1
|
Gao H, Sun F, Zhang X, Qiao X, Guo Y. The role and application of Coronin family in human tumorigenesis and immunomodulation. Biochim Biophys Acta Rev Cancer 2025; 1880:189304. [PMID: 40154644 DOI: 10.1016/j.bbcan.2025.189304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The Coronin family, a class of actin-binding proteins involved in the formation and maintenance of cytoskeleton structural stability, is aberrantly expressed in various tumors, including lung, gastric and head and neck cancers. They can regulate tumor cell metabolism and proliferation through RAC-1 and Wnt/β-Catenin signaling pathways and regulate invasion by influencing the PI3K, PAK4, and MT1-MMP signaling pathways and impacting the actin-network dynamics. In recent years, an increasing number of studies have highlighted the crucial roles of the cytoskeleton and immune modulation in the occurrence and development of tumors. The article delves into the Coronin family's pivotal role in tumor immune evasion, highlighting its modulation of neutrophil, T cell, and vesicular transport functions, as well as its interactions with tumorigenesis related organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes. It also summarizes the potential therapeutic applications of the Coronin family in oncology. This review provides valuable insights into the mechanisms through which the Coronin family is implicated in the onset and progression of tumors. It also provides more theoretical foundation for tumor immunotherapy and combination drug therapy.
Collapse
Affiliation(s)
- Huimeng Gao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Fuli Sun
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, China
| | - Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| |
Collapse
|
2
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2025; 83:1819-1833. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Mo JS, Lamichhane S, Sharma G, Chae SC. MicroRNA 133A Regulates Squalene Epoxidase Expression in Colorectal Cancer Cells to Control Cell Proliferation and Cholesterol Production. GASTROENTEROLOGY INSIGHTS 2025; 16:5. [DOI: 10.3390/gastroent16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) is one of the most common cancers worldwide, with high incidence and mortality rates. MicroRNAs are endogenous and non-coding RNAs that play a pivotal role in the development and progression of various cancers by targeting specific genes. Previously, we identified MIR133A to be significantly decreased in human CRC tissues. This study aims to identify the relationship with SQLE, one of the candidate target genes of MIR133A, and study their interaction in CRC cells. Methods: Through the luciferase reporter assay, quantitative RT-PCR (qRT-PCR), and Western blot analysis. Results: We identified SQLE as a direct target gene of MIR133A. Using the MIR133A KI cell lines, which knocked-in MIR133A1 or MIR133A2 in CRC cell lines, and CRC cells transfected with siSQLE, we found that MIR133A regulated the proliferation and migration of CRC cells by modulating SQLE-mediated PIK3CA-AKT1 and CYP24A1 signaling. We also found that cholesterol production was regulated by MIR133A in CRC cells. Conclusions: Our results suggest that MIR133A is an important therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Ji-Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| |
Collapse
|
4
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Wang L, Hong Z. Circular RNA circ-SLC7A5 Functions as a Competing Endogenous RNA to Impact Cell Biological Behaviors in Esophageal Squamous Cell Carcinoma (ESCC). Cell Biochem Biophys 2024; 82:139-151. [PMID: 37814151 DOI: 10.1007/s12013-023-01183-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have profound effects on establishment and pathogenesis of esophageal squamous cell carcinoma (ESCC). Here, we defined whether circRNA solute carrier family 7 member 5 (circ-SLC7A5, also called hsa_circ_0040796) is causally involved in the pathogenesis of ESCC. METHODS Circ-SLC7A5, microRNA (miR)-874-3p and coronin-1C (CORO1C) expression levels were gauged by qRT-PCR or immunoblotting. Cell functional phenotypes were tested by colony formation, EdU, flow cytometry, transwell and wound-healing assays. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were applied to ascertained circ-SLC7A5/miR-874-3p and miR-874-3p/CORO1C relationships. RESULTS Circ-SLC7A5 was highly expressed in human ESCC. Circ-SLC7A5 depletion impaired cell growth, migration, invasiveness, and promoted apoptosis. Circ-SLC7A5 knockdown diminished ESCC cell tumorigenicity. Mechanistically, circ-SLC7A5 contained a binding site for miR-874-3p. Also, miR-874-3p was responsible for circ-SLC7A5's function in ESCC cells. CORO1C was a direct miR-874-3p target. Circ-SLC7A5 functioned as a competing endogenous RNA (ceRNA) to control CORO1C by competing for shared miR-874-3p. Furthermore, CORO1C knockdown phenocopied miR-874-3p overexpression in impacting the biological behaviors of ESCC cells. CONCLUSION These findings identify circ-SLC7A5 as a crucial modulator of ESCC cells and establish a novel circ-SLC7A5/miR-874-3p/CORO1C ceRNA network in ESCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Zhipeng Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:1-48. [PMID: 38220421 DOI: 10.1016/bs.apcsb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
Collapse
Affiliation(s)
- Benjamin T Veenstra
- Department of Math and Sciences, Cedarville University, Cedarville, OH, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH, United States.
| |
Collapse
|
7
|
CORO1C, a novel PAK4 binding protein, recruits phospho-PAK4 at serine 99 to the leading edge and promotes the migration of gastric cancer cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:673-685. [PMID: 35593474 PMCID: PMC9827817 DOI: 10.3724/abbs.2022044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is one of the malignant tumors in the world. PAK4 plays an important role in the occurrence and development of gastric cancer, especially in the process of invasion and metastasis. Here we discover that CORO1C, a member of coronin family that regulates microfilament and lamellipodia formation, recruits cytoplasmic PAK4 to the leading edge of gastric cancer cells by C-terminal extension (CE) domain of CORO1C (353-457 aa). The localization of PAK4 on the leading edge of the cell depends on two necessary conditions: the phosphorylation of PAK4 on serine 99 and the binding to the CE domain of CORO1C. Unphosphorylated PAK4 on serine 99 is closely associated with microtubules by PAK4/GEF-H1/Tctex-1 complex. Once phosphorylated, PAK4 is released from microtubule, and then is recruited by CORO1C to the leading edge and regulates the CORO1C/RCC2 (regulator of chromosome condensation 2) complex, leading to the migration of gastric cancer cells. Our results reveal a new mechanism by which PAK4 regulates the migration potential of gastric cancer cells through microtubule-microfilament cross talk.
Collapse
|
8
|
Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14010245. [PMID: 35008407 PMCID: PMC8750728 DOI: 10.3390/cancers14010245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, aspartate has been increasingly acknowledged as a critical player in the metabolism of cancer cells which use this metabolite for nucleotide and protein synthesis and for redox homeostasis. Most intracellular aspartate derives from the mitochondrial catabolism of glutamine. To date at least four mitochondrial transporters have been involved in this metabolic pathway. Their involvement appears to be cancer type-specific and dependent on glutamine availability. Targeting these mitochondrial transporters may represent a new attractive strategy to fight cancer. The aim of this review is to dissect the role of each of these transporters in relation to the type of cancer and the availability of nutrients in the tumoral microenvironment. Abstract Aspartate has a central role in cancer cell metabolism. Aspartate cytosolic availability is crucial for protein and nucleotide biosynthesis as well as for redox homeostasis. Since tumor cells display poor aspartate uptake from the external environment, most of the cellular pool of aspartate derives from mitochondrial catabolism of glutamine. At least four transporters are involved in this metabolic pathway: the glutamine (SLC1A5_var), the aspartate/glutamate (AGC), the aspartate/phosphate (uncoupling protein 2, UCP2), and the glutamate (GC) carriers, the last three belonging to the mitochondrial carrier family (MCF). The loss of one of these transporters causes a paucity of cytosolic aspartate and an arrest of cell proliferation in many different cancer types. The aim of this review is to clarify why different cancers have varying dependencies on metabolite transporters to support cytosolic glutamine-derived aspartate availability. Dissecting the precise metabolic routes that glutamine undergoes in specific tumor types is of upmost importance as it promises to unveil the best metabolic target for therapeutic intervention.
Collapse
|
9
|
Wang Z, Jia L, sun Y, Li C, Zhang L, Wang X, Chen H. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer. Front Mol Biosci 2021; 8:682594. [PMID: 34179087 PMCID: PMC8223509 DOI: 10.3389/fmolb.2021.682594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.
Collapse
Affiliation(s)
- Zongxia Wang
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, China
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Yushu sun
- Department of Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Chunli Li
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Inner Mongolia Autonomous Region Molecular Imaging, Inner Mongolia Medical University, Hohhot, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
- Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
11
|
Duan W, Wang K, Duan Y, Chen X, Chu X, Hu P, Xiong B. Combined Analysis of RNA Sequence and Microarray Data Reveals a Competing Endogenous RNA Network as Novel Prognostic Markers in Malignant Pleural Mesothelioma. Front Oncol 2021; 11:615234. [PMID: 33968720 PMCID: PMC8104912 DOI: 10.3389/fonc.2021.615234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with short survival time. Unbalanced competing endogenous RNAs (ceRNAs) have been shown to participate in the tumor pathogenesis and served as biomarkers for the clinical prognosis. However, the comprehensive analyses of the ceRNA network in the prognosis of MPM are still rarely reported. In this study, we obtained the transcriptome data of the MPM and the normal samples from TCGA, EGA, and GEO databases and identified the differentially expressed (DE) mRNAs, lncRNAs, and miRNAs. The functions of the prognostic genes and the overlapped DEmRNAs were further annotated by the multiple enrichment analyses. Then, the targeting relationships among lncRNA–miRNA and miRNA–mRNA were predicted and calculated, and a prognostic ceRNA regulatory network was established. We included the prognostic 73 mRNAs and 13 miRNAs and 26 lncRNAs into the ceRNA network. Moreover, 33 mRNAs, three miRNAs, and seven lncRNAs were finally associated with prognosis, and a model including seven mRNAs, two lincRNAs, and some clinical factors was finally established and validated by two independent cohorts, where CDK6 and SGMS1-AS1 were significant to be independent prognostic factors. In addition, the identified co-expressed modules associated with the prognosis were overrepresented in the ceRNA network. Multiple enrichment analyses showed the important roles of the extracellular matrix components and cell division dysfunction in the invasion of MPM potentially. In summary, the prognostic ceRNA network of MPM was established and analyzed for the first time and these findings shed light on the function of ceRNAs and revealed the potential prognostic and therapeutic biomarkers of MPM.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyi Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Hua YT, Xu WX, Li H, Xia M. Emerging roles of MiR-133a in human cancers. J Cancer 2021; 12:198-206. [PMID: 33391416 PMCID: PMC7738817 DOI: 10.7150/jca.48769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) can post-transcriptionally regulate the expression of cancer-relevant genes via binding to the 3'-untranslated region (3'-UTR) of the target mRNAs. MiR-133a, as a miRNA, participate in tumorigenesis, progression, autophagy and drug-resistance in various malignancies. Based on the recent insights, we discuss the functions of miR-133a in physiological and pathological processes and its potential effects on cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Yu-Ting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Hui Li
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| |
Collapse
|
13
|
Li W, Si X, Yang J, Zhang J, Yu K, Cao Y. Regulator of G-protein signalling 3 and its regulator microRNA-133a mediate cell proliferation in gastric cancer. Arab J Gastroenterol 2020; 21:237-245. [DOI: 10.1016/j.ajg.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
|
14
|
Tagliatela AC, Hempstead SC, Hibshman PS, Hockenberry MA, Brighton HE, Pecot CV, Bear JE. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion. Sci Rep 2020; 10:11958. [PMID: 32686704 PMCID: PMC7371684 DOI: 10.1038/s41598-020-67465-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Coronin 1C is overexpressed in multiple tumors, leading to the widely held view that this gene drives tumor progression, but this hypothesis has not been rigorously tested in melanoma. Here, we combined a conditional knockout of Coronin 1C with a genetically engineered mouse model of PTEN/BRAF-driven melanoma. Loss of Coronin 1C in this model increases both primary tumor growth rates and distant metastases. Coronin 1C-null cells isolated from this model are more invasive in vitro and produce more metastatic lesions in orthotopic transplants than Coronin 1C-reexpressing cells due to the shedding of extracellular vesicles (EVs) containing MT1-MMP. Interestingly, these vesicles contain melanosome markers suggesting a melanoma-specific mechanism of EV release, regulated by Coronin 1C, that contributes to the high rates of metastasis in melanoma.
Collapse
Affiliation(s)
- Alicia C Tagliatela
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie C Hempstead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Max A Hockenberry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hailey E Brighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Wang C, Yang Y, Yin L, Wei N, Hong T, Sun Z, Yao J, Li Z, Liu T. Novel Potential Biomarkers Associated With Epithelial to Mesenchymal Transition and Bladder Cancer Prognosis Identified by Integrated Bioinformatic Analysis. Front Oncol 2020; 10:931. [PMID: 32695668 PMCID: PMC7338771 DOI: 10.3389/fonc.2020.00931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignancies in terms of incidence and recurrence worldwide. The aim of this study was to identify novel prognostic biomarkers related to BC progression utilizing weighted gene co-expression network analysis (WGCNA) and further bioinformatic analysis. First, we constructed a co-expression network by using WGCNA among 274 TCGA-BLCA patients and preliminarily screened out four genes (CORO1C, TMPRSS4, PIK3C2B, and ZNF692) associated with advanced clinical traits. In support, GSE19915 and specimens from 124 patients were used to validate the genes selected by WGCNA; then, CORO1C and TMPRSS4 were confirmed as hub genes with strong prognostic values in BC. Moreover, the result of gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) indicated that CORO1C and TMPRSS4 might be involved in the process of epithelial to mesenchymal transition (EMT) reversely. In addition, high expression of CORO1C was found to be significantly correlated with tumor-infiltrating neutrophils (TINs), a negative regulatory component that facilitates tumor distant progression and induces poor clinical outcome. In conclusion, our study first identified CORO1C and TMPRSS4 as vital regulators in the process of tumor progression through influencing EMT and could be developed to effective prognostic and therapeutic targets in future BC treatment.
Collapse
Affiliation(s)
- Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai L, Niu M, Guo H, Li W, Xue X, Bo Y, Guo Y, Qin J, Qin Y, Liu H, Zhang Y, Yang T, Li L, Zhang L, Hou R, Wen S, An C, Li H, Xu W, Gao W. Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Mol Cancer 2020; 19:99. [PMID: 32487167 PMCID: PMC7265647 DOI: 10.1186/s12943-020-01215-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck. LSCC patients have seriously impaired vocal, respiratory, and swallowing functions with poor prognosis. Circular RNA (circRNA) has attracted great attention in cancer research. However, the expression patterns and roles of circRNAs in LSCC remain largely unknown. METHODS RNA sequencing was performed on 57 pairs of LSCC and matched adjacent normal mucosa tissues to construct circRNA, miRNA, and mRNA expression profiles. RT-PCR, qPCR, Sanger sequencing, and FISH were undertaken to study the expression, localization, and clinical significance of circCORO1C in LSCC tissues and cells. The functions of circCORO1C in LSCC were investigated by RNAi-mediated knockdown, proliferation analysis, EdU staining, colony formation assay, Transwell assay, and apoptosis analysis. The regulatory mechanisms among circCORO1C, let-7c-5p, and PBX3 were investigated by luciferase assay, RNA immunoprecipitation, western blotting, and immunohistochemistry. RESULTS circCORO1C was highly expressed in LSCC tissues and cells, and this high expression was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circCORO1C inhibited the proliferation, migration, invasion, and in vivo tumorigenesis of LSCC cells. Mechanistic studies revealed that circCORO1C competitively bound to let-7c-5p and prevented it from decreasing the level of PBX3, which promoted the epithelial-mesenchymal transition and finally facilitated the malignant progression of LSCC. CONCLUSIONS circCORO1C has an oncogenic role in LSCC progression and may serve as a novel target for LSCC therapy. circCORO1C expression has the potential to serve as a novel diagnostic and prognostic biomarker for LSCC detection.
Collapse
Affiliation(s)
- Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fengsheng Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Li Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Wenqi Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jiangbo Qin
- Department of Otolaryngology Head & Neck Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Yixiao Qin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Li Li
- Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Linshi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, PO Box 7214, 6 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Shuxin Wen
- General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, Dalian Medical University, Dalian, 116100, Liaoning, People's Republic of China.
| | - Wei Xu
- Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, People's Republic of China. .,Shandong Provincial Institute of Otolaryngology, Jinan, 250022, Shandong, People's Republic of China. .,Key Laboratory of Otolaryngology, Ministry of Health, Shandong University, Jinan, 250022, Shandong, People's Republic of China.
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
17
|
Li Q, Dai Z, Xia C, Jin L, Chen X. Suppression of long non-coding RNA MALAT1 inhibits survival and metastasis of esophagus cancer cells by sponging miR-1-3p/CORO1C/TPM3 axis. Mol Cell Biochem 2020; 470:165-174. [PMID: 32468237 DOI: 10.1007/s11010-020-03759-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/16/2020] [Indexed: 01/09/2023]
Abstract
Esophageal cancer (EC) is a malignancy causing lots of mortality worldwide. Long non-coding RNAs (lncRNAs) are involved in the progression of multiple cancer types. The present study aimed to explore the function and associated mechanisms of lncRNA metastasis-associated lung adenocarcinoma transcript1 (MALAT1) in EC development by focusing on its interaction with miR-1-3p. The levels of MALAT1 and miR-1-3p were investigated in clinical EC specimens. Then, the expression of MALAT1 was knocked down in EC cell lines, and the effects of MALAT1 inhibition on the viability, migration, and invasion, and miR-1-3p/Coronin-1C (CORO1C)/Tropomyosin3 (TPM3) axis in EC cells were detected. The interaction between MALAT1 and miR-1-3p in the progression of EC was further determined by suppressing the expression of miR-1-3p in MALAT1 inhibition cells. The results were further verified with EC xenograft mice model. MALAT1 level was downregulated, while miR-1-3p level was upregulated in EC specimens. The inhibition of MALAT1 suppressed the viability, migration, and invasion in EC cell lines. The changes in phenotypes of EC cells were associated with the upregulation of miR-1-3p level and inhibition of CORO1C/TPM3 activity. Furthermore, the results of dual-luciferase assay showed the direct binding of MALAT1 to the seed sequence of miR-1-3p. The suppressed level of miR-1-3p not only induced the activity of CORO1C/TPM3 signaling, but also upregulated MALAT1 expression, indicating the reciprocal regulation between the two factors. The inhibition of MALAT1 also inhibited tumor growth and epithelial-mesenchymal transition (EMT) in mice model, which was reversed by miR-1-3p inhibition. Collectively, MALAT1 was important to the survival and metastasis of EC cells by sponging miR-1-3p.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Gastroenterology, The First People's Hospital of Wenling, No. 333 Chuan'an South Road, Chengxi Street, Wenling, 317500, Zhejiang, China
| | - Zaiyou Dai
- Department of Nephrology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Chenmei Xia
- Department of Gastroenterology, The First People's Hospital of Wenling, No. 333 Chuan'an South Road, Chengxi Street, Wenling, 317500, Zhejiang, China
| | - Lingxiao Jin
- Department of Gastroenterology, The First People's Hospital of Wenling, No. 333 Chuan'an South Road, Chengxi Street, Wenling, 317500, Zhejiang, China
| | - Xia Chen
- Department of Gastroenterology, The First People's Hospital of Wenling, No. 333 Chuan'an South Road, Chengxi Street, Wenling, 317500, Zhejiang, China.
| |
Collapse
|
18
|
Liao M, Peng L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell Mol Biol Lett 2020; 25:22. [PMID: 32206066 PMCID: PMC7079403 DOI: 10.1186/s11658-020-00216-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Object Non-small lung cancer (NSCLC), with a poor 5-year survival rate (16%), is the major type of lung cancer. Metastasis has been identified as the main factor that leads to NSCLC therapy failure. MiR-206 is a metastasis suppressor in many cancers, including colorectal cancer, renal cell carcinoma and breast cancer. However, the role of miR-206 in NSCLC metastasis and the underlying mechanism are still obscure. Methods Quantitative reverse-transcription PCR (q-RT-PCR) assay was used to detect miR-206 mRNA of NSCLC tissues and lung cancer lines. The MTT assay, scratch wound healing assay, transwell migration assay and transwell invasion assay were conducted to illuminate the effect of miR-206 on A549 cells’ proliferation, migration and invasion. Gaussia luciferase reporter assay, q-RT-PCR and western blotting assay were used to explore the underlying mechanism. Also, the A549 xenograft model was conducted to evaluate the anti-tumor effect of miR-206 in vivo. Results The results showed that miR-206 expression was decreased in NSCLC tissues and lung cancer cells. Further research demonstrated that miR-206 inhibited the proliferation, migration and invasion of A549 cells via negatively regulating Coronin-1C (CORO1C), and CORO1C deletion significantly rescues the miR-206 mediated inhibitory effect on A549 cells. Moreover, miR-206 exhibited a perfect anti-tumor effect in the A549 xenograft model. Conclusion Our study reveals that miR-206 functions as a tumor metastasis suppressor and sheds new light on the clinical significance of miR-206 in NSCLC therapy.
Collapse
Affiliation(s)
- Ming Liao
- Thoracic Surgery Department, General Hospital of Southern Theater Command, PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, 510010 China
| | - Lijun Peng
- Thoracic Surgery Department, General Hospital of Southern Theater Command, PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, 510010 China
| |
Collapse
|
19
|
miR-26 suppresses renal cell cancer via down-regulating coronin-3. Mol Cell Biochem 2019; 463:137-146. [PMID: 31595425 DOI: 10.1007/s11010-019-03636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
Coronin-3 (coronin-1C), a homotrimer F-actin-binding protein, has been reported to be important for metastasis in several types of cancers such as lung cancer, gastric cancer, and breast cancer. Here, we present an investigation of the expression and function of coronin-3 in renal cell cancer for the first time. We also confirmed that miR-26 directly targets coronin-3 and down-regulates its expression by western blot assay and dual-luciferase reporter system. The results of MTT and colony formation assay showed that miR-26 suppressed cell proliferation. Wound healing and transwell assay revealed that miR-26 inhibited migration and invasion of renal cancer cell. Moreover, overexpression of coronin-3 could reverse the miR-26-induced inhibition in cell growth and metastasis. Thus, our study suggests that coronin-3 should serve as a potential therapeutic target in renal cell cancer and provide a candidate for miRNA therapy.
Collapse
|
20
|
Dai X, Liang Z, Liu L, Guo K, Xu S, Wang H. Silencing of MALAT1 inhibits migration and invasion by sponging miR‑1‑3p in prostate cancer cells. Mol Med Rep 2019; 20:3499-3508. [PMID: 31485645 PMCID: PMC6755148 DOI: 10.3892/mmr.2019.10602] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a common malignancy with a high mortality rate. Long non-coding RNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) has been reported to serve tumor-promoting roles. However, the underlying mechanism requires further examination. In the present study, it was demonstrated that MALAT1 was increased while microRNA (miR/miRNA)-1-3p was decreased in prostate cancer cell lines. The silencing of MALAT1 inhibited migration, invasion and epithelial-mesenchymal transition, when epithelial (E)-cadherin expression level was increased, and neural (N)-cadherin, vimentin, Slug and Snail expression levels were decreased. Dual-luciferase reporter assay results demonstrated that miR-1-3p bound to MALAT1 and coronin 1C (CORO1C) 3′ untranslated region, and MALAT1 competed with CORO1C for the binding sites of miR-1-3p. MALAT1 inhibited the expression of miR-1-3p and vice versa. MALAT1 knockdown induced the decline of CORO1C, which was subsequently recovered by the miR-1-3p inhibitor. In addition, by inhibiting miR-1-3p or overexpressing CORO1C, the silencing of MALAT1-induced phenotypic alterations were restored. In conclusion, MALAT1 serving as a degradable miRNA sponge, may sequester miR-1-3p from CORO1C and by silencing MALAT1, migration, invasion and epithelial-mesenchymal transition may be inhibited in prostate cancer cells. MALAT1 and CORO1C may serve as novel clinical therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Xiaofan Dai
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zuowen Liang
- Human Sperm Bank of Jilin Province, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shengqi Xu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
MiR-361-5p inhibits cell proliferation and induces cell apoptosis in retinoblastoma by negatively regulating CLDN8. Childs Nerv Syst 2019; 35:1303-1311. [PMID: 31161266 DOI: 10.1007/s00381-019-04199-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE MiR-361-5p has been reported to act as tumor suppressor in several types of cancers. Retinoblastoma (RB) is the most common ocular tumor in childhood. The current study aimed to investigate the expression pattern and biological function of miR-361-5p in RB. METHODS Quantitative real time was utilized to determine and compare the expression of miR-361-5p in RB cells and normal retinal pigment epithelial cell line ARPE-19. CCK-8 and Edu assay were performed to assess cell proliferation. Cell apoptosis was evaluated using flow cytometry assay. Bioinformatics databases and luciferase reporter assay were applied to predict and confirm the target gene of miR-361-5p in RB cells. RESULTS Here, we found miR-361-5p was significantly downregulated in RB cells compared with normal retinal pigment epithelial cell line ARPE-19. MiR-361-5p overexpression significantly inhibited or silencing promoted cell proliferation in Y79 and SO-RB50 cells, respectively. Flow cytometry assay showed a significantly decreased cell apoptosis in miR-361-5p silencing Y79 cells and increased cell apoptosis in miR-361-5p overexpressing SO-RB50 cells. Moreover, miR-361-5p directly bound to the 3' untranslated region of claudin 8 (CLDN8) and inhibited the expression of CLDN8. Furthermore, we found knockdown of CLDN8 photocopied the effect of miR-361-5p on cell proliferation and apoptosis in RB cells. CONCLUSION These results indicated that overexpression of miR-361-5p might act as a suppressor in RB by targeting CLDN8 to inhibit the cellular function.
Collapse
|
22
|
Deng LM, Tan T, Zhang TY, Xiao XF, Gu H. miR‑1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol 2019; 55:451-461. [PMID: 31268161 PMCID: PMC6615921 DOI: 10.3892/ijo.2019.4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide and results in the second greatest rate of cancer-associated mortality globally. Multidrug resistance (MDR) often develops during the chemotherapy, resulting in the failure of treatment. To investigate the molecular mechanism of MDR, the roles of microRNA (miR)-1 were studied in GC. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression levels of miR-1 and sorcin in SGC7901/ADM and SGC7901/VCR cell lines. The effect of miR-1 on the half maximal inhibitory concentration (IC50), cell apoptosis rates and drug accumulation was uncovered by MTT assay and flow cytometric analysis. Furthermore, dual-luciferase assay and western blotting were used to determine the target of miR-1 in GC. It was demonstrated that miR-1 was highly downregulated in MDR GC cell lines, including SGC7901/ADM and SGC7901/VCR. Overexpression of miR-1 in MDR GC cells decreased IC50, but increased the cell apoptosis rates and promoted the drug accumulation in cancer cells. Dual-luciferase activity assay indicated that sorcin was the target of miR-1 in GC. In addition, overexpression of sorcin could partially reverse the effect of miR-1 in MDR GC cells. The role of miR-1 in MDR GC cells makes it a potential therapeutic target for a successful clinical outcome.
Collapse
Affiliation(s)
- Lang-Mei Deng
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tan Tan
- Department of Inspection, Chenzhou No.1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Tian-Yi Zhang
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xue-Fei Xiao
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huan Gu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Li X, Qin M, Huang J, Ma J, Hu X. Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma. Mol Med Rep 2019; 19:5063-5078. [PMID: 31059033 PMCID: PMC6522896 DOI: 10.3892/mmr.2019.10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 09/21/2019] [Indexed: 11/25/2022] Open
Abstract
Previous studies demonstrated that miRNA-1 (miR-1) is downregulated in certain human cancer and serves a crucial role in the progression of cancer. However, there are only a few previous studies examining the association between miR-1 and lung squamous cell carcinoma (LUSC) and the regulatory mechanism of miR-1 in LUSC remains unclear. Therefore, the present study investigated the clinical significance and determined the potential molecular mechanism of miR-1 in LUSC. The expression of miR-1 and its clinical significance in LUSC was examined by conducting a meta-analysis of 12 studies using Stata 14, MetaDiSc1.4 and SPSS version 23. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the potential target genes of miR-1 gathered from Gene Expression Omnibus and ArrayExpress. Meta-analysis demonstrated that miR-1 was significantly downregulated in LUSC [standardized mean difference: −1.44; 95% confidence interval (CI): −2.08, −0.81], and the area under the curve was 0.9096 (Q*=0.8416) with sensitivity of 0.71 (95% CI: 0.66, 0.76) and specificity of 0.88 (95% CI: 0.86, 0.90). The pooled positive likelihood ratio and negative likelihood ratio were 4.93 (95% CI: 2.54, 9.55) and 0.24 (95% CI: 0.10, 0.54), respectively. Bioinformatics analysis demonstrated that miR-1 may be involved in the progression of LUSC via the ‘cell cycle’, ‘p53 signaling pathway’, ‘Fanconi anemia pathway’, ‘homologous recombination’, ‘glycine, serine and threonine metabolism’ and ‘oocyte meiosis’. In summary, miR-1 was significantly downregulated in LUSC, suggesting a novel and promising non-invasive biomarker for diagnosing LUSC, and miR-1 was involved in LUSC progression via a number of significant pathways.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Positron Emission Tomography‑Computed Tomography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meijiao Qin
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiacheng Huang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaohua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
24
|
Cheng X, Wang X, Wu Z, Tan S, Zhu T, Ding K. CORO1C expression is associated with poor survival rates in gastric cancer and promotes metastasis in vitro. FEBS Open Bio 2019; 9:1097-1108. [PMID: 30974047 PMCID: PMC6551501 DOI: 10.1002/2211-5463.12639] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Coronin-like actin-binding protein 1C (CORO1C) is a member of the WD repeat protein family that regulates actin-dependent processes by assembling F-actin. CORO1C was previously reported to promote metastasis in breast cancer and lung squamous cell carcinoma. Here, we investigated the role of CORO1C in gastric cancer. Higher expression levels of CORO1C were detected in gastric cancer tissues as compared with normal gastric tissues. In addition, CORO1C levels were found to be positively correlated with lymph node metastasis in gastric cancer patients. The expression levels of CORO1C were higher in stage III-IV gastric cancer patients (80.8%) than in stage I-II gastric cancer patients(57.1%). Gastric cancer patients positive for CORO1C expression showed lower relapse-free survival and overall survival rates. Knockdown of CORO1C dramatically suppressed total cell number, cell viability, cell colony formation, cell mitosis and cell metastasis, and promoted apoptosis of gastric cancer cells. Furthermore, cyclin D1 and vimentin were found to be positively regulated by CORO1C. As cyclin D1 and vimentin play an oncogenic role in gastric cancer, CORO1C may exert its tumor-promoting activity through these proteins.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Xiaonan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Sheng Tan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020258. [PMID: 30813343 PMCID: PMC6406917 DOI: 10.3390/cancers11020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
26
|
Tan HY, Wang C, Liu G, Zhou X. Long noncoding RNA NEAT1-modulated miR-506 regulates gastric cancer development through targeting STAT3. J Cell Biochem 2019; 120:4827-4836. [PMID: 29363783 DOI: 10.1002/jcb.26691] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
Accumulating evidence has indicated that long noncoding RNA NEAT1 exerts critical roles in cancers. So far, the detailed biological role and mechanisms of NEAT1, which are responsible for human gastric cancer (GC), are still largely unknown. Here, we observed that NEAT1 and STAT3 expressions were significantly upregulated in human GC cells including BGC823, SGC-7901, AGS, MGC803, and MKN28 cells compared with normal gastric epithelial cells GES-1, while miR-506 was downregulated. We inhibited NEAT1 and observed that NEAT1 inhibition was able to repress the growth, migration, and invasion of GC cells. Conversely, overexpression of NEAT1 exhibited an increased ability of GC progression in BGC823 and SGC-7901 cells. Bioinformatics analysis, dual luciferase reporter assays, RIP assays, and RNA pull-down tests validated the negative binding correlation between NEAT1 and miR-506. In addition, it was found that miR-506 can modulate the expression of NEAT1 in vitro. STAT3 was predicted as a messenger RNA (mRNA) target of miR-506, and miR-506 mimics can suppress STAT3 mRNA expression. Subsequently, it was observed that downregulation of NEAT1 can restrain GC development by decreasing STAT3, which can be reversed by miR-506 inhibitors. Therefore, it was hypothesized in our study that NEAT1 can be recognized as a competing endogenous RNA to modulate STAT3 by sponging miR-506 in GC. In conclusion, we implied that NEAT1 can serve as an important biomarker in GC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Yang Tan
- Department of Gastrointestinal Surgery, The First People's Hospital of Tianmen, Tianmen, Hubei, China
| | - Changcheng Wang
- Department of Gastroenterology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Xiang Zhou
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
27
|
Chang WH, Forde D, Lai AG. A novel signature derived from immunoregulatory and hypoxia genes predicts prognosis in liver and five other cancers. J Transl Med 2019; 17:14. [PMID: 30626396 PMCID: PMC6327401 DOI: 10.1186/s12967-019-1775-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
Background Despite much progress in cancer research, its incidence and mortality continue to rise. A robust biomarker that would predict tumor behavior is highly desirable and could improve patient treatment and prognosis. Methods In a retrospective bioinformatics analysis involving patients with liver cancer (n = 839), we developed a prognostic signature consisting of 45 genes associated with tumor-infiltrating lymphocytes and cellular responses to hypoxia. From this gene set, we were able to identify a second prognostic signature comprised of 8 genes. Its performance was further validated in five other cancers: head and neck (n = 520), renal papillary cell (n = 290), lung (n = 515), pancreas (n = 178) and endometrial (n = 370). Results The 45-gene signature predicted overall survival in three liver cancer cohorts: hazard ratio (HR) = 1.82, P = 0.006; HR = 1.84, P = 0.008 and HR = 2.67, P = 0.003. Additionally, the reduced 8-gene signature was sufficient and effective in predicting survival in liver and five other cancers: liver (HR = 2.36, P = 0.0003; HR = 2.43, P = 0.0002 and HR = 3.45, P = 0.0007), head and neck (HR = 1.64, P = 0.004), renal papillary cell (HR = 2.31, P = 0.04), lung (HR = 1.45, P = 0.03), pancreas (HR = 1.96, P = 0.006) and endometrial (HR = 2.33, P = 0.003). Receiver operating characteristic analyses demonstrated both signatures superior performance over current tumor staging parameters. Multivariate Cox regression analyses revealed that both 45-gene and 8-gene signatures were independent of other clinicopathological features in these cancers. Combining the gene signatures with somatic mutation profiles increased their prognostic ability. Conclusions This study, to our knowledge, is the first to identify a gene signature uniting both tumor hypoxia and lymphocytic infiltration as a prognostic determinant in six cancer types (n = 2712). The 8-gene signature can be used for patient risk stratification by incorporating hypoxia information to aid clinical decision making. Electronic supplementary material The online version of this article (10.1186/s12967-019-1775-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Donall Forde
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| |
Collapse
|
28
|
Uchida A, Seki N, Mizuno K, Misono S, Yamada Y, Kikkawa N, Sanada H, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci 2019; 110:420-432. [PMID: 30375717 PMCID: PMC6317942 DOI: 10.1111/cas.13853] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of patients with advanced-stage lung squamous cell carcinoma (LUSQ) is poor, and effective treatment protocols are limited. Our continuous analyses of antitumor microRNAs (miRNAs) and their oncogenic targets have revealed novel oncogenic pathways in LUSQ. Analyses of our original miRNA expression signatures indicated that both strands of miR-144 (miR-144-5p, the passenger strand; miR-144-3p, the guide strand) showed decreased expression in cancer tissues. Additionally, low expression of miR-144-5p significantly predicted a poor prognosis in patients with LUSQ by The Cancer Genome Atlas database analyses (overall survival, P = 0.026; disease-free survival, P = 0.023). Functional assays revealed that ectopic expression of miR-144-5p and miR-144-3p significantly blocked the malignant abilities of LUSQ cells, eg, cancer cell proliferation, migration, and invasion. In LUSQ cells, 13 and 15 genes were identified as possible oncogenic targets that might be regulated by miR-144-5p and miR-144-3p, respectively. Among these targets, we identified 3 genes (SLC44A5, MARCKS, and NCS1) that might be regulated by both strands of miR-144. Interestingly, high expression of NCS1 predicted a significantly poorer prognosis in patients with LUSQ (overall survival, P = 0.013; disease-free survival, P = 0.048). By multivariate analysis, NCS1 expression was found to be an independent prognostic factor for patients with LUSQ patients. Overexpression of NCS1 was detected in LUSQ clinical specimens, and its aberrant expression enhanced malignant transformation of LUSQ cells. Our approach, involving identification of antitumor miRNAs and their targets, will contribute to improving our understanding of the molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Naohiko Seki
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Keiko Mizuno
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Shunsuke Misono
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Naoko Kikkawa
- Department of Functional GenomicsGraduate School of MedicineChiba UniversityChibaJapan
| | - Hiroki Sanada
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Tomohiro Kumamoto
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Takayuki Suetsugu
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Hiromasa Inoue
- Department of Pulmonary MedicineGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
29
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
31
|
Abstract
Background We studies the expression of Coronin 1c and F-actin protein in breast cancer and explored their relationship with breast cancer metastasis. Material/Methods A total of 210 breast cancer tissues and adjacent normal tissues were collected from January 2013 to December 2014. The expressions of Coronin 1c and F-actin were detected by immunohistochemistry and Western blotting. We analyzed the relationship between Coronin 1c and F-actin and clinical data of breast cancer. Results The expressions of Coronin 1c and F-actin in breast cancer tissues were positively correlated (r=0.926, P<0.05) and were significantly higher than those in normal tissues (P<0.05). The Coronin 1c and F-actin expressions were not correlated with age, tumor size, ER expression, or PR expression in breast cancer patients (P>0.05), but were significantly correlated with HER-2 expression, histological grade, lymph node metastasis, molecular classification, and TNM (P<0.05). The expression of HER-2 in breast cancer tissues was positively correlated with the expression of Coronin 1c (r=0.706, P<0.05) and F-actin 1c, while F-actin protein in breast cancer tissues with lymph node metastasis was significantly higher than in those without lymph node metastasis (P<0.05). Conclusions Coronin 1c protein and F-actin protein are highly expressed in breast cancer and their expression may be related to the metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Jianqiang Shao
- 3rd Surgical Department, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Hui Zhang
- 3rd Surgical Department, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Zunyi Wang
- 3rd Surgical Department, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
32
|
Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Arai T, Kumamoto T, Sanada H, Suetsugu T, Inoue H. Dual strands of the miR-145 duplex (miR-145-5p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis. J Hum Genet 2018; 63:1015-1028. [PMID: 30082847 DOI: 10.1038/s10038-018-0497-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022]
Abstract
Our original microRNA (miRNA) expression signatures (based on RNA sequencing) revealed that both strands of the miR-145 duplex (miR-145-5p, the guide strand, and miR-145-3p, the passenger strand) were downregulated in several types of cancer tissues. Involvement of passenger strands of miRNAs in cancer pathogenesis is a new concept in miRNA biogenesis. In our continuing analysis of lung adenocarcinoma (LUAD) pathogenesis, we aimed here to identify important oncogenes that were controlled by miR-145-5p and miR-145-3p. Downregulation of miR-145-5p and miR-145-3p was confirmed in LUAD clinical specimens. Functional assays showed that miR-145-3p significantly blocked the malignant abilities in LUAD cells, e.g., cancer cell proliferation, migration and invasion. Thus, the data showed that expression of the passenger strand of the miR-145-duplex acted as an anti-tumor miRNA. In LUAD cells, we identified four possible target genes (LMNB2, NLN, SIX4, and DDC) that might be regulated by both strands of miR-145. Among the possible targets, high expression of LMNB2 predicted a significantly poorer prognosis of LUAD patients (disease-free survival, p = 0.0353 and overall survival, p = 0.0017). Overexpression of LMNB2 was detected in LUAD clinical specimens and its aberrant expression promoted malignant transformation of LUAD cells. Genes regulated by anti-tumor miR-145-5p and miR-145-3p are closely involved in the molecular pathogenesis of LUAD. We suggest that they are promising prognostic markers for this disease. Our approach, based on the roles of anti-tumor miRNAs, will contribute to improved understanding of the molecular pathogenesis of LUAD.
Collapse
Affiliation(s)
- Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| |
Collapse
|
33
|
Rosmaninho P, Mükusch S, Piscopo V, Teixeira V, Raposo AA, Warta R, Bennewitz R, Tang Y, Herold-Mende C, Stifani S, Momma S, Castro DS. Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO J 2018; 37:e97115. [PMID: 29903919 PMCID: PMC6068449 DOI: 10.15252/embj.201797115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells. Transcriptional repression requires direct DNA binding of Zeb1, while indirect recruitment to regulatory regions by the Wnt pathway effector Lef1 results in gene activation, independently of Wnt signaling. Amongst glioblastoma genes activated by Zeb1 are predicted mediators of tumor cell migration and invasion, including the guanine nucleotide exchange factor Prex1, whose elevated expression is predictive of shorter glioblastoma patient survival. Prex1 promotes invasiveness of glioblastoma cells in vivo highlighting the importance of Zeb1/Lef1 gene regulatory mechanisms in gliomagenesis.
Collapse
Affiliation(s)
- Pedro Rosmaninho
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Susanne Mükusch
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valerio Piscopo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vera Teixeira
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre Asf Raposo
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Romina Bennewitz
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yeman Tang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Diogo S Castro
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
34
|
Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes. Oncotarget 2018; 8:42043-42060. [PMID: 28159933 PMCID: PMC5522048 DOI: 10.18632/oncotarget.14927] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers.
Collapse
|
35
|
Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 2018; 36:525-545. [PMID: 28836104 DOI: 10.1007/s10555-017-9692-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18-23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
36
|
Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget 2018; 7:72084-72098. [PMID: 27765924 PMCID: PMC5342147 DOI: 10.18632/oncotarget.12290] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Patients with lung adenocarcinoma may benefit from recently developed molecular targeted therapies. However, analogous advanced treatments are not available for patients with lung squamous cell carcinoma (lung SCC). The survival rate of patients with the advanced stage of lung SCC remains poor. Exploration of novel lung SCC oncogenic pathways might lead to new treatment protocols for the disease. Based on this concept, we have identified microRNA- (miRNA) mediated oncogenic pathways in lung SCC. It is well known that miR-145-5p (the guide strand) functions as a tumor suppressor in several types of cancer. However, the impact of miR-145-3p (the passenger strand) on cancer cells is still ambiguous. Expression levels of miR-145-5p and miR-145-3p were markedly reduced in cancer tissues, and ectopic expression of these miRNAs inhibited cancer cell aggressiveness, suggesting that both miR-145-3p as well as miR-145-5p acted as antitumor miRNAs. We identified seven putative target genes (MTDH, EPN3, TPD52, CYP27B1, LMAN1, STAT1 and TXNDC12) that were coordinately regulated by miR-145-5p and miR-145-3p in lung SCC. Among the seven genes, we found that metadherin (MTDH) was a direct target of these miRNAs. Kaplan–Meier survival curves showed that high expression of MTDH predicted reduced survival of lung SCC patients. We investigated pathways downstream from MTDH by using genome-wide gene expression analysis. Our data showed that several anti-apoptosis and pro-proliferation genes were involved in pathways downstream from MTDH in lung SCC. Taken together, both strands of miR-145, miR-145-5p and miR-145-3p are functional and play pivotal roles as antitumor miRNAs in lung SCC.
Collapse
|
37
|
Suetsugu T, Koshizuka K, Seki N, Mizuno K, Okato A, Arai T, Misono S, Uchida A, Kumamoto T, Inoue H. Downregulation of matrix metalloproteinase 14 by the antitumor miRNA, miR-150-5p, inhibits the aggressiveness of lung squamous cell carcinoma cells. Int J Oncol 2017; 52:913-924. [PMID: 29286099 DOI: 10.3892/ijo.2017.4232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/24/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, in order to elucidate the aggressive nature of lung squamous cell carcinoma (LUSQ), we investigated the oncogenic RNA networks regulated by antitumor microRNAs (miRNAs or miRs) in LUSQ cells. The analysis of our original miRNA expression signatures of human cancers revealed that microRNA‑150‑5p (miR‑150‑5p) was downregulated in various types of cancer, indicating that miR‑150‑5p acts as an antitumor miRNA by targeting several oncogenic genes. Thus, the aims of this study were to investigate the antitumor roles of miR‑150‑5p in LUSQ cells and to identify oncogenes regulated by miR‑150‑5p that are involved in the aggressive behavior of LUSQ. The downregulation of miR‑150‑5p was validated in clinical samples of LUSQ and cell lines (SK-MES‑1 and EBC‑1). The ectopic overexpression of miR‑150‑5p significantly suppressed cancer cell aggressiveness. Comprehensive gene expression analyses revealed that miR‑150‑5p regulated 9 genes in the LUSQ cells. Among these, matrix metalloproteinase 14 (MMP14) was found to be a direct target of miR‑150‑5p, as shown by luciferase reporter assay. The knockdown of MMP14 using siRNA against MMP14 (si-MMP14) significantly inhibited cancer cell migration and invasion. The overexpression of MMP14 was detected in clinical specimens of LUSQ by immunohistochemistry. On the whole, these findings suggest that the downregulation of miR‑150‑5p and the overexpression of MMP14 may be deeply involved in the pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260‑8670, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260‑8670, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260‑8670, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260‑8670, Japan
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
38
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
39
|
Sysol JR, Chen J, Singla S, Zhao S, Comhair S, Natarajan V, Machado RF. Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. Am J Physiol Lung Cell Mol Physiol 2017; 314:L461-L472. [PMID: 29167124 DOI: 10.1152/ajplung.00057.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Medical Scientist Training Program, University of Illinois at Chicago , Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | | | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University , Indianapolis, Indiana
| |
Collapse
|
40
|
Gao Y, Li L, Xing X, Lin M, Zeng Y, Liu X, Liu J. Coronin 3 negatively regulates G6PC3 in HepG2 cells, as identified by label‑free mass‑spectrometry. Mol Med Rep 2017; 16:3407-3414. [PMID: 28713988 DOI: 10.3892/mmr.2017.7002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Human coronin 3 is involved in many types of cancers, but the underlying molecular mechanisms require further elucidation. The present study demonstrated that coronin 3 is significantly upregulated in clinical primary hepatocellular carcinoma (HCC) samples by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemical staining. Subsequently, proteins that were regulated by coronin 3 in both coronin 3 overexpressing or knocked down HepG2 cells were analyzed by label free mass spectrometry; overall, 249 proteins were identified to be closely regulated by coronin 3, and those coronin 3 regulated proteins were enriched in cellular, physiological and metabolism processes. By further in‑depth pathway analysis, it was demonstrated that those proteins were involved into 94 different pathways. Finally, the expression levels of glucose‑6‑phosphatase catalytic subunit 3 (G6PC3) were confirmed to be negatively regulated by coronin 3, as determined by RT‑qPCR and western blotting. In conclusion, these results indicated that coronin3 is significantly dysregulated in HCC tumor tissues, and may exert its function via regulating G6PC3 expression. These results provide valuable information for further study of coronin 3‑mediated signaling pathways, and implicate coronin 3 as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yunzhen Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Minjie Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
41
|
Luo T, Yi X, Si W. Identification of miRNA and genes involving in osteosarcoma by comprehensive analysis of microRNA and copy number variation data. Oncol Lett 2017; 14:5427-5433. [PMID: 29098032 PMCID: PMC5652194 DOI: 10.3892/ol.2017.6845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to understand the molecular mechanisms of osteosarcoma by comprehensive analysis of microRNA (miRNA/miR) and copy number variation (CNV) microarray data. Microarray data (GSE65071 and GSE33153) were downloaded from the Gene Expression Omnibus. In GSE65071, differentially expressed miRNAs between the osteosarcoma and control groups were calculated by the Limma package. Target genes of differentially expressed miRNAs were identified by the starBase database. For GSE33153, PennCNV software was used to perform the copy number variation (CNV) analysis. Overlapping of the genes in CNV regions and the target genes of differentially expressed miRNAs were used to construct miRNA-gene regulatory network using the starBase database. A total of 149 differentially expressed miRNAs, including 13 downregulated and 136 upregulated, were identified. In the GSE33153 dataset, 987 CNV regions involving in 3,635 genes were identified. In total, 761 overlapping genes in 987 CNV regions and in the genes in 7,313 miRNA-gene pairs were obtained. miRNAs (hsa-miR-27a-3p, hsa-miR-124-3p, hsa-miR-9-5p, hsa-miR-182-5p, hsa-miR-26a-5p) and the genes [Fibroblast growth factor receptor substrate 2 (FRS2), coronin 1C (CORO1C), forkhead box P1 (FOXP1), cytoplasmic polyadenylation element binding protein 4 (CPEB4) and glucocorticoid induced 1 (GLCCI1)] with the highest degrees of association with osteosarcoma development were identified. Hsa-miR-27a-3p, hsa-miR-9-5p, hsa-miR-182-5p, FRS2, CORO1C, FOXP1 and CPEB4 may be involved in osteosarcoma pathogenesis, and development.
Collapse
Affiliation(s)
- Tao Luo
- Department of Blood Transfusion, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiangli Yi
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wei Si
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
42
|
Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:53180-53193. [PMID: 28881803 PMCID: PMC5581102 DOI: 10.18632/oncotarget.18261] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Analysis of our microRNA (miRNA) expression signature of pancreatic ductal adenocarcinoma (PDAC) revealed that microRNA-217 (miR-217) was significantly reduced in cancer tissues. The aim of this study was to investigate the antitumor roles of miR-217 in PDAC cells and to identify miR-217-mediated molecular pathways involved in PDAC aggressiveness. The expression levels of miR-217 were significantly reduced in PDAC clinical specimens. Ectopic expression of miR-217 significantly suppressed cancer cell migration and invasion. Transcription of actin-binding protein Anillin (coded by ANLN) was detected by our in silico and gene expression analyses. Moreover, luciferase reporter assays showed that ANLN was a direct target of miR-217 in PDAC cells. Overexpression of ANLN was detected in PDAC clinical specimens by real-time PCR methods and immunohistochemistry. Interestingly, Kaplan-Meier survival curves showed that high expression of ANLN predicted shorter survival in patients with PDAC by TCGA database analysis. Silencing ANLN expression markedly inhibited cancer cell migration and invasion capabilities of PDAC cell lines. We further investigated ANLN-mediated downstream pathways in PDAC cells. "Focal adhesion" and "Regulation of actin binding protein" were identified as ANLN-modulated downstream pathways in PDAC cells. Identification of antitumor miR-217/ANLN-mediated PDAC pathways will provide new insights into the potential mechanisms underlying the aggressive course of PDAC.
Collapse
Affiliation(s)
- Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Fei Y, Guo P, Wang F, Li H, Lei Y, Li W, Xun X, Lu F. Identification of miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 16:4179-4186. [DOI: 10.3892/mmr.2017.7123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
44
|
Zhang M, Huang S, Long D. MiR-381 inhibits migration and invasion in human gastric carcinoma through downregulatedting SOX4. Oncol Lett 2017; 14:3760-3766. [PMID: 28927144 DOI: 10.3892/ol.2017.6637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
Aberrant expression of microRNAs (miRs) serves essential roles in the generation and progression of various types of human cancer. In the present study, the expression and biological functions of miR-381 in human gastric carcinoma (GC) were focused upon. The results of reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of miR-381 was significantly downregulated in GC tissue samples. Furthermore, low expression of miR-381 was identified to be associated with lymphatic metastasis and advanced tumor-node-metastasis stage (III+IV). Upregulation of miR-381 inhibited the migration and invasion of GC SGC-7901 cells through SRY-Box 4 (SOX4)-mediated epithelial-mesenchymal transition. Finally, long non-coding (lnc) RNA-taurine upregulatedted 1 (non-protein coding) (TUG1) was confirmed as a negatively regulator of miR-381 expression in SGC-7901 cells. Taken together, the results of the current study indicate that the downregulation of miR-381 by lncRNA-TUG1 promoted the metastasis of GC cells by inhibiting SOX4. Thus, targeting miR-381 may be a novel therapeutic option for the treatment of patients with GC.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
45
|
Sun F, Yang X, Jin Y, Chen L, Wang L, Shi M, Zhan C, Shi Y, Wang Q. Bioinformatics analyses of the differences between lung adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas expression data. Mol Med Rep 2017; 16:609-616. [PMID: 28560415 PMCID: PMC5482124 DOI: 10.3892/mmr.2017.6629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to explore gene and microRNA (miRNA) expression differences between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified by analyzing mRNA and miRNA expression data in normal and cancerous lung tissues that were obtained from The Cancer Genome Atlas database. A total of 778 DEGs and 7 DEMs were identified. Altered gene functions and signaling pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which revealed that DEGs were significantly enriched in extracellular matrix organization, cell differentiation, negative regulation of toll signaling pathway, and several other terms and pathways. Transcription factor (TF)-miRNA-gene networks in LUAD and LUSC were predicted using the TargetScan, Miranda, and TRANSFAC databases, which revealed the regulatory links among the TFs, DEMs, and DEGs. The central TFs, i.e., the TFs in the middle of the TF-miRNA-gene network, of LUAD and LUSC were similar. Although LUAD and LUSC shared similar miRNAs in the predicted networks, miR-29b-3p was demonstrated to be upregulated only in LUAD, whereas miR-1, miR-105-5p, and miR-193b-5p were altered in LUSC. These findings may improve our understanding of the different molecular mechanisms in non-small cell lung cancers and may promote new and accurate strategies for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| |
Collapse
|
46
|
Lim JP, Shyamasundar S, Gunaratne J, Scully OJ, Matsumoto K, Bay BH. YBX1 gene silencing inhibits migratory and invasive potential via CORO1C in breast cancer in vitro. BMC Cancer 2017; 17:201. [PMID: 28302118 PMCID: PMC5356414 DOI: 10.1186/s12885-017-3187-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Y-box binding protein-1 is an evolutionary conserved transcription and translation regulating protein that is overexpressed in various human malignancies, including breast cancer. Despite reports of YB-1 and its association with distant spread of breast cancer, the intrinsic mechanism underlying this observation remains elusive. This study investigates the role of YB-1 in mediating metastasis in highly invasive breast cancer cell lines. METHODS Silencing the YBX1 gene (which encodes the YB-1 protein) by small interfering RNA (siRNA) was performed in MDA-MB-231 and Hs578T breast cancer cell lines, followed by phenotypic assays including cell migration and invasion assays. Gene expression profiling using Affymetrix GeneChip® Human Transcriptome 2.0 array was subsequently carried out in YB-1 silenced MDA-MB-231 cells. Overexpression and silencing of YBX1 were performed to assess the expression of CORO1C, one of the differentially regulated genes from the transcriptomic analysis. A Gaussia luciferase reporter assay was used to determine if CORO1C is a putative YB-1 downstream target. siRNA-mediated silencing of CORO1C and down-regulation of YBX1 in CORO1C overexpressing MDA-MB-231 cells were performed to evaluate cell migration and invasion. RESULTS Downregulation of the YB-1 protein inhibited cell migration and invasion in MDA-MB-231 breast cancer cells. Global gene expression profiling in the YBX1 silenced MDA-MB-231 cells identified differential expression of several genes, including CORO1C (which encodes for an actin binding protein, coronin-1C) as a potential downstream target of YB-1. While knockdown of YBX1 gene decreased CORO1C gene expression, the opposite effects were seen in YB-1 overexpressing cells. Subsequent verification using the reporter assay revealed that CORO1C is an indirect downstream target of YB-1. Silencing of CORO1C by siRNA in MDA-MB-231 cells was also observed to reduce cell migration and invasion. Silencing of YBX1 caused a similar reduction in CORO1C expression, concomitant with a significant decrease in migration in Hs578T cells. In coronin-1C overexpressing MDA-MB-231 cells, increased migration and invasion were abrogated by YB-1 knockdown. CONCLUSION It would appear that YB-1 could regulate cell invasion and migration via downregulation of its indirect target coronin-1C. The association between YB-1 and coronin-1C offers a novel approach by which metastasis of breast cancer cells could be targeted and abrogated.
Collapse
Affiliation(s)
- Jia Pei Lim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| | - Jayantha Gunaratne
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Olivia Jane Scully
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| | - Ken Matsumoto
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore, 117594 Singapore
| |
Collapse
|
47
|
Mizuno K, Mataki H, Arai T, Okato A, Kamikawaji K, Kumamoto T, Hiraki T, Hatanaka K, Inoue H, Seki N. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet 2017; 62:671-678. [DOI: 10.1038/jhg.2017.27] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
|
48
|
Conconi D, Chiappa V, Perego P, Redaelli S, Bovo G, Lavitrano M, Milani R, Dalprà L, Lissoni AA. Potential role of BCL2 in the recurrence of uterine smooth muscle tumors of uncertain malignant potential. Oncol Rep 2016; 37:41-47. [PMID: 28004108 PMCID: PMC5355714 DOI: 10.3892/or.2016.5274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Uterine smooth muscle tumors are the most common female genital tract neoplasms. While leiomyosarcoma has been studied at length, smooth muscle tumors of uncertain malignant potential (STUMPs) still have ambiguous and unresolved issues, with a risk of relapse and evolution largely undefined. We performed an array comparative genomic hybridization analysis on a primitive STUMP and its local recurrence, histologically diagnosed as undifferentiated sarcoma. To the best of our knowledge, our report is the first genomic study on primitive STUMPs and the different relapsed tumors. The results showed few copy number alterations shared between both samples and the high heterogeneity in the STUMP was apparently lost in the sarcoma. Surprisingly the STUMP presented an amplification of the BCL2 gene, not observed in the relapsed tumor. Additionally, fluorescence in situ hybridization and immunohistochemical staining were performed to confirm BCL2 amplification and expression in these samples and in two other cases of primitive STUMPs and their corresponding relapsed tumors. The presence of BCL2 in multiple copies and expression in the two primitive STUMPs and two relapsed tumors was confirmed. The marked amplification of the BCL2 gene present in the primitive STUMP and the multiple copies also observed in other cases, suggest its potential role as a marker of STUMP malignant potential and recurrence.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Valentina Chiappa
- Department of Obstetrics and Gynecology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Patrizia Perego
- Unit of Pathology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Giorgio Bovo
- Unit of Pathology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Rodolfo Milani
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | | |
Collapse
|
49
|
Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, Samukawa T, Koshizuka K, Goto Y, Inoue H. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol 2016; 49:1870-1880. [PMID: 27633630 PMCID: PMC5063422 DOI: 10.3892/ijo.2016.3690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
The development of targeted molecular therapies has greatly benefited patients with lung adenocarcinomas. In contrast, these treatments have had little benefit in the management of lung squamous cell carcinoma (lung SCC). Therefore, new treatment options based on current genomic approaches are needed for lung SCC. Aberrant microRNA (miRNA) expression has been shown to promote lung cancer development and aggressiveness. Downregulation of microRNA-218 (miR-218) was frequently observed in our miRNA expression signatures of cancers, and previous studies have shown an antitumor function of miR-218 in several types of cancers. However, the impact of miR-218 on lung SCC is still ambiguous. The present study investigated the antitumor roles of miR-218 in lung SCC to identify the target genes regulated by this miRNA. Ectopic expression of miR-218 greatly inhibited cancer cell migration and invasion in the lung SCC cell lines EBC-1 and SK-MES-1. Through a combination of in silico analysis and gene expression data searching, tumor protein D52 (TPD52) was selected as a putative target of miR-218 regulation. Moreover, direct binding of miR-218 to the 3'-UTR of TPD52 was observed by dual luciferase reporter assay. Overexpression of TPD52 was observed in lung SCC clinical specimens, and knockdown of TPD52 significantly suppressed cancer cell migration and invasion in lung SCC cell lines. Furthermore, the downstream pathways mediated by TPD52 involved critical regulators of genomic stability and mitotic checkpoint genes. Taken together, our data showed that downregulation of miR-218 enhances overexpression of TPD52 in lung SCC cells, promoting cancer cell aggressiveness. Identification of tumor-suppressive miRNA-mediated RNA networks of lung SCC will provide new insights into the potential mechanisms of the molecular pathogenesis of the disease.
Collapse
Affiliation(s)
- Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroko Mataki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kazuto Kamikawaji
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takuya Samukawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
50
|
Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet 2016; 61:985-993. [PMID: 27488440 DOI: 10.1038/jhg.2016.99] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that is refractory to treatment and carries a high mortality rate. IPF is frequently associated with lung cancer. Identification of molecular targets involved in both diseases may elucidate novel molecular mechanisms contributing to their pathology. Recent studies of microRNA (miRNA) expression signatures showed that microRNA-29a (miR-29a) was downregulated in IPF and lung cancer. The aim of this study was to investigate the functional significance of miR-29a in lung cancer cells (A549 and EBC-1) and lung fibroblasts (MRC-5) and to identify molecular targets modulated by miR-29a in these cells. We confirmed the downregulation of miR-29a in clinical specimens of IPF and lung cancer. Restoration of miR-29a suppressed cancer cell aggressiveness and fibroblast migration. A combination of gene expression data and in silico analysis showed that a total of 24 genes were putative targets of miR-29a. Among them, lysyl oxidase-like 2 (LOXL2) and serpin peptidase inhibitor clade H, member 1 (SERPINH1) were direct targets of miR-29a by luciferase reporter assays. The functions of LOXL2 and SERPINH1 contribute significantly to collagen biosynthesis. Overexpression of LOXL2 and SERPINH1 was observed in clinical specimens of lung cancer and fibrotic lesions. Downregulation of miR-29a caused overexpression of LOXL2 and SERPINH1 in lung cancer and IPF, suggesting that these genes are involved in the pathogenesis of these two diseases.
Collapse
|