1
|
Terrado-Ortuño N, May P. Forensic DNA phenotyping: a review on SNP panels, genotyping techniques, and prediction models. Forensic Sci Res 2025; 10:owae013. [PMID: 39990695 PMCID: PMC11843099 DOI: 10.1093/fsr/owae013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2025] Open
Abstract
In the past few years, forensic DNA phenotyping has attracted a strong interest in the forensic research. Among the increasing publications, many have focused on testing the available panels to infer biogeographical ancestry on less represented populations and understanding the genetic mechanisms underlying externally visible characteristics. However, there are currently no publications that gather all the existing panels limited to forensic DNA phenotyping and discuss the main technical limitations of the technique. In this review, we performed a bibliographic search in Scopus database of phenotyping-related literature, which resulted in a total of 48, 43, and 15 panels for biogeographical ancestry, externally visible characteristics, and both traits inference, respectively. Here we provide a list of commercial and non-commercial panels and the limitations regarding the lack of harmonization in terms of terminology (i.e., categorization and measurement of traits) and reporting, the lack of genetic knowledge and environment influence to select markers and develop panels, and the debate surrounding the selection of genotyping technologies and prediction models and algorithms. In conclusion, this review aims to be an updated guide and to present an overview of the current related literature.
Collapse
Affiliation(s)
- Nuria Terrado-Ortuño
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Gelmi MC, Houtzagers LE, Wierenga APA, Versluis M, Heijmans BT, Luyten GPM, de Knijff P, Te Raa M, de Leeuw RH, Jager MJ. Survival in Patients with Uveal Melanoma Is Linked to Genetic Variation at HERC2 Single Nucleotide Polymorphism rs12913832. Ophthalmology 2025; 132:299-308. [PMID: 39245076 DOI: 10.1016/j.ophtha.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE Uveal melanoma (UM) is a rare disease, with the highest incidence in people with fair skin and light eyes. Eye color is largely genetically determined and is defined by a set of single nucleotide polymorphisms (SNPs). We set out to determine whether we could identify a SNP related to prognosis. DESIGN We sequenced DNA from peripheral blood mononuclear cells of 392 patients with UM and obtained the genotype of 6 common eye color-related SNPs. Clinical and histopathologic tumor characteristics, tumor chromosome status, and patient survival were compared among patients with different genotypes. PARTICIPANTS Three hundred ninety-two patients who underwent enucleation for UM at the Leiden University Medical Center, Leiden, The Netherlands. METHODS We isolated DNA from peripheral blood leukocytes of 392 patients with UM and performed sequencing, using 6 eye color SNPs from the HIrisPlex-S assay (Erasmus MC, Walsh lab). The genotypes extracted from the sequencing data were uploaded onto the HIrisPlex webtool (https://hirisplex.erasmusmc.nl/) for eye color prediction. We tested the association of eye color SNPs with tumor characteristics and chromosome aberrations using Pearson's chi-square test and the Mann-Whitney U test and evaluated survival with Kaplan-Meier curves with the log-rank test and Cox regression. MAIN OUTCOME MEASURES Uveal melanoma-related survival. RESULTS Of 392 patients with analyzable genotype data, 307 patients (78%) were assigned blue eyes, 74 patients (19%) were assigned brown eyes, and 11 patients (3%) could not be assigned to either blue or brown. Patients with a genetically blue eye color showed worse survival (P = 0.04). This was related to 1 genotype: patients with the G/G genotype of rs12913832 (HERC2), which codes for blue eye color showed a worse prognosis (P = 0.017) and more often had high-risk tumors (monosomy of chromosome 3; P = 0.04) than in patients with an A/G or A/A genotype. CONCLUSIONS The G/G genotype of rs12913832 (HERC2), which is related to blue eye color, not only is a genetic factor related to the risk of UM develop, but also is linked to a worse prognosis because of an association with a higher risk of a high-risk UM developing (carrying monosomy of chromosome 3). FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurien E Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marije Te Raa
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rick H de Leeuw
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Brancato D, Bruno F, Coniglio E, Sturiale V, Saccone S, Federico C. The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int J Mol Sci 2024; 25:6602. [PMID: 38928306 PMCID: PMC11204186 DOI: 10.3390/ijms25126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (F.B.); (E.C.); (V.S.); (C.F.)
| | | |
Collapse
|
4
|
Huo L, Zhang X, Pang Y, Qi Y, Ren S, Wu F, Shang Y, Xi J. Expression and Mutation of SLC45A2 Affects Iris Color in Quail. J Poult Sci 2024; 61:2024015. [PMID: 38818526 PMCID: PMC11130394 DOI: 10.2141/jpsa.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Iris color is a prominent phenotypic feature of quail. To understand the mechanism of melanin deposition related to quail iris color, iris tissues were selected from Beijing white and Chinese yellow quail for transcriptome analysis. Differentially expressed genes (DEGs) associated with pigmentation were identified using RNA sequencing and validated by quantitative real-time polymerase chain reaction (RT-qPCR). The identified single nucleotide polymorphisms were studied using bioinformatics and iris color correlation analyses. A total of 485 DEGs were obtained, with 223 upregulated and 262 downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Thirty-two genes were annotated using the GO database. Three important pigment synthesis pathways (Notch signaling, melanogenesis, and tyrosine metabolism) were identified in quail iris tissue (P < 0.05). The expression levels of solute carrier family 45 member 2 (SLC45A2), tyrosinase-related protein 1, vitamin D receptor, opsin 5, and docking protein 5 were significantly different between Beijing white and Chinese yellow quail, as verified by RT-qPCR. The c.1061C>T mutation in SLC45A2, which caused a single amino acid change at position 354 (threonine to methionine), was significantly associated with iris color in Beijing white and Chinese yellow quail, and might be the main reason for the different iris colors between these two quail species.
Collapse
Affiliation(s)
- Linke Huo
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Shiwei Ren
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| |
Collapse
|
5
|
Xie Z, Zhang T, Kim S, Lu J, Zhang W, Lin CH, Wu MR, Davis A, Channa R, Giancardo L, Chen H, Wang S, Chen R, Zhi D. iGWAS: Image-based genome-wide association of self-supervised deep phenotyping of retina fundus images. PLoS Genet 2024; 20:e1011273. [PMID: 38728357 PMCID: PMC11111076 DOI: 10.1371/journal.pgen.1011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.
Collapse
Affiliation(s)
- Ziqian Xie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tao Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wanheng Zhang
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Cheng-Hui Lin
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Man-Ru Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Davis
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Luca Giancardo
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Han Chen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sui Wang
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
6
|
Gelmi MC, Jager MJ. Uveal melanoma: Current evidence on prognosis, treatment and potential developments. Asia Pac J Ophthalmol (Phila) 2024; 13:100060. [PMID: 38641203 DOI: 10.1016/j.apjo.2024.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
Uveal Melanoma (UM) is a rare disease, yet it is the most common primary intraocular malignancy in adult patients. Despite continuous advancements and research, the risk of metastasis remains high. It is possible to stratify patients according to their risk of metastases using a variety of known risk factors. Even though there is no gold standard for the prognostication of patients with uveal melanoma, it is becoming increasingly clear that combining histo-pathological, patient-related and molecular prognostic markers allows a more accurate prediction of the metastatic risk than by using one parameter. Primary UM in the eye are treated very effectively with eye-sparing radiation-based techniques or enucleation. However, it is not yet possible to prevent or treat metastases with the current therapeutic options. Nonetheless, the efforts to find new therapeutic targets continue and progress is being made, especially in the field of targeted therapy, as exemplified by the anti-gp100 bispecific molecule Tebentafusp. This review delves into the history of uveal melanoma, its incidence, presentation and diagnosis, the known prognostic factors and the treatment options, both for the primary tumour and for metastases. We show that different populations may have different risks for developing UM, and that each country should evaluate their own patients.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Ortega LA, Aragon-Carvajal DM, Cortes-Corso KT, Forero-Castillo F. Early developmental risks for tobacco addiction: A probabilistic epigenesis framework. Neurosci Biobehav Rev 2024; 156:105499. [PMID: 38056543 DOI: 10.1016/j.neubiorev.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Considerable progress has been made in elucidating the relationships between early life psychobiological and environmental risk factors and the development of tobacco addiction. However, a comprehensive understanding of the heterogeneity in tobacco addiction phenotypes requires integrating research findings. The probabilistic epigenesis meta-theory offers a valuable framework for this integration, considering systemic, multilevel, developmental, and evolutionary perspectives. In this paper, we critically review relevant research on early developmental risks associated with tobacco addiction and highlight the integrative heuristic value of the probabilistic epigenesis framework for this research. For this, we propose a four-level systems approach as an initial step towards integration, analyzing complex interactions among different levels of influence. Additionally, we explore a coaction approach to examine key interactions between early risk factors. Moreover, we introduce developmental pathways to understand interindividual differences in tobacco addiction risk during development. This integrative approach holds promise for advancing our understanding of tobacco addiction etiology and informing potentially effective intervention strategies.
Collapse
Affiliation(s)
- Leonardo A Ortega
- Facultad de Psicologia, Fundacion Universitaria Konrad Lorenz, Colombia.
| | | | | | | |
Collapse
|
8
|
Brancato D, Coniglio E, Bruno F, Agostini V, Saccone S, Federico C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes (Basel) 2023; 14:1604. [PMID: 37628655 PMCID: PMC10454093 DOI: 10.3390/genes14081604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction.
Collapse
Affiliation(s)
- Desiree Brancato
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Elvira Coniglio
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Francesca Bruno
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Vincenzo Agostini
- Department Science and Technical Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Salvatore Saccone
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological, Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (E.C.); (F.B.); (C.F.)
| |
Collapse
|
9
|
Rahat MA, Akbar F, Rasool A, Ilyas M, Rakha A, Shams S, Jelani M, Bibi F, Shirah BH, Abdulkareem AA, Naseer MI, Israr M. Phenotypic Classification of Eye Colour and Developmental Validation of the Irisplex System on Population Living in Malakand Division, Pakistan. Biomedicines 2023; 11:biomedicines11041228. [PMID: 37189847 DOI: 10.3390/biomedicines11041228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The core objective of forensic DNA typing is developing DNA profiles from biological evidence for personal identification. The present study was designed to check the validation of the IrisPlex system and the Prevalence of eye colour in the Pakhtoon population residing within the Malakand Division. METHODS Eye colour digital photographs and buccal swab samples of 893 individuals of different age groups were collected. Multiplexed SNaPshot single base extension chemistry was used, and the genotypic results were analysed. Snapshot data were used for eye colour prediction through the IrisPlex and FROG-kb tool. RESULTS The results of the present study found brown eye colour to be the most prevalent eye colour in comparison to intermediate and blue coloured. Overall, individuals with brown-coloured eyes possess CT (46.84%) and TT (53.16%) genotypes. Blue eye-coloured individuals are solely of the CC genotype, while individuals of intermediate eye colour carry CT (45.15%) and CC (53.85%) genotypes in rs12913832 SNP in the HERC2 gene. It was also revealed that brown-coloured eyes individuals were dominant among all age groups followed by intermediate and blue. Statistical analysis between particular variables and eye colour showed a significant p-value (<0.05) for rs16891982 SNP in SLC45A2 gene, rs12913832 SNP in HERC2 gene, rs1393350 SNP in SLC45A2, districts and gender. The rest of the SNPs were non-significant with eye colour, respectively. The rs12896399 SNP and SNP rs1800407 were found significant with rs16891982 SNP. The result also demonstrated that the study group differs from the world population based on eye colour. The two eye colour prediction results were compared, and it was discovered that IrisPlex and FROG-Kb had similar higher prediction ratios for Brown and Blue eye colour. CONCLUSIONS The results of the current study revealed brown eye colour to be the most prevalent amongst members of the local population of Pakhtoon ethnicity in the Malakand Division of northern Pakistan. A set of contemporary human DNA samples with known phenotypes are used in this research to evaluate the custom panel's prediction accuracy. With the aid of this forensic test, DNA typing can be supplemented with details about the appearance of the person from whom the sample was taken in cases involving missing persons, ancient human remains, and trace samples. This study may be helpful for future population genetics and forensics studies.
Collapse
Affiliation(s)
- Murad Ali Rahat
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh 19120, Pakistan
- Department of Forensic Sciences, University of Swat, Charbagh 19120, Pakistan
| | - Fazal Akbar
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh 19120, Pakistan
| | - Akhtar Rasool
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh 19120, Pakistan
| | - Muhammad Ilyas
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore 54600, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Musharraf Jelani
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Israr
- Department of Forensic Sciences, University of Swat, Charbagh 19120, Pakistan
| |
Collapse
|
10
|
Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med 2022; 88:102351. [DOI: 10.1016/j.jflm.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
11
|
Pośpiech E, Karłowska-Pik J, Kukla-Bartoszek M, Woźniak A, Boroń M, Zubańska M, Jarosz A, Bronikowska A, Grzybowski T, Płoski R, Spólnicka M, Branicki W. Overlapping association signals in the genetics of hair-related phenotypes in humans and their relevance to predictive DNA analysis. Forensic Sci Int Genet 2022; 59:102693. [DOI: 10.1016/j.fsigen.2022.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/02/2023]
|
12
|
A large Canadian cohort provides insights into the genetic architecture of human hair colour. Commun Biol 2021; 4:1253. [PMID: 34737440 PMCID: PMC8568909 DOI: 10.1038/s42003-021-02764-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Hair colour is a polygenic phenotype that results from differences in the amount and ratio of melanins located in the hair bulb. Genome-wide association studies (GWAS) have identified many loci involved in the pigmentation pathway affecting hair colour. However, most of the associated loci overlap non-protein coding regions and many of the molecular mechanisms underlying pigmentation variation are still not understood. Here, we conduct GWAS meta-analyses of hair colour in a Canadian cohort of 12,741 individuals of European ancestry. By performing fine-mapping analyses we identify candidate causal variants in pigmentation loci associated with blonde, red and brown hair colour. Additionally, we observe colocalization of several GWAS hits with expression and methylation quantitative trait loci (QTLs) of cultured melanocytes. Finally, transcriptome-wide association studies (TWAS) further nominate the expression of EDNRB and CDK10 as significantly associated with hair colour. Our results provide insights on the mechanisms regulating pigmentation biology in humans.
Collapse
|
13
|
Palmal S, Adhikari K, Mendoza-Revilla J, Fuentes-Guajardo M, Silva de Cerqueira CC, Bonfante B, Chacón-Duque JC, Sohail A, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Lozano RB, Everardo-Martínez P, Gómez-Valdés J, Villamil-Ramírez H, Hünemeier T, Ramallo V, Parolin ML, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Faux P, Ruiz-Linares A. Prediction of eye, hair and skin colour in Latin Americans. Forensic Sci Int Genet 2021; 53:102517. [PMID: 33865096 DOI: 10.1016/j.fsigen.2021.102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Collapse
Affiliation(s)
- Sagnik Palmal
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú; Unit of Human Evolutionary Genetics, Institut Pasteur, Paris 75015, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Betty Bonfante
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Juan Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Anood Sohail
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Claudia Jaramillo
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan; GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- National Institute of Anthropology and History, Mexico City 6600, Mexico; Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena 07745, Germany
| | | | - Jorge Gómez-Valdés
- National Institute of Anthropology and History, Mexico City 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil; Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Maria-Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus), Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | | | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Arica 1000000, Chile
| | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Faux
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France.
| | - Andrés Ruiz-Linares
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China.
| |
Collapse
|
14
|
Evaluation of supervised machine-learning methods for predicting appearance traits from DNA. Forensic Sci Int Genet 2021; 53:102507. [PMID: 33831816 DOI: 10.1016/j.fsigen.2021.102507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022]
Abstract
The prediction of human externally visible characteristics (EVCs) based solely on DNA information has become an established approach in forensic and anthropological genetics in recent years. While for a large set of EVCs, predictive models have already been established using multinomial logistic regression (MLR), the prediction performances of other possible classification methods have not been thoroughly investigated thus far. Motivated by the question to identify a potential classifier that outperforms these specific trait models, we conducted a systematic comparison between the widely used MLR and three popular machine learning (ML) classifiers, namely support vector machines (SVM), random forest (RF) and artificial neural networks (ANN), that have shown good performance outside EVC prediction. As examples, we used eye, hair and skin color categories as phenotypes and genotypes based on the previously established IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers. We compared and assessed the performances of each of the four methods, complemented by detailed hyperparameter tuning that was applied to some of the methods in order to maximize their performance. Overall, we observed that all four classification methods showed rather similar performance, with no method being substantially superior to the others for any of the traits, although performances varied slightly across the different traits and more so across the trait categories. Hence, based on our findings, none of the ML methods applied here provide any advantage on appearance prediction, at least when it comes to the categorical pigmentation traits and the selected DNA markers used here.
Collapse
|
15
|
Kidd KK, Pakstis AJ, Donnelly MP, Bulbul O, Cherni L, Gurkan C, Kang L, Li H, Yun L, Paschou P, Meiklejohn KA, Haigh E, Speed WC. The distinctive geographic patterns of common pigmentation variants at the OCA2 gene. Sci Rep 2020; 10:15433. [PMID: 32963319 PMCID: PMC7508881 DOI: 10.1038/s41598-020-72262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous Albinism type 2 (OCA2) is a gene of great interest because of genetic variation affecting normal pigmentation variation in humans. The diverse geographic patterns for variant frequencies at OCA2 have been evident but have not been systematically investigated, especially outside of Europe. Here we examine population genetic variation in and near the OCA2 gene from a worldwide perspective. The very different patterns of genetic variation found across world regions suggest strong selection effects may have been at work over time. For example, analyses involving the variants that affect pigmentation of the iris argue that the derived allele of the rs1800407 single nucleotide polymorphism, which produces a hypomorphic protein, may have contributed to the previously demonstrated positive selection in Europe for the enhancer variant responsible for light eye color. More study is needed on the relationships of the genetic variation at OCA2 to variation in pigmentation in areas beyond Europe.
Collapse
Affiliation(s)
- Kenneth K Kidd
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA.
| | - Andrew J Pakstis
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| | - Michael P Donnelly
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA.,Biological and Environmental Sciences, Troy University, Dothan, AL, 36303, USA
| | - Ozlem Bulbul
- Institute of Forensic Science, Istanbul University-Cerrahpasa, Istanbul, 34500, Turkey
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| | - Cemal Gurkan
- Turkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia, North Cyprus), Turkey.,Dr. Fazıl Küçük Faculty of Medicine, Eastern Mediterranean University, Famagusta (North Cyprus), Turkey
| | - Longli Kang
- Key Laboratory forMolecular GeneticMechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory of High Altitude Environment and Genes Related To Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Hui Li
- MOE State Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Libing Yun
- Institute of Forensic Medicine, West China College of Preclinical and Forensic Medicine, Sichuan University, No.16. Section 3. RenMin Nan Road, Chengdu, 610041, Sichuan, China
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kelly A Meiklejohn
- Department of Population Health and Pathobiology, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Eva Haigh
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| | - William C Speed
- Professor Emeritus, Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT, 06520-8005, USA
| |
Collapse
|
16
|
Dorgaleleh S, Naghipoor K, Barahouie A, Dastaviz F, Oladnabi M. Molecular and biochemical mechanisms of human iris color: A comprehensive review. J Cell Physiol 2020; 235:8972-8982. [DOI: 10.1002/jcp.29824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Saeed Dorgaleleh
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Karim Naghipoor
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Ahmad Barahouie
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Farzad Dastaviz
- Student Research Committee Golestan University of Medical Sciences Gorgan Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences Gorgan Iran
- Stem Cell Research Center, Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine Ischemic Disorders Research Center, Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
17
|
Louhelainen J, Miller D. Forensic Investigation of a Shawl Linked to the "Jack the Ripper" Murders. J Forensic Sci 2020; 65:295-303. [PMID: 30859587 DOI: 10.1111/1556-4029.14038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/28/2022]
Abstract
A set of historic murders, known as the "Jack the Ripper murders," started in London in August 1888. The killer's identity has remained a mystery to date. Here, we describe the investigation of, to our knowledge, the only remaining physical evidence linked to these murders, recovered from one of the victims at the scene of the crime. We applied novel, minimally destructive techniques for sample recovery from forensically relevant stains on the evidence and separated single cells linked to the suspect, followed by phenotypic analysis. The mtDNA profiles of both the victim and the suspect matched the corresponding reference samples, fortifying the link of the evidence to the crime scene. Genomic DNA from single cells recovered from the evidence was amplified, and the phenotypic information acquired matched the only witness statement regarded as reliable. To our knowledge, this is the most advanced study to date regarding this case.
Collapse
Affiliation(s)
- Jari Louhelainen
- Pharmacy and Biomolecular Sciences, James Parsons Building Byrom Street, Room 10.06, Liverpool, L3 3AF, UK
| | - David Miller
- Reproduction and Early Development Group, Institute of Genetics, Health and Therapeutics, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Kukla-Bartoszek M, Pośpiech E, Woźniak A, Boroń M, Karłowska-Pik J, Teisseyre P, Zubańska M, Bronikowska A, Grzybowski T, Płoski R, Spólnicka M, Branicki W. DNA-based predictive models for the presence of freckles. Forensic Sci Int Genet 2019; 42:252-259. [DOI: 10.1016/j.fsigen.2019.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/12/2019] [Accepted: 07/21/2019] [Indexed: 01/05/2023]
|
19
|
Salvoro C, Faccinetto C, Zucchelli L, Porto M, Marino A, Occhi G, de Los Campos G, Vazza G. Performance of four models for eye color prediction in an Italian population sample. Forensic Sci Int Genet 2019; 40:192-200. [PMID: 30884346 DOI: 10.1016/j.fsigen.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/27/2019] [Accepted: 03/10/2019] [Indexed: 11/29/2022]
Abstract
Forensic DNA phenotyping (FDP) has recently provided important advancements in forensic investigations, by predicting the physical appearance of a subject from a biological sample, using SNP markers. The majority of operable prediction models have been developed for iris color; however, replication studies to understand their applicability on a worldwide scale are still limited for many of them. In this work, 4 models for eye color prediction (IrisPlex, Ruiz, Allwood and Hart models) were systematically evaluated in a sample of 296 subjects of Italian origin. Genotypes were determined by a custom NGS-based panel targeting all the predictive SNPs included in the 4 tested models. Overall, 60-69% of the Italian sample could be correctly predicted with the IrisPlex, Ruiz and Allwood models, applying the recommended threshold. The IrisPlex model showed the lowest frequency of errors (17%), but also the highest number of inconclusive results (18%). In the absence of the threshold, the highest proportion of correct predictions was again obtained with the IrisPlex model (76%), followed by the Allwood (73%) and the Ruiz (65%) models. Lastly, the Hart predictive algorithm had the lowest error rate (2%), but the majority of predictions (87%) were restricted to the less informative categories of "not-blue" and "not-brown", and correct color predictions were obtained only for 11% of the sample. As observed in previous studies, the majority of incorrect and undefined predictions were ascribable to the intermediate category, which represented 25% of the Italian sample. An adjustment of the IrisPlex (multinomial logistic regression) and Ruiz models (Snipper Bayesian classifier) with Italian allele frequencies gave only minor improvements in predicting intermediate eye color and no remarkable overall changes in performance. This suggests an incomplete knowledge underlying the intermediate colors. Considering the impact of this phenotype in the Italian sample as well as in other admixed populations, future improvements of eye color prediction methods should include a better genetic and phenotypic characterization of this category.
Collapse
Affiliation(s)
| | - Christian Faccinetto
- Reparto Carabinieri Investigazioni Scientifiche di Parma, Sezione Biologia, Parma, Italy.
| | - Luca Zucchelli
- Department of Biology, University of Padova, Padova, Italy
| | - Marika Porto
- Department of Biology, University of Padova, Padova, Italy
| | - Alberto Marino
- Reparto Carabinieri Investigazioni Scientifiche di Parma, Sezione Biologia, Parma, Italy
| | - Gianluca Occhi
- Department of Biology, University of Padova, Padova, Italy
| | - Gustavo de Los Campos
- Departments of Epidemiology & Biostatistics and Statistics & Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan United States
| | - Giovanni Vazza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
20
|
Eye color prediction using single nucleotide polymorphisms in Saudi population. Saudi J Biol Sci 2018; 26:1607-1612. [PMID: 31762634 PMCID: PMC6864217 DOI: 10.1016/j.sjbs.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background DNA prediction of eye color represent one application of the externally visible characteristics (EVC), which attained growing interest in the field of DNA forensic phenotyping. This is mainly due to its ability to narrow the pool of suspects without the need to compare any retrieved DNA material from the crime scene to a reference DNA. Several methods and multiplex genetic panel were proposed with variable prediction accuracy between different populations. However, such panel was not previously tested in the Saudi population, nor any populations of the Middle East and North Africa origin. Method A panel of eleven single nucleotide polymorphisms (SNPs) was tested for their association with three eye colors (brown, hazel, and intermediate) in 80 volunteer Saudi individuals. SNPs and haplotype association test with eye colors were performed to identify the top significant SNPs with the three eye colors. Also, multinomial logistic regression was used to construct the prediction model using a training set of 60 subjects, and a validation set of 20 subjects. The goodness of fit parameter of the model to correctly predicts each eye color as compared to the other was performed. Results Eye color was significantly associated with rs12913832, rs7170852, and rs916977 that are located within HERC2. SNP rs12913832 was the top significant SNP (p-value = 1.78E−15) that accounted for the association in this region, as the other SNPs were not significant after adjusting for rs12913832. A prediction model containing five SNPs showed high prediction accuracy with Area Under the receiver operating characteristic Curves (AUC) equals to 0.95 and 0.83 for brown and intermediate eye colors, respectively. However, the model’s performance was very low for predicting the hazel eye color with AUC equals 0.75. Discussion Despite the small sample size of our study, we reported very significant SNP associations with eye color. Our model to predict eye colors based on DNA material showed high accuracy for brown and intermediate eye colors. The eye color prediction-model underperformed for the hazel eye colors, suggesting that larger sample size, as well as more comprehensive set of SNPs, could improve the model-prediction accuracy.
Collapse
|
21
|
Kukla-Bartoszek M, Pośpiech E, Spólnicka M, Karłowska-Pik J, Strapagiel D, Żądzińska E, Rosset I, Sobalska-Kwapis M, Słomka M, Walsh S, Kayser M, Sitek A, Branicki W. Investigating the impact of age-depended hair colour darkening during childhood on DNA-based hair colour prediction with the HIrisPlex system. Forensic Sci Int Genet 2018; 36:26-33. [DOI: 10.1016/j.fsigen.2018.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/12/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
|
22
|
Hohl DM, Bezus B, Ratowiecki J, Catanesi CI. Genetic and phenotypic variability of iris color in Buenos Aires population. Genet Mol Biol 2018; 41:50-58. [PMID: 29658972 PMCID: PMC5901501 DOI: 10.1590/1678-4685-gmb-2017-0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to describe the phenotypic and genotypic variability related to iris color for the population of Buenos Aires province (Argentina), and to assess the usefulness of current methods of analysis for this country. We studied five Single Nucleotide Polymorphisms (SNPs) included in the IrisPlex kit, in 118 individuals, and we quantified eye color with Digital Iris Analysis Tool. The markers fit Hardy-Weinberg equilibrium for the whole sample, but not for rs12913832 within the group of brown eyes (LR=8.429; p=0.004). We found a remarkable association of HERC2 rs12913832 GG with blue color (p < 0.01) but the other markers did not show any association with iris color. The results for the Buenos Aires population differ from those of other populations of the world for these polymorphisms (p < 0,01). The differences we found might respond to the admixed ethnic composition of Argentina; therefore, methods of analysis used in European populations should be carefully applied when studying the population of Argentina. These findings reaffirm the importance of this investigation in the Argentinian population for people identification based on iris color.
Collapse
Affiliation(s)
- Diana María Hohl
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Bezus
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina
| | - Julia Ratowiecki
- Centro de Estudios Médicos e Investigaciones Clínicas CEMIC CONICET, Buenos Aires, Argentina
| | - Cecilia Inés Catanesi
- Laboratorio de Diversidad Genética, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-UNLP-CIC), La Plata, Buenos Aires, Argentina.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
23
|
Cubillos-Rojas M, Schneider T, Hadjebi O, Pedrazza L, de Oliveira JR, Langa F, Guénet JL, Duran J, de Anta JM, Alcántara S, Ruiz R, Pérez-Villegas EM, Aguilar-Montilla FJ, Carrión ÁM, Armengol JA, Baple E, Crosby AH, Bartrons R, Ventura F, Rosa JL. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination. Oncotarget 2018; 7:56083-56106. [PMID: 27528230 PMCID: PMC5302898 DOI: 10.18632/oncotarget.11270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023] Open
Abstract
A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ouadah Hadjebi
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francina Langa
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Jean-Louis Guénet
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Joan Duran
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria de Anta
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soledad Alcántara
- Departament de Patologia i Terapèutica Experimental, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rocio Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Eva María Pérez-Villegas
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Ángel M Carrión
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Jose Angel Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Emma Baple
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter, UK
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
24
|
Wollstein A, Walsh S, Liu F, Chakravarthy U, Rahu M, Seland JH, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Vioque J, Böhringer S, Fletcher AE, Kayser M. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour. Sci Rep 2017; 7:43359. [PMID: 28240252 PMCID: PMC5327401 DOI: 10.1038/srep43359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.
Collapse
Affiliation(s)
- Andreas Wollstein
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands.,Section of Evolutionary Biology, Department of Biology II, University of Munich LMU, Planegg-Martinsried, Germany
| | - Susan Walsh
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Usha Chakravarthy
- Centre for Vision and Vascular Science, The Queen's University Belfast, Belfast, United Kingdom
| | - Mati Rahu
- Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia
| | - Johan H Seland
- Department of Ophthalmology, University of Bergen, School of Medicine, Bergen, Norway
| | - Gisèle Soubrane
- Clinique Ophthalmologique, Universitaire De Creteil, Paris, France
| | | | - Fotis Topouzis
- Department of Ophthalmology, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Johannes R Vingerling
- Department of Ophthalmology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jesus Vioque
- Dpto. Salud Publica Universidad Miguel Hernandez, Alicante, El Centro de Investigacion Biomedica en Red de Epidemiologıa y Salud Publica (CIBERESP), Elche, Spain
| | - Stefan Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Astrid E Fletcher
- Faculty of Epidemiology &Population Health, London School of Hygiene &Tropical Medicine, London, United Kingdom
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Zhekova H, Zhao C, Schnetkamp PPM, Noskov SY. Characterization of the Cation Binding Sites in the NCKX2 Na +/Ca 2+-K + Exchanger. Biochemistry 2016; 55:6445-6455. [PMID: 27805378 DOI: 10.1021/acs.biochem.6b00591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NCKX1-5 are proteins involved in K+-dependent Na+/Ca2+ exchange in various signal tissues. Here we present a homology model of NCKX2 based on the crystal structure of the NCX_Mj transporter found in Methanoccocus jannaschii. Molecular dynamics simulations were performed on the resultant wild-type NCKX2 model and two mutants (D548N and D575N) loaded with either four Na+ ions or one Ca2+ ion and one K+ ion, in line with the experimentally observed transport stoichiometry. The selectivity of the active site in wild-type NCKX2 for Na+, K+, and Li+ and the electrostatic interactions of the positive Na+ ions in the negatively charged active site of wild-type NCKX2 and the two mutants were evaluated from free energy perturbation calculations. For validation of the homology model, our computational results were compared to available experimental data obtained from numerous prior functional studies. The NCKX2 homology model is in good agreement with the discussed experimental data and provides valuable insights into the structure of the active site, which is lined with acidic and polar residues. The binding of the potassium and calcium ions is accomplished via Asp 575 and 548, respectively. Mutation of these residues to Asn alters the functionality of NCKX2 because of the elimination of the favorable carboxylate-cation interactions. The knowledge obtained from the NCKX2 model can be transferred to other isoforms of the NCKX family: newly discovered pathological mutations in NCKX4 and NCKX5 affect residues that are involved in ion binding and/or transport according to our homology model.
Collapse
Affiliation(s)
- Hristina Zhekova
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada T2N 1N4
| | - Chunfeng Zhao
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada T2N 1N4
| | - Paul P M Schnetkamp
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, AB T2N 4N1, Canada
| | - Sergei Yu Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada T2N 1N4
| |
Collapse
|
26
|
Pośpiech E, Karłowska-Pik J, Ziemkiewicz B, Kukla M, Skowron M, Wojas-Pelc A, Branicki W. Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics. Int J Legal Med 2016; 130:923-934. [PMID: 27221533 PMCID: PMC4912978 DOI: 10.1007/s00414-016-1388-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022]
Abstract
The genetics of eye colour has been extensively studied over the past few years, and the identified polymorphisms have been applied with marked success in the field of Forensic DNA Phenotyping. A picture that arises from evaluation of the currently available eye colour prediction markers shows that only the analysis of HERC2-OCA2 complex has similar effectiveness in different populations, while the predictive potential of other loci may vary significantly. Moreover, the role of gender in the explanation of human eye colour variation should not be neglected in some populations. In the present study, we re-investigated the data for 1020 Polish individuals and using neural networks and logistic regression methods explored predictive capacity of IrisPlex SNPs and gender in this population sample. In general, neural networks provided higher prediction accuracy comparing to logistic regression (AUC increase by 0.02–0.06). Four out of six IrisPlex SNPs were associated with eye colour in the studied population. HERC2 rs12913832, OCA2 rs1800407 and SLC24A4 rs12896399 were found to be the most important eye colour predictors (p < 0.007) while the effect of rs16891982 in SLC45A2 was less significant. Gender was found to be significantly associated with eye colour with males having ~1.5 higher odds for blue eye colour comparing to females (p = 0.002) and was ranked as the third most important factor in blue/non-blue eye colour determination. However, the implementation of gender into the developed prediction models had marginal and ambiguous impact on the overall accuracy of prediction confirming that the effect of gender on eye colour in this population is small. Our study indicated the advantage of neural networks in prediction modeling in forensics and provided additional evidence for population specific differences in the predictive importance of the IrisPlex SNPs and gender.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, Poland. .,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Bartosz Ziemkiewicz
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Kukla
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Skowron
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Jalloul AH, Rogasevskaia TP, Szerencsei RT, Schnetkamp PPM. A Functional Study of Mutations in K+-dependent Na+-Ca2+ Exchangers Associated with Amelogenesis Imperfecta and Non-syndromic Oculocutaneous Albinism. J Biol Chem 2016; 291:13113-23. [PMID: 27129268 DOI: 10.1074/jbc.m116.728824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
K(+)-dependent Na(+)/Ca(2+) exchangers belong to the solute carrier 24 (SLC24A1-5) gene family of membrane transporters. Five different gene products (NCKX1-5) have been identified in humans, which play key roles in biological processes including vision, olfaction, and skin pigmentation. NCKXs are bi-directional membrane transporters that transport 1 Ca(2+)+K(+) ions in exchange for 4 Na(+) ions. Recent studies have linked mutations in the SLC24A4 (NCKX4) and SLC24A5 (NCKX5) genes to amylogenesis imperfecta (AI) and non-syndromic oculocutaneous albinism (OCA6), respectively. Here, we introduced mutations found in patients with AI and OCA6 into human SLC24A4 (NCKX4) cDNA leading to single residue substitutions in the mutant NCKX4 proteins. We measured NCKX-mediated Ca(2+) transport activity of WT and mutant NCKX4 proteins expressed in HEK293 cells. Three mutant NCKX4 cDNAs represent mutations found in the SCL24A4 gene and three represent mutations found in the SCL24A5 gene involving residues conserved between NCKX4 and NCKX5. Five mutant proteins had no observable NCKX activity, whereas one mutation resulted in a 78% reduction in transport activity. Total protein expression and trafficking to the plasma membrane (the latter with one exception) were not affected in the HEK293 cell expression system. We also analyzed two mutations in a Drosophila NCKX gene that have been reported to result in an increased susceptibility for seizures, and found that both resulted in mutant proteins with significantly reduced but observable NCKX activity. The data presented here support the genetic analyses that mutations in SLC24A4 and SLC24A5 are responsible for the phenotypic defects observed in human patients.
Collapse
Affiliation(s)
- Ali H Jalloul
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tatiana P Rogasevskaia
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Robert T Szerencsei
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul P M Schnetkamp
- From the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
28
|
Walsh S, Kayser M. A Practical Guide to the HIrisPlex System: Simultaneous Prediction of Eye and Hair Color from DNA. Methods Mol Biol 2016; 1420:213-231. [PMID: 27259743 DOI: 10.1007/978-1-4939-3597-0_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The HIrisPlex system, which consists of two parts, allows the simultaneous prediction of eye and hair color from DNA, e.g., samples extracted from crime scene evidence. The first part is a highly sensitive multiplex genotyping assay consisting of 24 DNA markers using SNaPshot™ chemistry, for analysis on all Capillary Electrophoresis machines. The second part consists of statistical models that respectively establish eye and hair color prediction probabilities from complete and incomplete genotype profiles using parameters generated from large genotype and phenotype databases. This combined prediction tool constitutes the online system freely available to users. Here we provide a practical guide on how to use the HIrisPlex system for forensic and other DNA applications.
Collapse
Affiliation(s)
- Susan Walsh
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), 723 W. Michigan St., SL 350, Indianapolis, IN, 46202, USA.
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, 3000 CB, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Pośpiech E, Karłowska-Pik J, Marcińska M, Abidi S, Andersen JD, Berge MVD, Carracedo Á, Eduardoff M, Freire-Aradas A, Morling N, Sijen T, Skowron M, Söchtig J, Syndercombe-Court D, Weiler N, Schneider PM, Ballard D, Børsting C, Parson W, Phillips C, Branicki W. Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans. Forensic Sci Int Genet 2015; 19:280-288. [PMID: 26414620 DOI: 10.1016/j.fsigen.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/10/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
DNA-based prediction of hair morphology, defined as straight, curly or wavy hair, could contribute to an improved description of an unknown offender and allow more accurate forensic reconstructions of physical appearance in the field of forensic DNA phenotyping. Differences in scalp hair morphology are significant at the worldwide scale and within Europe. The only genome-wide association study made to date revealed the Trichohyalin gene (TCHH) to be significantly associated with hair morphology in Europeans and reported weaker associations for WNT10A and FRAS1 genes. We conducted a study that centered on six SNPs located in these three genes with a sample of 528 individuals from Poland. The predictive capacity of the candidate DNA variants was evaluated using logistic regression; classification and regression trees; and neural networks, by applying a 10-fold cross validation procedure. Additionally, an independent test set of 142 males from six European populations was used to verify performance of the developed prediction models. Our study confirmed association of rs11803731 (TCHH), rs7349332 (WNT10A) and rs1268789 (FRAS1) SNPs with hair morphology. The combined genotype risk score for straight hair had an odds ratio of 2.7 and these predictors explained ∼ 8.2% of the total variance. The selected three SNPs were found to predict straight hair with a high sensitivity but low specificity when a 10-fold cross validation procedure was applied and the best results were obtained using the neural networks approach (AUC=0.688, sensitivity=91.2%, specificity=23.0%). Application of the neural networks model with 65% probability threshold on an additional test set gave high sensitivity (81.4%) and improved specificity (50.0%) with a total of 78.7% correct calls, but a high non-classification rate (66.9%). The combined TTGGGG SNP genotype for rs11803731, rs7349332, rs1268789 (European frequency=4.5%) of all six straight hair-associated alleles was identified as the best predictor, giving >80% probability of straight hair. Finally, association testing of 44 SNPs previously identified to be associated with male pattern baldness revealed a suggestive association with hair morphology for rs4679955 on 3q25.1. The study results reported provide the starting point for the development of a predictive test for hair morphology in Europeans. More studies are now needed to discover additional determinants of hair morphology to improve the predictive accuracy of this trait in forensic analysis.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland.
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Marcińska
- Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
| | - Sarah Abidi
- Faculty of Life Sciences, King's College, London, UK
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margreet van den Berge
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Genomic Medicine Group, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain
| | - Mayra Eduardoff
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Titia Sijen
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Małgorzata Skowron
- Department of Dermatology, Medical College of Jagiellonian University, Krakow, Poland
| | - Jens Söchtig
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Natalie Weiler
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Peter M Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - David Ballard
- Faculty of Life Sciences, King's College, London, UK
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chris Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Wojciech Branicki
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland; Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
| | | |
Collapse
|
30
|
Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 2015; 18:33-48. [DOI: 10.1016/j.fsigen.2015.02.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/17/2023]
|
31
|
Dario P, Mouriño H, Oliveira AR, Lucas I, Ribeiro T, Porto MJ, Costa Santos J, Dias D, Corte Real F. Assessment of IrisPlex-based multiplex for eye and skin color prediction with application to a Portuguese population. Int J Legal Med 2015; 129:1191-200. [PMID: 26289415 DOI: 10.1007/s00414-015-1248-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022]
Abstract
DNA phenotyping research is one of the most emergent areas of forensic genetics. Predictions of externally visible characteristics are possible through analysis of single nucleotide polymorphisms. These tools can provide police with "intelligence" in cases where there are no obvious suspects and unknown biological samples found at the crime scene do not result in any criminal DNA database hits. IrisPlex, an eye color prediction assay, revealed high prediction rates for blue and brown eye color in European populations. However, this is less predictive in some non-European populations, probably due to admixing. When compared to other European countries, Portugal has a relatively admixed population, resulting from a genetic influx derived from its proximity to and historical relations with numerous African territories. The aim of this work was to evaluate the utility of IrisPlex in the Portuguese population. Furthermore, the possibility of supplementing this multiplex with additional markers to also achieve skin color prediction within this population was evaluated. For that, IrisPlex was augmented with additional SNP loci. Eye and skin color prediction was estimated using the multinomial logistic regression and binomial logistic regression models, respectively. The results demonstrated eye color prediction accuracies of the IrisPlex system of 90 and 60% for brown and blue eye color, respectively, and 77% for intermediate eye color, after allele frequency adjustment. With regard to skin color, it was possible to achieve a prediction accuracy of 93%. In the future, phenotypic determination multiplexes must include additional loci to permit skin color prediction as presented in this study as this can be an advantageous tool for forensic investigation.
Collapse
Affiliation(s)
- Paulo Dario
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal.
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal.
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal.
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Helena Mouriño
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Rita Oliveira
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Lucas
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Teresa Ribeiro
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Maria João Porto
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - Jorge Costa Santos
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Deodália Dias
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal
- CESAM - Centre for Environmental and Marine Studies, Edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Francisco Corte Real
- INMLCF - National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- CENCIFOR - Forensic Sciences Centre, Largo da Sé Nova, 3000-213, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| |
Collapse
|
32
|
Marcińska M, Pośpiech E, Abidi S, Andersen JD, van den Berge M, Carracedo Á, Eduardoff M, Marczakiewicz-Lustig A, Morling N, Sijen T, Skowron M, Söchtig J, Syndercombe-Court D, Weiler N, Schneider PM, Ballard D, Børsting C, Parson W, Phillips C, Branicki W. Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS One 2015; 10:e0127852. [PMID: 26001114 PMCID: PMC4441445 DOI: 10.1371/journal.pone.0127852] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022] Open
Abstract
Androgenetic alopecia, known in men as male pattern baldness (MPB), is a very conspicuous condition that is particularly frequent among European men and thus contributes markedly to variation in physical appearance traits amongst Europeans. Recent studies have revealed multiple genes and polymorphisms to be associated with susceptibility to MPB. In this study, 50 candidate SNPs for androgenetic alopecia were analyzed in order to verify their potential to predict MPB. Significant associations were confirmed for 29 SNPs from chromosomes X, 1, 5, 7, 18 and 20. A simple 5-SNP prediction model and an extended 20-SNP model were developed based on a discovery panel of 305 males from various European populations fitting one of two distinct phenotype categories. The first category consisted of men below 50 years of age with significant baldness and the second; men aged 50 years or older lacking baldness. The simple model comprised the five best predictors: rs5919324 near AR, rs1998076 in the 20p11 region, rs929626 in EBF1, rs12565727 in TARDBP and rs756853 in HDAC9. The extended prediction model added 15 SNPs from five genomic regions that improved overall prevalence-adjusted predictive accuracy measured by area under the receiver characteristic operating curve (AUC). Both models were evaluated for predictive accuracy using a test set of 300 males reflecting the general European population. Applying a 65% probability threshold, high prediction sensitivity of 87.1% but low specificity of 42.4% was obtained in men aged <50 years. In men aged ≥50, prediction sensitivity was slightly lower at 67.7% while specificity reached 90%. Overall, the AUC=0.761 calculated for men at or above 50 years of age indicates these SNPs offer considerable potential for the application of genetic tests to predict MPB patterns, adding a highly informative predictive system to the emerging field of forensic analysis of externally visible characteristics.
Collapse
Affiliation(s)
- Magdalena Marcińska
- Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
| | - Ewelina Pośpiech
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland
| | - Sarah Abidi
- Faculty of Life Sciences, King’s College, London, United Kingdom
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margreet van den Berge
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Medicine, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genomic Medicine Group, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Mayra Eduardoff
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Titia Sijen
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Małgorzata Skowron
- Department of Dermatology, Medical College of Jagiellonian University, Krakow, Poland
| | - Jens Söchtig
- Forensic Genetics Unit, Institute of Forensic Medicine, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Natalie Weiler
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | | | - Peter M. Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - David Ballard
- Faculty of Life Sciences, King’s College, London, United Kingdom
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chris Phillips
- Forensic Genetics Unit, Institute of Forensic Medicine, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Wojciech Branicki
- Institute of Forensic Research, Section of Forensic Genetics, Krakow, Poland
- Department of Genetics and Evolution, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
33
|
Pośpiech E, Ligęza J, Wilk W, Gołas A, Jaszczyński J, Stelmach A, Ryś J, Blecharczyk A, Wojas-Pelc A, Jura J, Branicki W. Variants of SCARB1 and VDR Involved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:860405. [PMID: 25945350 PMCID: PMC4402472 DOI: 10.1155/2015/860405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/21/2015] [Accepted: 03/15/2015] [Indexed: 11/17/2022]
Abstract
The current data are still inconclusive in terms of a genetic component involved in the susceptibility to renal cell carcinoma. Our aim was to evaluate 40 selected candidate polymorphisms for potential association with clear cell renal cell carcinoma (ccRCC) based on independent group of 167 patients and 200 healthy controls. The obtained data were searched for independent effects of particular polymorphisms as well as haplotypes and genetic interactions. Association testing implied position rs4765623 in the SCARB1 gene (OR = 1.688, 95% CI: 1.104-2.582, P = 0.016) and a haplotype in VDR comprising positions rs739837, rs731236, rs7975232, and rs1544410 (P = 0.012) to be the risk factors in the studied population. The study detected several epistatic effects contributing to the genetic susceptibility to ccRCC. Variation in GNAS1 was implicated in a strong synergistic interaction with BIRC5. This effect was part of a model suggested by multifactor dimensionality reduction method including also a synergy between GNAS1 and SCARB1 (P = 0.036). Significance of GNAS1-SCARB1 interaction was further confirmed by logistic regression (P = 0.041), which also indicated involvement of SCARB1 in additional interaction with EPAS1 (P = 0.008) as well as revealing interactions between GNAS1 and EPAS1 (P = 0.016), GNAS1 and MC1R (P = 0.031), GNAS1 and VDR (P = 0.032), and MC1R and VDR (P = 0.035).
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Ligęza
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wacław Wilk
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aniela Gołas
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Janusz Jaszczyński
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Andrzej Stelmach
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Janusz Ryś
- Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Garncarska 11, 31-115 Cracow, Poland
| | - Aleksandra Blecharczyk
- Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Collegium Medicum of the Jagiellonian University, Skawińska 8, 31-066 Cracow, Poland
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Wojciech Branicki
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|
34
|
Kosiniak-Kamysz A, Marczakiewicz-Lustig A, Marcińska M, Skowron M, Wojas-Pelc A, Pośpiech E, Branicki W. Increased risk of developing cutaneous malignant melanoma is associated with variation in pigmentation genes and VDR, and may involve epistatic effects. Melanoma Res 2014; 24:388-96. [PMID: 24926819 DOI: 10.1097/cmr.0000000000000095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cutaneous malignant melanoma (CMM) is a malicious human skin cancer that primarily affects individuals with light pigmentation and heavy sun exposure, but also has a known familial association. Multiple genes and polymorphisms have been reported as low-penetrance susceptibility loci for CMM. Here, we examined 33 candidate polymorphisms located in 11 pigmentation genes and the vitamin D receptor gene (VDR) in a population of 130 cutaneous melanoma patients and 707 healthy controls. The genotypes obtained were evaluated for main association effects and potential gene-gene interactions. MC1R, TYR, VDR and SLC45A2 genes were found to be associated with CMM in our population. The results obtained for major function MC1R mutations were the most significant [with odds ratio (OR)=1.787, confidence interval (CI)=1.320-2.419 and P=1.715(-4)], followed by TYR (rs1393350) (with OR=1.569, CI=1.162-2.118, P=0.003), VDR (GCCC haplotype in rs2238136-rs4516035-rs7139166-rs11568820 block) (with OR=5.653, CI=1.794-17.811, P=0.003) and SLC45A2 (rs16891982) (with OR=0.238, CI=0.057-0.987, P=0.048). The study also detected significant intermolecular epistatic effects between MC1R and TYR, SLC45A2 and VDR, HERC2 and VDR, OCA2 and TPCN2, as well as intramolecular interactions between variants within the genes MC1R and VDR. In the final multivariate logistic regression model for CMM development, only the gene-gene interactions discovered remained significant, showing that epistasis may be an important factor in the risk of melanoma.
Collapse
Affiliation(s)
- Agnieszka Kosiniak-Kamysz
- aDepartment of Dermatology, Collegium Medicum of the Jagiellonian University bDepartment of Analytical Biochemistry, Jagiellonian University Medical College cDepartment of Genetics and Evolution, Institute of Zoology, Jagiellonian University dSection of Forensic Genetics, Institute of Forensic Research, Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
35
|
Pośpiech E, Wojas-Pelc A, Walsh S, Liu F, Maeda H, Ishikawa T, Skowron M, Kayser M, Branicki W. The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction. Forensic Sci Int Genet 2014; 11:64-72. [DOI: 10.1016/j.fsigen.2014.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 01/19/2023]
|
36
|
Pietroni C, Andersen JD, Johansen P, Andersen MM, Harder S, Paulsen R, Børsting C, Morling N. The effect of gender on eye colour variation in European populations and an evaluation of the IrisPlex prediction model. Forensic Sci Int Genet 2014; 11:1-6. [DOI: 10.1016/j.fsigen.2014.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
|
37
|
Body pigmentation as a risk factor for the formation of intracranial aneurysms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301631. [PMID: 24967348 PMCID: PMC4054613 DOI: 10.1155/2014/301631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrated pigmented cells both in the murine heart, in pulmonary veins, and in brain arteries. Moreover, a role for melanocytes in the downregulation of inflammatory processes was suggested. As there is increasing evidence that inflammation is contributing significantly to the pathogenesis of intracranial aneurysms, melanocyte-like cells may be relevant in preventing age-related impairment of vessels. As pigmentation of the heart reflects that of coat color, aspects of body pigmentation might be associated with the incidence of intracranial aneurysms. We performed a case-control study to evaluate associations between the pigmentation of hair and eyes and the formation of aneurysms. In addition to hair and eye color, constitutive and facultative skin pigmentation were assessed in a replication study as well as individual handedness which can be seen as a neurophysiological correlate of developmental pigmentation processes. Hair pigmentation was highly associated with intracranial aneurysms in both samples, whereas eye pigmentation was not. In the replication cohort, facultative but not constitutive skin pigmentation proved significant. The strongest association was observed for individual handedness. Results indicate a significant association of intracranial aneurysms with particular aspects of body pigmentation as well as handedness, and imply clinical usefulness for screening of aneurysms and possible interventions.
Collapse
|
38
|
Walsh S, Chaitanya L, Clarisse L, Wirken L, Draus-Barini J, Kovatsi L, Maeda H, Ishikawa T, Sijen T, de Knijff P, Branicki W, Liu F, Kayser M. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci Int Genet 2013; 9:150-61. [PMID: 24528593 DOI: 10.1016/j.fsigen.2013.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022]
Abstract
Forensic DNA Phenotyping or 'DNA intelligence' tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour prediction from full and partial HIrisPlex DNA profiles. By demonstrating that the HIrisPlex assay is fully compatible with the SWGDAM guidelines, we provide the first forensically validated DNA test system for parallel eye and hair colour prediction now available to forensic laboratories for immediate casework application, including missing person cases. Given the robustness and sensitivity described here and in previous work, the HIrisPlex system is also suitable for analysing old and ancient DNA in anthropological and evolutionary studies.
Collapse
Affiliation(s)
- Susan Walsh
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lakshmi Chaitanya
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lindy Clarisse
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Laura Wirken
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Leda Kovatsi
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hitoshi Maeda
- Department of Legal Medicine, Osaka City University, Medical School, Osaka, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University, Medical School, Osaka, Japan; Division of Legal Medicine, Faculty of Medicine, Tottori University, 86 Nichicho Yonago, Japan
| | - Titia Sijen
- Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wojciech Branicki
- Section of Forensic Genetics, Institute of Forensic Research, Kraków, Poland; Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Dembinski GM, Picard CJ. Evaluation of the IrisPlex DNA-based eye color prediction assay in a United States population. Forensic Sci Int Genet 2013; 9:111-7. [PMID: 24528589 DOI: 10.1016/j.fsigen.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/27/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022]
Abstract
DNA phenotyping is a rapidly developing area of research in forensic biology. Externally visible characteristics (EVCs) can be determined based on genotype data, specifically based on single nucleotide polymorphisms (SNPs). These SNPs are chosen based on their association with genes related to the phenotypic expression of interest, with known examples in eye, hair, and skin color traits. DNA phenotyping has forensic importance when unknown biological samples at a crime scene do not result in a criminal database hit; a phenotypic profile of the sample can therefore be used to develop investigational leads. IrisPlex, an eye color prediction assay, has previously shown high prediction rates for blue and brown eye color in a Dutch European population. The objective of this work was to evaluate its utility in a North American population. We evaluated six SNPs included in the IrisPlex assay in population sample collected from a USA college campus. We used a quantitative method of eye color classification based on (RGB) color components of digital photographs of the eye taken from each study volunteer so that each eye was placed in one of three eye color categories: brown, intermediate, or blue. Objective color classification was shown to correlate with basic human visual determination making it a feasible option for use in future prediction assay development. Using these samples and various models, the maximum prediction accuracies of the IrisPlex system after allele frequency adjustment was 58% and 95% brown and blue eye color predictions, respectively, and 11% for intermediate eye colors. Future developments should include incorporation of additional informative SNPs, specifically related to the intermediate eye color, and we recommend the use of a Bayesian approach as a prediction model as likelihood ratios can be determined for reporting purposes.
Collapse
Affiliation(s)
- Gina M Dembinski
- Department of Biology and Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Christine J Picard
- Department of Biology and Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
40
|
Kastelic V, Pośpiech E, Draus-Barini J, Branicki W, Drobnič K. Prediction of eye color in the Slovenian population using the IrisPlex SNPs. Croat Med J 2013; 54:381-6. [PMID: 23986280 PMCID: PMC3760663 DOI: 10.3325/cmj.2013.54.381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To evaluate the accuracy of eye color prediction based on six IrisPlex single nucleotide polymorphisms (SNP) in a Slovenian population sample. METHODS Six IrisPlex predictor SNPs (HERC2 - rs12913832, OCA2 - rs1800407, SLC45A2 - rs16891982 and TYR - rs1393350, SLC24A4 - rs12896399, and IRF4 - rs12203592) of 105 individuals were analyzed using single base extension approach and SNaPshot chemistry. The IrisPlex multinomial regression prediction model was used to infer eye color probabilities. The accuracy of the IrisPlex was assessed through the calculation of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the area under the receiver characteristic operating curves (AUC). RESULTS Blue eye color was observed in 44.7%, brown in 29.6%, and intermediate in 25.7% participants. Prediction accuracy expressed by the AUC was 0.966 for blue, 0.913 for brown, and 0.796 for intermediate eye color. Sensitivity was 93.6% for blue, 58.1% for brown, and 0% for intermediate eye color. Specificity was 93.1% for blue, 89.2% for brown, and 100% for intermediate eye color. PPV was 91.7% for blue and 69.2% for brown color. NPV was 94.7% for blue and 83.5% for brown eye color. These values indicate prediction accuracy comparable to that established in other studies. CONCLUSION Blue and brown eye color can be reliably predicted from DNA samples using only six polymorphisms, while intermediate eye color defies prediction, indicating that more research is needed to genetically predict the whole variation of eye color in humans.
Collapse
Affiliation(s)
- Vanja Kastelic
- Vanja Kastelic, National Forensic Laboratory, General Police Directorate, Police, Ministry of the Interior, Vodovodna 95a, 1000 Ljubljana, Slovenia,
| | | | | | | | | |
Collapse
|
41
|
Schnetkamp PPM. The SLC24 gene family of Na⁺/Ca²⁺-K⁺ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol Aspects Med 2013; 34:455-64. [PMID: 23506883 DOI: 10.1016/j.mam.2012.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/09/2012] [Indexed: 01/28/2023]
Abstract
Members of the SLC24 gene family encode K(+)-dependent Na(+)/Ca(2+) exchangers (NCKX) that utilize both the inward Na(+) and outward K(+) gradients to extrude Ca(2+) from cells. There are five human SLC24 genes that play a role in biological process as diverse as vision in retinal rod and cone photoreceptors, olfaction, skin pigmentation and at least three of the five genes are also widely expressed in the brain. Here I review the functional, physiological and structural features of NCKX proteins that have emerged in the past few years.
Collapse
Affiliation(s)
- Paul P M Schnetkamp
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Canada AB T2N 4N1.
| |
Collapse
|
42
|
Andersen JD, Johansen P, Harder S, Christoffersen SR, Delgado MC, Henriksen ST, Nielsen MM, Sørensen E, Ullum H, Hansen T, Dahl AL, Paulsen RR, Børsting C, Morling N. Genetic analyses of the human eye colours using a novel objective method for eye colour classification. Forensic Sci Int Genet 2013; 7:508-15. [PMID: 23948321 DOI: 10.1016/j.fsigen.2013.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/25/2013] [Accepted: 05/09/2013] [Indexed: 01/12/2023]
Abstract
In this study, we present a new objective method for measuring the eye colour on a continuous scale that allows researchers to associate genetic markers with different shades of eye colour. With the use of the custom designed software Digital Iris Analysis Tool (DIAT), the iris was automatically identified and extracted from high resolution digital images. DIAT was made user friendly with a graphical user interface. The software counted the number of blue and brown pixels in the iris image and calculated a Pixel Index of the Eye (PIE-score) that described the eye colour quantitatively. The PIE-score ranged from -1 to 1 (brown to blue). The software eliminated the need for user based interpretation and qualitative eye colour categories. In 94% (570) of 605 analyzed eye images, the iris region was successfully extracted and a PIE-score was calculated. A very high correlation between the PIE-score and the human perception of eye colour was observed. The correlations between the PIE-scores and the six IrisPlex SNPs (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, TYR rs1393350, SLC45A2 rs16891982 and IRF4 rs12203592) were analyzed in 570 individuals. Significant differences (p<10(-6)) in the PIE-scores of the individuals typed as HERC2 rs12913832 G (PIE=0.99) and rs12913832 GA (PIE=-0.71) or A (PIE=-0.87) were observed. We adjusted for the effect of HERC2 rs12913832 and showed that the quantitative PIE-scores were significantly associated with SNPs with minor effects (OCA2 rs1800407, SLC24A4 rs12896399 and TYR rs1393350) on the eye colour. We evaluated the two published prediction models for eye colour (IrisPlex [1] and Snipper[2]) and compared the predictions with the PIE-scores. We found good concordance with the prediction from individuals typed as HERC2 rs12913832 G. However, both methods had difficulties in categorizing individuals typed as HERC2 rs12913832 GA because of the large variation in eye colour in HERC2 rs12913832 GA individuals. With the use of the DIAT software and the PIE-score, it will be possible to automatically compare the iris colour of large numbers of iris images obtained by different studies and to perform large meta-studies that may reveal loci with small effects on the eye colour.
Collapse
Affiliation(s)
- Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Puffenberger EG, Jinks RN, Wang H, Xin B, Fiorentini C, Sherman EA, Degrazio D, Shaw C, Sougnez C, Cibulskis K, Gabriel S, Kelley RI, Morton DH, Strauss KA. A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum Mutat 2013; 33:1639-46. [PMID: 23065719 DOI: 10.1002/humu.22237] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We studied a unique phenotype of cognitive delay, autistic behavior, and gait instability segregating in three separate sibships. We initiated genome-wide mapping in two sibships using Affymetrix 10K SNP Mapping Arrays and identified a homozygous 8.2 Mb region on chromosome 15 common to five affected children. We used exome sequencing of two affected children to assess coding sequence variants within the mapped interval. Four novel homozygous exome variants were shared between the two patients; however, only two variants localized to the mapped interval on chromosome 15. A third sibship in an Ohio Amish deme narrowed the mapped interval to 2.6 Mb and excluded one of the two novel homozygous exome variants. The remaining variant, a missense change in HERC2 (c.1781C>T, p.Pro594Leu), occurs in a highly conserved proline residue within an RCC1-like functional domain. Functional studies of truncated HERC2 in adherent retinal pigment epithelium cells suggest that the p.Pro594Leu variant induces protein aggregation and leads to decreased HERC2 abundance. The phenotypic correlation with the mouse Herc1 and Herc2 mutants as well as the phenotypic overlap with Angelman syndrome provide further evidence that pathogenic changes in HERC2 are associated with nonsyndromic intellectual disability, autism, and gait disturbance. Hum Mutat 33:1639-1646, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
|
44
|
Allwood JS, Harbison S. SNP model development for the prediction of eye colour in New Zealand. Forensic Sci Int Genet 2013; 7:444-52. [PMID: 23597786 DOI: 10.1016/j.fsigen.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 01/08/2023]
Abstract
The ability to predict externally visible characteristics (EVCs) from DNA has appeal for use in forensic science, particularly where a forensic database match is not made and an eye witness account is unavailable. This technology has yet to be implemented in casework in New Zealand. The broad cultural diversity and likely population stratification within New Zealand dictates that any EVC predictions made using anonymous DNA must perform accurately in the absence of knowledge of the donor's ancestral background. Here we construct classification tree models with SNPs of known association with eye colour phenotypes in three categories, blue vs. non-blue, brown vs. non-brown and intermediate vs. non-intermediate. A set of nineteen SNPs from ten different known or suspected pigmentation genes were selected from the literature. A training dataset of 101 unrelated individuals from the New Zealand population and representing different ancestral backgrounds were used. We constructed four alternate models capable of predicting eye colour from the DNA genotypes of SNPs located within the HERC2, OCA2, TYR and SLC24A4 genes using probability calculation and classification trees. The final model selected for eye colour prediction exhibited high levels of accuracy for both blue (89%) and brown eye colour (94%). Models were further assessed with a test set of 25 'blind' samples where phenotype was unknown, with blue and brown eye colour predicted correctly where model thresholds were met. Classification trees offer an aesthetically simple and comprehendible model to predict blue and brown eye colour.
Collapse
Affiliation(s)
- Julia S Allwood
- Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Private Bag 92-021, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
45
|
Liu F, Wen B, Kayser M. Colorful DNA polymorphisms in humans. Semin Cell Dev Biol 2013; 24:562-75. [PMID: 23587773 DOI: 10.1016/j.semcdb.2013.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
Abstract
In this review article we summarize current knowledge on how variation on the DNA level influences human pigmentation including color variation of iris, hair, and skin. We review recent progress in the field of human pigmentation genetics by focusing on the genes and DNA polymorphisms discovered to be involved in determining human pigmentation traits, their association with diseases particularly skin cancers, and their power to predict human eye, hair, and skin colors with potential utilization in forensic investigations.
Collapse
Affiliation(s)
- Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
46
|
Keating B, Bansal AT, Walsh S, Millman J, Newman J, Kidd K, Budowle B, Eisenberg A, Donfack J, Gasparini P, Budimlija Z, Henders AK, Chandrupatla H, Duffy DL, Gordon SD, Hysi P, Liu F, Medland SE, Rubin L, Martin NG, Spector TD, Kayser M. First all-in-one diagnostic tool for DNA intelligence: genome-wide inference of biogeographic ancestry, appearance, relatedness, and sex with the Identitas v1 Forensic Chip. Int J Legal Med 2012; 127:559-72. [PMID: 23149900 PMCID: PMC3631519 DOI: 10.1007/s00414-012-0788-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022]
Abstract
When a forensic DNA sample cannot be associated directly with a previously genotyped reference sample by standard short tandem repeat profiling, the investigation required for identifying perpetrators, victims, or missing persons can be both costly and time consuming. Here, we describe the outcome of a collaborative study using the Identitas Version 1 (v1) Forensic Chip, the first commercially available all-in-one tool dedicated to the concept of developing intelligence leads based on DNA. The chip allows parallel interrogation of 201,173 genome-wide autosomal, X-chromosomal, Y-chromosomal, and mitochondrial single nucleotide polymorphisms for inference of biogeographic ancestry, appearance, relatedness, and sex. The first assessment of the chip’s performance was carried out on 3,196 blinded DNA samples of varying quantities and qualities, covering a wide range of biogeographic origin and eye/hair coloration as well as variation in relatedness and sex. Overall, 95 % of the samples (N = 3,034) passed quality checks with an overall genotype call rate >90 % on variable numbers of available recorded trait information. Predictions of sex, direct match, and first to third degree relatedness were highly accurate. Chip-based predictions of biparental continental ancestry were on average ~94 % correct (further support provided by separately inferred patrilineal and matrilineal ancestry). Predictions of eye color were 85 % correct for brown and 70 % correct for blue eyes, and predictions of hair color were 72 % for brown, 63 % for blond, 58 % for black, and 48 % for red hair. From the 5 % of samples (N = 162) with <90 % call rate, 56 % yielded correct continental ancestry predictions while 7 % yielded sufficient genotypes to allow hair and eye color prediction. Our results demonstrate that the Identitas v1 Forensic Chip holds great promise for a wide range of applications including criminal investigations, missing person investigations, and for national security purposes.
Collapse
Affiliation(s)
- Brendan Keating
- The University of Pennsylvania, Office 1016, Abramson Building, 3615 Civic Center Bvld., Philadelphia, PA 19104-4399 USA
| | - Aruna T. Bansal
- Identitas Inc., 1115 Broadway, 12th Floor, New York, NY 10010 USA
| | - Susan Walsh
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jonathan Millman
- Centre of Forensic Sciences, 25 Grosvenor Street, Toronto, ON M7A 2G8 Canada
| | - Jonathan Newman
- Centre of Forensic Sciences, 25 Grosvenor Street, Toronto, ON M7A 2G8 Canada
| | - Kenneth Kidd
- Yale University School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Bruce Budowle
- Institute of Applied Genetics, Department of Forensic and Investigative Genetics, University North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| | - Arthur Eisenberg
- Institute of Applied Genetics, Department of Forensic and Investigative Genetics, University North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| | - Joseph Donfack
- Laboratory Division, Federal Bureau of Investigation, 2501 Investigation Parkway, Quantico, VA 22135 USA
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, University of Trieste, Piazzale Europa1, 34127 Trieste, Italy
| | - Zoran Budimlija
- New York City Office of Chief Medical Examiner, 421 East 26th Street, New York, NY 10016 USA
| | - Anjali K. Henders
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Locked Bag 2000, Herston, Brisbane, Queensland 4029 Australia
| | | | - David L. Duffy
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Locked Bag 2000, Herston, Brisbane, Queensland 4029 Australia
| | - Scott D. Gordon
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Locked Bag 2000, Herston, Brisbane, Queensland 4029 Australia
| | - Pirro Hysi
- Department of Twin Research, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London, SE1 7EH UK
| | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sarah E. Medland
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Locked Bag 2000, Herston, Brisbane, Queensland 4029 Australia
| | - Laurence Rubin
- Identitas Inc., 1115 Broadway, 12th Floor, New York, NY 10010 USA
| | - Nicholas G. Martin
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Locked Bag 2000, Herston, Brisbane, Queensland 4029 Australia
| | - Timothy D. Spector
- Department of Twin Research, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London, SE1 7EH UK
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
47
|
Poetsch M, Blöhm R, Harder M, Inoue H, von Wurmb-Schwark N, Freitag-Wolf S. Prediction of people's origin from degraded DNA--presentation of SNP assays and calculation of probability. Int J Legal Med 2012; 127:347-57. [PMID: 22918435 DOI: 10.1007/s00414-012-0728-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/12/2012] [Indexed: 11/26/2022]
Abstract
The characterization of externally visible traits by DNA analysis is already an important tool when investigating ancient skeletal remains and may gain similar importance in future forensic DNA analysis. This, however, depends on the different legal regulations in the different countries. Besides eye or hair color, the population origin can provide crucial information in criminal prosecution. In this study, we present the analysis of 16 single-nucleotide polymorphisms (SNPs) combined to two robust SNaPshot assays with a detection threshold of 25-pg DNA. This assay was applied to 891 people from seven different populations (West Africa, North Africa, Turkey, Near East, Balkan states, North Europe, and Japan) with a thorough statistical evaluation. The prediction model was validated by an additional 125 individuals predominantly with an ancestry from those same regions. The specificity of these SNPs for the prediction of all population origins is very high (>90 %), but the sensitivity varied greatly (more than 90 % for West Africa, but only 25 % for the Near East). We could identify West Africans with a certainty of 100 %, and people from North Africa, the Balkan states, or North Europe nearly with the same reliability while determination of Turks or people from the Near East was rather difficult. In conclusion, the two SNaPshot assays are a powerful and reliable tool for the identification of people with an ancestry in one of the above listed populations, even from degraded DNA.
Collapse
Affiliation(s)
- Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, Branicki W, Kayser M. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 2012; 7:98-115. [PMID: 22917817 DOI: 10.1016/j.fsigen.2012.07.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/25/2012] [Accepted: 07/23/2012] [Indexed: 02/03/2023]
Abstract
Recently, the field of predicting phenotypes of externally visible characteristics (EVCs) from DNA genotypes with the final aim of concentrating police investigations to find persons completely unknown to investigating authorities, also referred to as Forensic DNA Phenotyping (FDP), has started to become established in forensic biology. We previously developed and forensically validated the IrisPlex system for accurate prediction of blue and brown eye colour from DNA, and recently showed that all major hair colour categories are predictable from carefully selected DNA markers. Here, we introduce the newly developed HIrisPlex system, which is capable of simultaneously predicting both hair and eye colour from DNA. HIrisPlex consists of a single multiplex assay targeting 24 eye and hair colour predictive DNA variants including all 6 IrisPlex SNPs, as well as two prediction models, a newly developed model for hair colour categories and shade, and the previously developed IrisPlex model for eye colour. The HIrisPlex assay was designed to cope with low amounts of template DNA, as well as degraded DNA, and preliminary sensitivity testing revealed full DNA profiles down to 63pg input DNA. The power of the HIrisPlex system to predict hair colour was assessed in 1551 individuals from three different parts of Europe showing different hair colour frequencies. Using a 20% subset of individuals, while 80% were used for model building, the individual-based prediction accuracies employing a prediction-guided approach were 69.5% for blond, 78.5% for brown, 80% for red and 87.5% for black hair colour on average. Results from HIrisPlex analysis on worldwide DNA samples imply that HIrisPlex hair colour prediction is reliable independent of bio-geographic ancestry (similar to previous IrisPlex findings for eye colour). We furthermore demonstrate that it is possible to infer with a prediction accuracy of >86% if a brown-eyed, black-haired individual is of non-European (excluding regions nearby Europe) versus European (including nearby regions) bio-geographic origin solely from the strength of HIrisPlex eye and hair colour probabilities, which can provide extra intelligence for future forensic applications. The HIrisPlex system introduced here, including a single multiplex test assay, an interactive tool and prediction guide, and recommendations for reporting final outcomes, represents the first tool for simultaneously establishing categorical eye and hair colour of a person from DNA. The practical forensic application of the HIrisPlex system is expected to benefit cases where other avenues of investigation, including STR profiling, provide no leads on who the unknown crime scene sample donor or the unknown missing person might be.
Collapse
Affiliation(s)
- Susan Walsh
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruiz Y, Phillips C, Gomez-Tato A, Alvarez-Dios J, Casares de Cal M, Cruz R, Maroñas O, Söchtig J, Fondevila M, Rodriguez-Cid MJ, Carracedo A, Lareu MV. Further development of forensic eye color predictive tests. Forensic Sci Int Genet 2012; 7:28-40. [PMID: 22709892 DOI: 10.1016/j.fsigen.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 04/20/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022]
Abstract
In forensic analysis predictive tests for external visible characteristics (or EVCs), including inference of iris color, represent a potentially useful tool to guide criminal investigations. Two recent studies, both focused on forensic testing, have analyzed single nucleotide polymorphism (SNP) genotypes underlying common eye color variation (Mengel-From et al., Forensic Sci. Int. Genet. 4:323 and Walsh et al., Forensic Sci. Int. Genet. 5:170). Each study arrived at different recommendations for eye color predictive tests aiming to type the most closely associated SNPs, although both confirmed rs12913832 in HERC2 as the key predictor, widely recognized as the most strongly associated marker with blue and brown iris colors. Differences between these two studies in identification of other eye color predictors may partly arise from varying approaches to assigning phenotypes, notably those not unequivocally blue or dark brown and therefore occupying an intermediate iris color continuum. We have developed two single base extension assays typing 37 SNPs in pigmentation-associated genes to study SNP-genotype based prediction of eye, skin, and hair color variation. These assays were used to test the performance of different sets of eye color predictors in 416 subjects from six populations of north and south Europe. The presence of a complex and continuous range of intermediate phenotypes distinct from blue and brown eye colors was confirmed by establishing eye color populations compared to genetic clusters defined using Structure software. Our study explored the effect of an expanded SNP combination beyond six markers has on the ability to predict eye color in a forensic test without extending the SNP assay excessively - thus maintaining a balance between the test's predictive value and an ability to reliably type challenging DNA with a multiplex of manageable size. Our evaluation used AUC analysis (area under the receiver operating characteristic curves) and naïve Bayesian likelihood-based classification approaches. To provide flexibility in SNP-based eye color predictive tests in forensic applications we modified an online Bayesian classifier, originally developed for genetic ancestry analysis, to provide a straightforward system to assign eye color likelihoods from a SNP profile combining additional informative markers from the predictors analyzed by our study plus those of Walsh and Mengel-From. Two advantages of the online classifier is the ability to submit incomplete SNP profiles, a common occurrence when typing challenging DNA, and the ability to handle physically linked SNPs showing independent effect, by allowing the user to input frequencies from SNP pairs or larger combinations. This system was used to include the submission of frequency data for the SNP pair rs12913832 and rs1129038: indicated by our study to be the two SNPs most closely associated to eye color.
Collapse
Affiliation(s)
- Y Ruiz
- Forensic Genetics Unit, Institute of Legal Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
KOSINIAK-KAMYSZ A, POŚPIECH E, WOJAS-PELC A, MARCIŃSKA M, BRANICKI W. Potential association of single nucleotide polymorphisms in pigmentation genes with the development of basal cell carcinoma. J Dermatol 2012; 39:693-8. [DOI: 10.1111/j.1346-8138.2012.01559.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|