signatures induced by noxious stimuli, which maybe mediated by SIRT1.
Collapse
|
11
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
12
|
Shao B, Zheng L, Shi J, Sun N. Acetylation of ANXA1 reduces caspase-3 activation by enhancing the phosphorylation of caspase-9 under OGD/R conditions. Cell Signal 2021; 88:110157. [PMID: 34601098 DOI: 10.1016/j.cellsig.2021.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
SIRT2, a Class III HDACs, aggravates cell damage and activates caspase-3 under oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) conditions. In this paper, we demonstrated the adverse effects of SIRT2 on cells after OGD/R attacks, which were mediated by increased interactions between SIRT2 and ANXA1, and explicated the mechanisms by which acetylated ANXA1 affects the activation and cleavage of caspase-3. We found that the acetylation level of ANXA1 was decreased through the its increased interactions with SIRT2 after the OGD/R insult. The lysine 312 residue (K312) was selected as the target site in ANXA1 because it is associated with SIRT2, and its mimic (K312Q) and silent (K312R) mutants were then established through site mutagenesis. Under OGD/R conditions, the acetylation mimic of K312Q ANXA1 accumulated in the cytoplasm, decreasing the activity levels of caspase-3 and the upstream initiator caspase-9, compared with the levels of WT and K312R ANXA1. Furthermore, K312Q ANXA1 intervened in the interactions of caspase-3 to caspase-9 by increasing the phosphorylation levels of caspase-9 and inhibited its cleavage by downregulating PRKAR2B, a regulatory subunit of protein kinase A (PKA). In this process, K312Q ANXA1 was found to be directly associated with PRKAR2B, diminishing its restriction on the catalytic subunit of PKA. In conclusion, acetylated ANXA1 can promote the phosphorylation of caspase-9 to decrease the activation of caspase-3 by enhancing the expression of a kinase upstream of caspase-9 after the OGD/R stimulation.
Collapse
Affiliation(s)
- Bin Shao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Yang X, Zhang Y, Geng K, Yang K, Shao J, Xia W. Sirt3 Protects Against Ischemic Stroke Injury by Regulating HIF-1α/VEGF Signaling and Blood-Brain Barrier Integrity. Cell Mol Neurobiol 2021; 41:1203-1215. [PMID: 32500353 PMCID: PMC11448646 DOI: 10.1007/s10571-020-00889-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Sirtuin 3 (Sirt3) is a member of the Sirtuin family proteins and known to regulate multiple physiological processes such as metabolism and aging. As stroke is an aging-related disease, in this work, we attempt to examine the role and potential mechanism of Sirt3 in regulating ischemic stroke by using a permanent middle cerebral artery occlusion (pMCAO) model in wild type (WT) and Sirt3 knockout (KO) mice, coupled with oxygen glucose deprivation (OGD) experiments in cultured primary astrocytes. Sirt3 deficiency aggravated neuronal cell apoptosis and neurological deficits after brain ischemia. In addition, Sirt3 KO mice showed more severe blood-brain barrier (BBB) disruption and inflammatory responses compared with WT group in the acute phase. Furthermore, specific overexpression of Sirt3 in astrocytes by injecting glial fibrillary acidic protein (GFAP)::Sirt3 virus in ischemic region showed protective effect against stroke-induced damage. Mechanistically, Sirt3 could regulate vascular endothelial growth factor (VEGF) expression by inhibiting hypoxia inducible factor-1α (HIF-1α) signaling after ischemia (OGD). Our results have shown that Sirt3 plays a protective role in ischemic stroke via regulating HIF-1α/VEGF signaling in astrocytes, and reversal of the Sirt3 expression at the acute phase could be a worthy direction for stroke therapy.
Collapse
Affiliation(s)
- Xiao Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yanshuang Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Keyi Geng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxiang Shao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- Med-X Research Institute, Shanghai Jiao Tong University, Room 211, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
14
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Zhang Y, Yan Q, Zhang Y. Overexpression of sirtuin 2 and its association with prognosis in acute ischemic stroke patients. J Clin Lab Anal 2021; 35:e23707. [PMID: 33616302 PMCID: PMC8059742 DOI: 10.1002/jcla.23707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to investigate the correlation of sirtuin 2 (SIRT2) with acute ischemic stroke (AIS) risk, severity, inflammation, and prognosis. Methods A hundred and sixty‐four first episode AIS patients and 164 age and gender matched non‐AIS patients with high‐stroke‐risk factors (controls) were enrolled. Peripheral blood was collected and serum was separated for SIRT2 and pro‐inflammatory cytokines detection by enzyme‐linked immunosorbent assay. AIS patients were continually followed up to 36 months or death, then recurrence‐free survival (RFS) and overall survival (OS) were calculated. Results Serum SIRT2 expression was increased in AIS patients compared to controls (p < 0.001), then receiver operative characteristic curve disclosed that the serum SIRT2 expression could differentiate AIS patients from controls with a good area under curve of 0.890 (95%CI: 0.854–0.926), a sensitivity of 78.7% and a specificity of 91.5% at the best cut‐off point. Serum SIRT2 expression was positively correlated with National Institute of Health stroke scale score (p < 0.001), serum tumor necrosis factor‐α (p < 0.001), interleukin (IL)‐6 (p = 0.012) and IL‐17 (p < 0.001) expressions in AIS patients. In addition, serum SIRT2 expression was elevated in recurrent/dead AIS patients compared to non‐recurrent/dead AIS patients (p = 0.025), and was also increased in dead AIS patients compared to survivors (p = 0.006). Moreover, RFS (p = 0.029) and OS (p = 0.049) were both worse in AIS patients with SIRT2 high expression compared to AIS patients with SIRT2 low expression. Conclusion SIRT2 may serve as a marker for AIS risk and prognosis in clinical practice.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianfeng Yan
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Sherin F, Gomathy S, Antony S. Sirtuin3 in Neurological Disorders. Curr Drug Res Rev 2020; 13:140-147. [PMID: 33290206 DOI: 10.2174/2589977512666201207200626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).
Collapse
Affiliation(s)
- Farhath Sherin
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - S Gomathy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - Shanish Antony
- Department of Pharmacy, Govt. Medical College of Pharmaceutical Sciences, Kerala University of Health Sciences, Kottayam, . India
| |
Collapse
|
17
|
Localization and Expression of Sirtuins 1, 2, 6 and Plasticity-Related Proteins in the Recovery Period after a Photothrombotic Stroke in Mice. J Stroke Cerebrovasc Dis 2020; 29:105152. [PMID: 32912518 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sirtuins, class III histone deacetylases, are involved in the regulation of tissue repair processes and brain functions after a stroke. The ability of some isoforms of sirtuins to circulate between the nucleus and cytoplasm may have various pathophysiological effects on the cells. In present work, we focused on the role of non-mitochondrial sirtuins SIRT1, SIRT2, and SIRT6 in the restoration of brain cells following ischemic stroke. Here, using a photothrombotic stroke (PTS) model in mice, we studied whether local stroke affects the level and intracellular localization of SIRT1, SIRT2, and SIRT6 in neurons and astrocytes of the intact cerebral cortex adjacent to the ischemic ipsilateral hemisphere and in the analogous region of the contralateral hemisphere at different time points during the recovery period after a stroke. We evaluated the co-localization of sirtuins with growth-associated protein-43 (GAP-43), the presynaptic marker synaptophysin (SYN) and acetylated α-tubulin (Ac-α-Tub), that are associated with brain plasticity and are known to be involved in brain repair after a stroke. The results show that during the recovery period, an increase in SIRT1 and SIRT2 levels occurred. The increase of SIRT1 level was associated with an increase in synaptic plasticity proteins, whereas the increase of SIRT2 level was associated with an acetylated of α-tubulin, that can reduce the mobility of neurites. SIRT6 co-localized with GAP-43, but not with SYN. Moreover, we showed that SIRT1, SIRT2, and SIRT6 are not involved in the PTS-induced apoptosis of penumbra cells. Taken together, our results suggest that sirtuins functions differ depending on cell type, intracellular localization, specificity of sirtuins isoforms to different substrates and nature of post-translational modifications of enzymes.
Collapse
|
18
|
Heinonen T, Ciarlo E, Rigoni E, Regina J, Le Roy D, Roger T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front Immunol 2019; 10:2713. [PMID: 31849939 PMCID: PMC6901967 DOI: 10.3389/fimmu.2019.02713] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sirtuin 2 (SIRT2) and SIRT3 are cytoplasmic and mitochondrial NAD-dependent deacetylases. SIRT2 and SIRT3 target proteins involved in metabolic, proliferation and inflammation pathways and have been implicated in the pathogenesis of neurodegenerative, metabolic and oncologic disorders. Both pro- and anti-inflammatory effects have been attributed to SIRT2 and SIRT3, and single deficiency in SIRT2 or SIRT3 had minor or no impact on antimicrobial innate immune responses. Here, we generated a SIRT2/3 double deficient mouse line to study the interactions between SIRT2 and SIRT3. SIRT2/3−/− mice developed normally and showed subtle alterations of immune cell populations in the bone marrow, thymus, spleen, blood and peritoneal cavity that contained notably more anti-inflammatory B-1a cells and less NK cells. In vitro, SIRT2/3−/− macrophages favored fatty acid oxidation (FAO) over glycolysis and produced increased levels of both proinflammatory and anti-inflammatory cytokines. In line with metabolic adaptation and increased numbers of peritoneal B-1a cells, SIRT2/3−/− mice were robustly protected from endotoxemia. Yet, SIRT2/3 double deficiency did not modify endotoxin tolerance. Overall, these data suggest that sirtuins can act in concert or compensate each other for certain immune functions, a parameter to be considered for drug development. Moreover, inhibitors targeting multiple sirtuins developed for clinical purposes may be useful to treat inflammatory diseases.
Collapse
Affiliation(s)
- Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersilia Rigoni
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Regina
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
20
|
Liu S, Zhou Z, Zhang L, Meng S, Li S, Wang X. Inhibition of SIRT2 by Targeting GSK3β-Mediated Phosphorylation Alleviates SIRT2 Toxicity in SH-SY5Y Cells. Front Cell Neurosci 2019; 13:148. [PMID: 31105527 PMCID: PMC6492038 DOI: 10.3389/fncel.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Sirtuin 2 (SIRT2) is thought to be important in the pathogenesis of Parkinson’s disease (PD), and the inhibition of SIRT2 rescues α-synuclein toxicity in a cellular model of PD. Recent studies have focused on identifying inhibitors of SIRT2, but little is known about the processes that directly regulate its function. GSK3β is a serine/threonine protein kinase that affects a wide range of biological functions, and it is localized in Lewy bodies (LBs). Therefore, we investigated whether SIRT2 is regulated by GSK3β and enhances cell death in PD. In the present study, Western blot showed that total SIRT2 levels did not change noticeably in a cellular model of PD but that SIRT2 phosphorylation was increased, and GSK3β activity was elevated. In addition, mass spectrometry (MS) studies indicated that SIRT2 was phosphorylated by GSK3β at three specific sites. Phospho- or dephospho-mimicking studies demonstrated that this postmodification (phosphorylation) increased SIRT2 toxicity in SH-SY5Y cells. Collectively, our findings identify a posttranslational mechanism that controls SIRT2 function in PD and provide evidence for a novel regulatory pathway involving GSK3β, SIRT2, and α-synuclein.
Collapse
Affiliation(s)
- Shuhu Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhihua Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siying Meng
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, Chung S, Karpurapu M, Park GY, Christman JW, Ballinger MN. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019; 4:124710. [PMID: 30668546 PMCID: PMC6478424 DOI: 10.1172/jci.insight.124710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Collapse
Affiliation(s)
- Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Brenda F. Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Derrick Herman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Adam Streicher
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Joshua A. Englert
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Gye Young Park
- Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W. Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Megan N. Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|
22
|
Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, Chen G. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res 2019; 97:645-660. [PMID: 30600840 DOI: 10.1002/jnr.24385] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Even though ischemic stroke is among the leading causes of death worldwide, the pathogenic mechanisms underlying ischemia reperfusion (I/R) brain injury remain unclear. Gasdermin D (GSDMD), as an important factor of pyroptotic death execution downstream of caspase-11 (noncanonical inflammasome) and caspase-1 (canonical inflammasome), may be implicated in I/R injury. The current study aimed to investigate the role and possible underlying mechanisms of GSDMD in pyroptosis during I/R injury. Results indicated that the nucleotide-binding oligomerization domain-like receptors (NLR family) pyrin domain containing 3 (NLRP3) inflammasomes were assembled and activated after middle cerebral artery occlusion/reperfusion (MCAO/R), leading to increased levels of IL-1β and IL-18. Additionally, GSDMD levels were elevated, and its N-terminal fragment (GSDMD-N) was cleaved to induce pyroptosis after MCAO/R, which was partly dependent on caspase-1 activation and its Asp280 amino acid site. Furthermore, it was found that GSDMD-N could bind to membrane lipids and exhibit membrane-disrupting cytotoxicity, depending on its Glu15 and Leu156 amino acid sites. Nevertheless, the C-terminal fragment of gasdermin (GSDMD-C) exhibited an auto-inhibitory effect on GSDMD-N-induced pyroptosis via binding to GSDMD in the cytoplasm. Taken together, this information suggests that GSDMD may participate in caspase-1-mediated pyroptosis during I/R injury both in vivo and in vitro, which could be a potential therapeutic target to reduce brain I/R injury.
Collapse
Affiliation(s)
- Dongping Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Qian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
24
|
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 2018; 27:205-212. [PMID: 27997059 DOI: 10.1111/bpa.12476] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Inflammation plays a key role across the time course of stroke, from onset to the post-injury reparative phase days to months later. Several regulatory molecules are implicated in inflammation, but the most established inflammatory mediator of acute brain injury is the cytokine interleukin-1. Interleukin-1 is regulated by large, macromolecular complexes called inflammasomes, which play a central role in cytokine release and cell death. In this review we highlight recent advances in inflammasome research and propose key roles for inflammasome components in the progression of stroke damage.
Collapse
Affiliation(s)
- Jack Barrington
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
25
|
Wu D, Lu W, Wei Z, Xu M, Liu X. Neuroprotective Effect of Sirt2-specific Inhibitor AK-7 Against Acute Cerebral Ischemia is P38 Activation-dependent in Mice. Neuroscience 2018; 374:61-69. [PMID: 29382550 DOI: 10.1016/j.neuroscience.2018.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/29/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia is the most common cause of stroke with high morbidity, disability and mortality. Sirtuin-2 (Sirt2), a vitally important NAD+-dependent deacetylase which has been widely researched in central nervous system diseases, has also been identified as a promising treatment target using its specific inhibitors such as AK-7. In this study, we found that P38 was specifically activated after focal cerebral ischemic injury, and it was also significantly activated after AK-7 administration in a concentration-dependent manner in vitro and in vivo. AK-7 decreased the infarction volume remarkably and promoted the recovery of neurological function efficiently in the mice evaluated by behavior tests. In contrast, pP38 inhibition increased the infarct volume and exacerbated the symptoms of paralysis. Herein, we suggest AK-7 improves the outcome of brain ischemia in dependence on the P38 activation in mice, which may serve as a strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Danhong Wu
- Department of Neurology, The Affiliated Shanghai NO.10 People's Hospital, Nanjing Medical University, 301 Yanchang Road, Shanghai 200072, China; Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China; Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Wenmei Lu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China; Department of Neurology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Zhenyu Wei
- Department of Neurology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Ming Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China.
| | - Xueyuan Liu
- Department of Neurology, The Affiliated Shanghai NO.10 People's Hospital, Nanjing Medical University, 301 Yanchang Road, Shanghai 200072, China; Department of Neurology, Shanghai Tenth People's Hospital of Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
26
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Overexpression of SIRT2 Alleviates Neuropathic Pain and Neuroinflammation Through Deacetylation of Transcription Factor Nuclear Factor-Kappa B. Inflammation 2017; 41:569-578. [DOI: 10.1007/s10753-017-0713-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Fourcade S, Morató L, Parameswaran J, Ruiz M, Ruiz‐Cortés T, Jové M, Naudí A, Martínez‐Redondo P, Dierssen M, Ferrer I, Villarroya F, Pamplona R, Vaquero A, Portero‐Otín M, Pujol A. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell 2017; 16:1404-1413. [PMID: 28984064 PMCID: PMC5676070 DOI: 10.1111/acel.12682] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a member of a family of NAD+‐dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle‐aged, 13‐month‐old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2−/− mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Laia Morató
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Tatiana Ruiz‐Cortés
- Biogenesis Research Group Agrarian Sciences Faculty University of Antioquia Medellin Colombia
| | - Mariona Jové
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Alba Naudí
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Paloma Martínez‐Redondo
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC) Bellvitge Biomedical Research Institute (IDIBELL) 08908 L'Hospitalet de Llobregat, Barcelona Spain
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Department of Experimental and Health Sciences Universidad Pompeu Fabra Barcelona Spain
- CIBERER U716 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Isidre Ferrer
- Institute of Neuropathology University of Barcelona L'Hospitalet de Llobregat, Barcelona Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) ISCIII Madrid Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology University of Barcelona Av. Diagonal 643 08028 Barcelona, Catalonia Spain
- The Institute of Biomedicine of the University of Barcelona (IBUB) Barcelona Spain
- Center for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBEROBN) Barcelona Spain
| | - Reinald Pamplona
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC) Bellvitge Biomedical Research Institute (IDIBELL) 08908 L'Hospitalet de Llobregat, Barcelona Spain
| | - Manel Portero‐Otín
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
- Catalan Institution of Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
29
|
Tang BL. Could Sirtuin Activities Modify ALS Onset and Progression? Cell Mol Neurobiol 2017; 37:1147-1160. [PMID: 27942908 PMCID: PMC11482121 DOI: 10.1007/s10571-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
30
|
Ciarlo E, Heinonen T, Théroude C, Herderschee J, Mombelli M, Lugrin J, Pfefferlé M, Tyrrell B, Lensch S, Acha-Orbea H, Le Roy D, Auwerx J, Roger T. Sirtuin 2 Deficiency Increases Bacterial Phagocytosis by Macrophages and Protects from Chronic Staphylococcal Infection. Front Immunol 2017; 8:1037. [PMID: 28894448 PMCID: PMC5581327 DOI: 10.3389/fimmu.2017.01037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 2 (SIRT2) is one of the seven members of the family of NAD+-dependent histone deacetylases. Sirtuins target histones and non-histone proteins according to their subcellular localization, influencing various biological processes. SIRT2 resides mainly in the cytoplasm and regulates cytoskeleton dynamics, cell cycle, and metabolic pathways. As such, SIRT2 has been implicated in the pathogenesis of neurodegenerative, metabolic, oncologic, and chronic inflammatory disorders. This motivated the development of SIRT2-directed therapies for clinical purposes. However, the impact of SIRT2 on antimicrobial host defense is largely unknown. Here, we address this question using SIRT2 knockout mice. We show that SIRT2 is the most highly expressed sirtuin in myeloid cells, especially macrophages. SIRT2 deficiency does not affect immune cell development and marginally impacts on intracellular signaling and cytokine production by splenocytes and macrophages. However, SIRT2 deficiency enhances bacterial phagocytosis by macrophages. In line with these observations, in preclinical models, SIRT2 deficiency increases survival of mice with chronic staphylococcal infection, while having no effect on the course of toxic shock syndrome toxin-1, LPS or TNF-induced shock, fulminant Escherichia coli peritonitis, sub-lethal Klebsiella pneumoniae pneumonia, and chronic candidiasis. Altogether, these data support the safety profile of SIRT2 inhibitors under clinical development in terms of susceptibility to infections.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Jacobus Herderschee
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Matteo Mombelli
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Jérôme Lugrin
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Marc Pfefferlé
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Beatrice Tyrrell
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Sarah Lensch
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| |
Collapse
|
31
|
She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017; 8:10.1007/s12975-017-0544-4. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is one of the leading causes of death worldwide. It is characterized by a sudden disruption of blood flow to the brain causing cell death and damage, which will lead to neurological impairments. In the current state, only one drug is approved to be used in clinical setting and new therapies that confer ischemic neuroprotection are desperately needed. Several targets and pathways have been indicated to be neuroprotective in ischemic stroke, among which the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases has emerged as important modulators of several processes in the normal physiology and pathological conditions such as stroke. Recent studies have identified some members of the sirtuin family are able to ameliorate the devastating consequences of ischemic stroke by conferring neuroprotection by means of reducing neuronal cell death, oxidative stress, and neuroinflammation whereas some sirtuins are found to be detrimental in the pathophysiology of ischemic stroke. This review summarizes implications of sirtuins in ischemic stroke and the experimental evidences that demonstrate the potential of sirtuin modulators as neuroprotective therapy for ischemic stroke.
Collapse
Affiliation(s)
- David T She
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
32
|
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem Res 2016; 42:876-890. [PMID: 27882448 PMCID: PMC5357501 DOI: 10.1007/s11064-016-2110-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD+ levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD+-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Przemysław Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland.
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| |
Collapse
|
33
|
Narne P, Pandey V, Simhadri PK, Phanithi PB. Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. Semin Cell Dev Biol 2016; 63:154-166. [PMID: 27867042 DOI: 10.1016/j.semcdb.2016.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Parimala Narne
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Praveen Kumar Simhadri
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Prakash Babu Phanithi
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
34
|
Tang BL. Sirtuins as modifiers of Parkinson's disease pathology. J Neurosci Res 2016; 95:930-942. [DOI: 10.1002/jnr.23806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore; Singapore
| |
Collapse
|
35
|
SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice. Neurochem Res 2016; 41:2490-500. [DOI: 10.1007/s11064-016-1981-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023]
|
36
|
Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Exp Neurol 2015; 275 Pt 1:78-83. [PMID: 26522013 DOI: 10.1016/j.expneurol.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sirtuins (Sirt) are a class of deacetylase enzymes that play an important role in cell proliferation. Sirt2 activation produces O-acetylated-ADPribose (OAADPr) which can act as a ligand for transient receptor potential cation channel, M2 (TRPM2). We tested the hypothesis that Sirt2 is activated following global cerebral ischemia and contributes to neuronal injury through activation of TRPM2. METHODS Adult male and female mice (8-12 weeks old) C57Bl/6 and TRPM2 knock-out mice were subjected to 8 min of cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). The Sirt2 inhibitor AGK-2 was administered intravenously 30 min after resuscitation. Hippocampal CA1 injury was analyzed at 3 days after CA/CPR. Acute Sirt2 activity was analyzed at 3 and 24 h after CA/CPR. Long-term hippocampal function was assessed using slice electrophysiology 7 days after CA/CPR. RESULTS AGK-2 significantly reduced CA1 injury in WT but not TRPM2 knock-out males and had no effect on CA1 injury in females. Elevated Sirt2 activity was observed in hippocampal tissue from males at 24 h after cardiac arrest and was reduced by AGK-2. In contrast, Sirt2 activity in females was increased at 3 but not 24 h. Finally, we observed long-term benefit of AGK-2 on hippocampal function, with a protection of long-term potentiation at CA1 synapses at 7 and 30 days after ischemia. CONCLUSIONS In summary, we observed a male specific activation of Sirt2 that contributes to neuronal injury and functional deficits after ischemia specifically in males. These results are consistent with a role of Sirt2 in activating TRPM2 following global ischemia in a sex specific manner. These results support the growing body of literature showing that oxidative stress mechanisms predominate in males and converge on TRPM2 activation as a mediator of cell death.
Collapse
|