1
|
Liu H, Liu Y, Zhao Y, Ma Y, Chen Q, Xu H, Wang X, Guo X, Wang H, Chen Z, Zhang S, Han B. A scoping review of human genetic resources management policies and databases in high- and middle-low-income countries. BMC Med Ethics 2025; 26:37. [PMID: 40089739 PMCID: PMC11909912 DOI: 10.1186/s12910-025-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND This review examines global human genetic resources management, focusing on genetic data policies and repositories in high- and middle-low-income countries. METHODS A comprehensive search strategy was employed across multiple databases, including official government websites and Google, to gather relevant literature on human genetic resources management policies and genetic resource databases. Documents were screened for relevance, focusing on high-income countries (United States, United Kingdom, Japan) and middle-low-income countries (China, India, Kenya). Data were extracted, coded, and analyzed to identify common themes and differences in genetic resource management practices. RESULTS High-income countries benefit from robust legal frameworks and advanced technological infrastructures. The United States enforces the Health Insurance Portability and Accountability Act and the Genetic Information Nondiscrimination Act to protect privacy and facilitate data sharing, while Japan relies on the Act on the Protection of Personal Information and ethical guidelines. Additionally, high-income countries host a variety of genetic databases and biobanks that support scientific research. In contrast, middle-low-income countries like China, India, and Kenya are still developing their frameworks. China has regulations such as the Biosecurity Law and the Regulations on the Management of Human Genetic Resources, but still requires more unified standards. India's policies focus on genetic research and data protection through the Biological Diversity Act, while Kenya seeks to improve data management through the 2019 Data Protection Act. CONCLUSION Significant disparities exist in human genetic resources management between high-income and middle-low-income countries. High-income countries have robust systems balancing privacy protection with research facilitation, supported by comprehensive and large-scale databases for scientific research. Middle-low-income countries need to enhance legal frameworks and build population-specific databases. Promoting equitable data sharing and adopting best practices from high-income countries are essential for advancing global scientific discovery and ensuring fair management of genetic resources.
Collapse
Affiliation(s)
- Hongwei Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yin Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanyan Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Yingqi Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qiong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Huifang Xu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaoyang Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaoli Guo
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hong Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Shaokai Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Binbin Han
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
2
|
Huang Y, Zhang L, Mu W, Zheng M, Bao X, Li H, Luo X, Ren J, Zuo Z. RMVar 2.0: an updated database of functional variants in RNA modifications. Nucleic Acids Res 2025; 53:D275-D283. [PMID: 39436017 PMCID: PMC11701541 DOI: 10.1093/nar/gkae924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Evaluating the impact of genetic variants on RNA modifications (RMs) is crucial for identifying disease-associated variants and understanding the pathogenic mechanisms underlying human diseases. Previously, we developed a database called RMVar to catalog variants linked to RNA modifications in humans and mice. Here, we present an updated version RMVar 2.0 (http://rmvar.renlab.cn). In this updated version, we applied an enhanced analytical pipeline to the latest RNA modification datasets and genetic variant information to identify RM-associated variants. A notable advancement in RMVar 2.0 is our incorporation of allele-specific RNA modification analysis to identify RM-associated variants, a novel approach not utilized in RMVar 1.0 or other comparable databases. Furthermore, the database offers comprehensive annotations for various molecular events, including RNA-binding protein (RBP) interactions, RNA-RNA interactions, splicing events, and circular RNAs (circRNAs), which facilitate investigations into how RM-associated variants influence post-transcriptional regulation. Additionally, we provide disease-related information sourced from ClinVar and GWAS to help researchers explore the connections between RNA modifications and various diseases. We believe that RMVar 2.0 will significantly enhance our understanding of the functional implications of genetic variants affecting RNA modifications within the context of human disease research.
Collapse
Affiliation(s)
- Yuantai Huang
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Weiping Mu
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Mohan Zheng
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoqiong Bao
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Innovation Center of the Sixth Affiliated hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Jian Ren
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhixiang Zuo
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
3
|
Nomura S, Akagawa H, Yamaguchi K, Azuma K, Nakamura A, Fukui A, Matsuzawa F, Aihara Y, Ishikawa T, Moteki Y, Chiba K, Hashimoto K, Morita S, Ishiguro T, Okada Y, Vetiska S, Andrade-Barazarte H, Radovanovic I, Kawashima A, Kawamata T. Difference in Clinical Phenotype, Mutation Position, and Structural Change of RNF213 Rare Variants Between Pediatric and Adult Japanese Patients with Moyamoya Disease. Transl Stroke Res 2024; 15:1142-1153. [PMID: 37768541 DOI: 10.1007/s12975-023-01194-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
It is unclear how rare RNF213 variants, other than the p.R4810K founder variant, affect the clinical phenotype or the function of RNF213 in moyamoya disease (MMD). This study included 151 Japanese patients with MMD. After performing targeted resequencing for all coding exons in RNF213, we investigated the clinical phenotype and statistically analyzed the genotype-phenotype correlation. We mapped RNF213 variants on a three-dimensional (3D) model of human RNF213 and analyzed the structural changes due to variants. The RNF213 p.R4810K homozygous variant, p.R4810K heterozygous variant, and wild type were detected in 10 (6.6%), 111 (73.5%), and 30 (19.9%) MMD patients, respectively. In addition, 15 rare variants were detected in 16 (10.6%) patients. In addition to the influence of the p.R4810K homozygous variant, the frequency of cerebral infarction at disease onset was higher in pediatric patients with other rare variants (3/6, 50.0%, P = 0.006) than in those with only the p.R4810K heterozygous variant or with no variants (2/51, 3.9%). Furthermore, on 3D modelling of RNF213, the majority of rare variants found in pediatric patients were located in the E3 module and associated with salt bridge loss, contrary to the results for adult patients. The clinical phenotype of rare RNF213 variants, mapped mutation position, and their predicted structural change differed between pediatric and adult patients with MMD. Rare RNF213 variants, in addition to the founder p.R4810K homozygous variant, can influence MMD clinical phenotypes or structural change which may contribute to the destabilization of RNF213.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan.
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada.
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Akikazu Nakamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Yasuo Aihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Ishikawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Moteki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kentaro Chiba
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shuhei Morita
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Ishiguro
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, St. Luke's International Hospital, Tokyo, Japan
| | - Sandra Vetiska
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Hugo Andrade-Barazarte
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan
- Department of Neurosurgery, St. Luke's International Hospital, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, Hatakeyama K, Ohnami S, Maruyama K, Mochizuki T, Mizuguchi M, Shiomi A, Ohde Y, Bando E, Sugiura T, Mukaigawa T, Nishimura S, Hirashima Y, Mitsuya K, Yoshikawa S, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Yasunaga Y, Ishida Y, Sugino T, Kenmotsu H, Terashima M, Takahashi M, Uesaka K, Akiyama Y. Evaluation of whole genome sequencing utility in identifying driver alterations in cancer genome. Sci Rep 2024; 14:23898. [PMID: 39396060 PMCID: PMC11470963 DOI: 10.1038/s41598-024-74272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
In cancer genome analysis, identifying pathogenic alterations and assessing their effects on oncogenic processes is important. Although whole exome sequencing (WES) can effectively detect such changes, driver alterations could not be identified in 27.8% of the cases, according to a previous study. The objectives of the present study were to evaluate the utility of whole genome sequencing (WGS) and clarify its differences with WES in terms of driver alteration detection. For this purpose, WGS analysis was conducted on 177 driverless WES samples, selected from 5,480 fresh frozen samples derived from 5,140 Japanese patients with cancer. These samples were selected as primary tumor, both WES and transcriptome profiling were performed, estimated tumor content of ≥ 30%, and no driver alterations were identified by WES. WGS identified driver and likely driver alterations in 68.4 and 22.6% of the samples, respectively. The most frequent alteration type was oncogene amplification, followed by tumor suppressor gene deletion and small variants located outside the coding region. In the remaining 9.0% of samples, no such signals were identified; therefore, further investigations are required. The current study clearly demonstrated the role and utility of WGS in identifying genomic alterations that contribute to tumorigenesis.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoe Tanabe
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Fukumi Kamada
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Maki Mizuguchi
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Mukaigawa
- Division of Head and Neck Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Breast Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshio Kiyohara
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masashi Niwakawa
- Division of Urology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kaoru Takahashi
- Division of Breast Oncology Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hiroya Kashiwagi
- Division of Ophthalmology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshichika Yasunaga
- Division of Plastic and Reconstructive Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | | | | | | | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
5
|
Nakamura A, Nomura S, Hara S, Thamamongood T, Maehara T, Nariai T, Khairullah S, Tan KS, Azuma K, Chida-Nagai A, Furutani Y, Hori T, Yamaguchi K, Kawamata T, Roder C, Akagawa H. Whole-exome sequencing reveals the genetic causes and modifiers of moyamoya syndrome. Sci Rep 2024; 14:22720. [PMID: 39367156 PMCID: PMC11452616 DOI: 10.1038/s41598-024-72043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Moyamoya vasculopathy secondary to various genetic disorders is classified as moyamoya syndrome (MMS). Recent studies indicate MMS occurs due to a combination of genetic modifiers and causative mutations for the primary genetic disorders. We performed whole-exome sequencing (WES) in 13 patients with various genetic disorders who developed MMS. WES successfully revealed the genetic diagnoses of neurofibromatosis type 1 (NF-1), Down syndrome, multisystemic smooth muscle dysfunction syndrome, Noonan syndrome, and alpha thalassemia. The previously reported modifier genes, RNF213 and MRVI1, were confirmed in the NF-1 and Down syndrome cases. Further analysis revealed rare hypomorphic variants in the causative genes of the primary disorders underlying MMS, such as Alagille syndrome and Rasopathies, conferred susceptibility to MMS. Genes involved in the development of pulmonary arterial hypertension (PAH), such as ABCC8 and BMPR2, were also identified as potential modifiers. The rare variants in the MMS and PAH genes were significantly enriched in the eight Japanese patients with MMS compared with the 104 Japanese individuals from the 1000 Genomes Project. Disease genes associated with the arterial occlusive conditions represented by those of Rasopathies and PAH may provide novel diagnostic markers and future therapeutic targets for MMS as well as moyamoya disease with an unknown cause.
Collapse
Affiliation(s)
- Akikazu Nakamura
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Nomura
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shasha Khairullah
- Haematology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kay Sin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahiro Hori
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Constantin Roder
- Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan.
- Medical AI Center, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
6
|
Masumoto R, Fujihara C, Matsumoto M, Kitagaki J, Murakami S. Single nucleotide polymorphism rs854560 in paraoxonase-1 regulates the cytodifferentiation of human periodontal ligament cells. FRONTIERS IN DENTAL MEDICINE 2024; 5:1449482. [PMID: 39917667 PMCID: PMC11797752 DOI: 10.3389/fdmed.2024.1449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/26/2024] [Indexed: 02/09/2025] Open
Abstract
Aggressive periodontitis (AgP), classified as Stages III or IV and grade C periodontitis, is characterized by the rapid destruction of periodontal tissue. Genetic factors contribute to the pathogenesis of this disease, and familial aggregation of periodontitis is often observed. However, the mechanisms underlying the onset or progression of AgP have not been elucidated. Previously, we performed exome sequencing and identified AgP risk factors in Japanese AgP-patients. However, the small sample size limited our scope for detecting some of the true AgP genetic risk factors. To overcome this limitation, we searched for AgP-related genes more comprehensively from the whole exome sequencing data of the Japanese AgP-patients by extending the filtering criteria range. We identified seven AgP-associated suggestive genes, including the single nucleotide polymorphism (SNP) rs854560 in paraoxonase-1 (PON-1), which is correlated with AgP. However, the mechanism(s) underlying the induction of AgP pathogenesis by the SNP rs854560 PON-1 has not been elucidated. Thus, we further analyzed the functions of the SNP rs854560 PON-1 in human periodontal ligament (HPDL) cells through transfection of the wild-type PON-1 (WT) or SNP rs854560 PON-1 (mut) into HPDL cells. Real-time PCR indicated that mut had higher mRNA expression of osteogenic related-genes and showed a higher tendency of ALP activity and proliferation. The result suggested that WT PON-1 contributes to periodontal tissue homeostasis through appropriate proliferation and cytodifferentiation of HPDL cells, while SNP rs854560 PON-1 may mediate excessive calcification of periodontal tissue due to hyper proliferation of HPDL cells, thereby increasing the risk of AgP.
Collapse
|
7
|
Tanaka S, Akagawa H, Azuma K, Higuchi S, Ujiie A, Hashimoto K, Iwasaki N. High prevalence of copy number variations in the Japanese participants with suspected MODY. Clin Genet 2024; 106:293-304. [PMID: 38733153 DOI: 10.1111/cge.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kenkou Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Ujiie
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Naoko Iwasaki
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| |
Collapse
|
8
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
9
|
Yamada S, Honzawa Y, Yamamoto S, Matsuura M, Kitamoto H, Okabe M, Kakiuchi N, Toyonaga T, Kobayashi T, Hibi T, Seno H, Nakase H. Single Nucleotide Polymorphisms of the MEFV Gene E148Q Are Highly Associated With Disease Phenotype in Crohn's Disease. Inflamm Bowel Dis 2024; 30:970-980. [PMID: 37951297 DOI: 10.1093/ibd/izad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of the MEFV gene may modify inflammatory bowel disease (IBD) activity. The prevalence of MEFV gene SNPs in IBD patients and their involvement in IBD pathophysiology remains unclear. METHODS We analyzed 12 MEFV gene SNPs in peripheral leukocytes of Japanese IBD patients (Crohn's disease [CD]: 69 patients, ulcerative colitis: 32 patients) by polymerase chain reaction using next-generation DNA sequencing and evaluated their prevalence and association with the disease characteristics. Inflammasome activity and mature interleukin (IL)-1β and IL-18 production were evaluated in peripheral blood mononuclear cells obtained from CD patients stimulated with lipopolysaccharides and adenosine triphosphate, and compared between those with and without the E148Q SNP. COL1A1 and HSP47 gene expression was analyzed in CCD-18Co cells costimulated with IL-1β and other inflammatory cytokines. RESULTS The prevalence of MEFV gene SNPs in IBD patients was similar to that in the human gene database. E148Q was the most common SNP. Compared with CD patients without E148Q, those with E148Q had a significantly greater frequency of the stricture phenotype, and their peripheral blood mononuclear cells exhibited significantly higher IL-1β and IL-18 levels and higher caspase-1 activity. IL-1β and IL-17A synergistically increased COL1A1 and HSP47 gene expression. CONCLUSIONS MEFV gene SNPs, including E148Q, modify the behavior of CD. IL-1β and IL-18 are produced through enhanced caspase-1 activity in monocytes of CD patients with E148Q. IL-1β promotes gene expression of fibrosis-related genes by cooperating with IL-17A in myofibroblasts. Therefore, E148Q might be a disease-modifying gene associated with the fibrostenosis phenotype in CD patients.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Honzawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Shuji Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Matsuura
- Third Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroki Kitamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Okabe
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Toyonaga
- Center for Advanced IBD Research and Treatment, Kitasato University Hospital, Kitasato University, Tokyo, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Hospital, Kitasato University, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Hospital, Kitasato University, Tokyo, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H. Loss-of-function polymorphisms in NQO1 are not associated with the development of subacute myelo-optico-neuropathy. Mol Genet Genomic Med 2024; 12:e2470. [PMID: 38860482 PMCID: PMC11165339 DOI: 10.1002/mgg3.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Subacute myelo-optico-neuropathy (SMON) is a neurological disorder associated with the administration of clioquinol, particularly at very high doses. Although clioquinol has been used worldwide, there was an outbreak of SMON in the 1950s-1970s in which the majority of cases were in Japan, prompting speculation that the unique genetic background of the Japanese population may have contributed to the development of SMON. Recently, a possible association between loss-of-function polymorphisms in NQO1 and the development of SMON has been reported. In this study, we analyzed the relationship between NQO1 polymorphisms and SMON in Japan. METHODS We analyzed 125 Japanese patients with SMON. NQO1 loss-of-function polymorphisms (rs1800566, rs10517, rs689452, and rs689456) were evaluated. The allele frequency distribution of each polymorphism was compared between the patients and the healthy Japanese individuals (Human Genomic Variation Database and Integrative Japanese Genome Variation Database), as well as our in-house healthy controls. RESULTS The frequencies of the loss-of-function NQO1 alleles in patients with SMON and the normal control group did not differ significantly. CONCLUSION We conclude that known NQO1 polymorphisms are not associated with the development of SMON.
Collapse
Grants
- H28-Intractable etc.(Intractable)-Designated-110 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H29-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H30-Intractable etc.(Intractable)-Designated-003 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2019-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2020-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2021-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2022-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Hideo Sasai
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Norio Kawamoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Masato Katsuyama
- Radioisotope CenterKyoto Prefectural University of MedicineKyotoJapan
| | | | - Satoshi Kuru
- Department of NeurologyNHO Suzuka National HospitalSuzukaJapan
| | - Toshiyuki Fukao
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Hidenori Ohnishi
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
- Center for one Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | | |
Collapse
|
11
|
Yamaguchi T, Ikegami M, Aruga T, Kanemasa Y, Horiguchi SI, Kawai K, Takao M, Yamada T, Ishida H. Genomic landscape of comprehensive genomic profiling in patients with malignant solid tumors in Japan. Int J Clin Oncol 2024:10.1007/s10147-024-02554-8. [PMID: 38795236 DOI: 10.1007/s10147-024-02554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Comprehensive genomic profiling (CGP) can aid the discovery of clinically useful, candidate antitumor agents; however, the variant annotations sometimes differ among the various types of CGP tests as well as the public database. The aim of this study is to clarify the genomic landscape of evaluating detected variants in patients with a malignant solid tumor. METHODS The present, cross-sectional study used data from 57,084 patients with a malignant solid tumor who underwent CGP at the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) between June 1, 2019 and August 18, 2023. The pathogenicity of the variants was annotated using public databases. RESULTS As a result of re-annotation of the detected variants, 20.1% were pathogenic and 1.4% were benign. The mean number of pathogenic variants was 4.30 (95% confidence interval: 4.27-4.32) per patient. Of the entire cohort, 5.7% had no pathogenic variant. The co-occurrence of the genes depended on the tumor type. Germline findings were detected in 6.2%, 8.8%, and 15.8% of the patients using a tumor/normal panel, tumor-only panel, and liquid panel, respectively, with the most common gene being BRCA2 followed by TP53 and BRCA1. CONCLUSIONS The detected variants should be re-annotated because several benign variants or variants of unknown significance were included in the CGP, and the genomic landscape derived from these results will help researchers and physicians interpret the results of CGP tests. The method of extracting presumptive, germline, pathogenic variants from patients using a tumor-only panel or circulating tumor DNA panel requires improvement.
Collapse
Affiliation(s)
- Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.
| | - Masachika Ikegami
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Tomoyuki Aruga
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yusuke Kanemasa
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takeshi Yamada
- Department of Surgery, Nihon Medical University, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
12
|
Brock DC, Wang M, Hussain HMJ, Rauch DE, Marra M, Pennesi ME, Yang P, Everett L, Ajlan RS, Colbert J, Porto FBO, Matynia A, Gorin MB, Koenekoop RK, Lopez I, Sui R, Zou G, Li Y, Chen R. Comparative analysis of in-silico tools in identifying pathogenic variants in dominant inherited retinal diseases. Hum Mol Genet 2024; 33:945-957. [PMID: 38453143 PMCID: PMC11102593 DOI: 10.1093/hmg/ddae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.
Collapse
Affiliation(s)
- Daniel C Brock
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David E Rauch
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Lesley Everett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Radwan S Ajlan
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Jason Colbert
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Rua dos Otoni, 735/507 - Santa Efigênia, Belo Horizonte, MG 30150270, Brazil
- Department of Ophthalmology, Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111 - Santa Efigênia, Belo Horizonte, MG 30150221, Brazil
- Centro Oftalmológico de Minas Gerais, R. Santa Catarina, 941 - Lourdes, Belo Horizonte, MG 30180070, Brazil
| | - Anna Matynia
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77004, United States
| | - Michael B Gorin
- Jules Stein Eye Institute, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, United States
- Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, WC67+HW Dongcheng, Beijing 100005, China
| | - Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, F4RJ+43 Xixia District, Yinchuan, Ningxia, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
13
|
Peng Q, Liu X, Li W, Jing H, Li J, Gao X, Luo Q, Breeze CE, Pan S, Zheng Q, Li G, Qian J, Yuan L, Yuan N, You C, Du S, Zheng Y, Yuan Z, Tan J, Jia P, Wang J, Zhang G, Lu X, Shi L, Guo S, Liu Y, Ni T, Wen B, Zeng C, Jin L, Teschendorff AE, Liu F, Wang S. Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits. Nat Genet 2024; 56:846-860. [PMID: 38641644 DOI: 10.1038/s41588-023-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/02/2023] [Indexed: 04/21/2024]
Abstract
Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.
Collapse
Affiliation(s)
- Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjian Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Guochao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiaqiang Qian
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyun Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Yuan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chenglong You
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co. Ltd., Shenzhen, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Wen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
14
|
Inoue T, Takase R, Uchida K, Kodo K, Suda K, Watanabe Y, Yoshiura KI, Kunimatsu M, Ishizaki R, Azuma K, Inai K, Muneuchi J, Furutani Y, Akagawa H, Yamagishi H. The c.1617del variant of TMEM260 is identified as the most frequent single gene determinant for Japanese patients with a specific type of congenital heart disease. J Hum Genet 2024; 69:215-222. [PMID: 38409496 PMCID: PMC11043032 DOI: 10.1038/s10038-024-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Although the molecular mechanisms underlying congenital heart disease (CHD) remain poorly understood, recent advances in genetic analysis have facilitated the exploration of causative genes for CHD. We reported that the pathogenic variant c.1617del of TMEM260, which encodes a transmembrane protein, is highly associated with CHD, specifically persistent truncus arteriosus (PTA), the most severe cardiac outflow tract (OFT) defect. Using whole-exome sequencing, the c.1617del variant was identified in two siblings with PTA in a Japanese family and in three of the 26 DNAs obtained from Japanese individuals with PTA. The c.1617del of TMEM260 has been found only in East Asians, especially Japanese and Korean populations, and the frequency of this variant in PTA is estimated to be next to that of the 22q11.2 deletion, the most well-known genetic cause of PTA. Phenotype of patients with c.1617del appears to be predominantly in the heart, although TMEM260 is responsible for structural heart defects and renal anomalies syndrome (SHDRA). The mouse TMEM260 variant (p.W535Cfs*56), synonymous with the human variant (p.W539Cfs*9), exhibited truncation and downregulation by western blotting, and aggregation by immunocytochemistry. In situ hybridization demonstrated that Tmem260 is expressed ubiquitously during embryogenesis, including in the development of cardiac OFT implicated in PTA. This expression may be regulated by a ~ 0.8 kb genomic region in intron 3 of Tmem260 that includes multiple highly conserved binding sites for essential cardiac transcription factors, thus revealing that the c.1617del variant of TMEM260 is the major single-gene variant responsible for PTA in the Japanese population.
Collapse
Affiliation(s)
- Tadashi Inoue
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryuta Takase
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Keiko Uchida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
- Keio University Health Center, Tokyo, Japan.
| | - Kazuki Kodo
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Suda
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Fukuoka, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Division of Advanced Preventive Medical Sciences, Leading Medical Research Core Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaya Kunimatsu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Reina Ishizaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Kei Inai
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Muneuchi
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Ishimura M, Eguchi K, Sonoda M, Tanaka T, Shiraishi A, Sakai Y, Yasumi T, Miyamoto T, Voskoboinik I, Hashimoto K, Matsumoto S, Ozono S, Moritake H, Takada H, Ohga S. Early hematopoietic cell transplantation for familial hemophagocytic lymphohistiocytosis in a regional treatment network in Japan. Int J Hematol 2024; 119:592-602. [PMID: 38507116 DOI: 10.1007/s12185-024-03721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/22/2024]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHLH) is a fatal hyperinflammation syndrome arising from the genetic defect of perforin-mediated cytolysis. Curative hematopoietic cell transplantation (HCT) is needed before development of central nervous system (CNS) disease. We studied treatment outcomes of 13 patients (FHLH2 n = 11, FHLH3 n = 2) consecutively diagnosed from 2011 to 2022 by flow cytometric screening for non-myeloablative HCT in a regional treatment network in Kyushu, Japan. One patient with a novel PRF1 variant escaped screening, but all patients with FHLH2 reached diagnosis and 8 of them received HCT until 3 and 9 months of age, respectively. The earliest HCT was conducted 65 days after birth. Three pretransplant deaths occurred in newborns with liver failure at diagnosis. Ten posttransplant patients have remained disease-free, 7 of whom had no neurological involvement. Time from first etoposide infusion to HCT was shorter in patients without CNS disease or bleeding than in patients with those factors (median [range] days: 62 [50-81] vs. 122 [89-209], p = 0.016). Six of 9 unrelated patients had a PRF1 c.1090_1091delCT variant. These results suggest that the critical times to start etoposide and HCT are within 3 months after birth and during etoposide control, respectively. Newborn screening may increase the percentage of disease-free survivors without complications.
Collapse
Affiliation(s)
- Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kunio Hashimoto
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Shuichi Ozono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Inagaki N, Okano T, Kobayashi M, Fujii M, Yazaki Y, Takei Y, Kosuge H, Suzuki S, Hayashi T, Kuroda M, Satomi K. Pediatric hypertrophic cardiomyopathy caused by a novel TNNI3 variant. Hum Genome Var 2024; 11:14. [PMID: 38548731 PMCID: PMC10978967 DOI: 10.1038/s41439-024-00272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
TNNI3 is a gene that causes hypertrophic cardiomyopathy (HCM). A 14-year-old girl who was diagnosed with nonobstructive HCM presented with cardiopulmonary arrest due to ventricular fibrillation. Genetic testing revealed a novel de novo heterozygous missense variant in TNNI3, NM_000363.5:c.583A>T (p.Ile195Phe), which was determined to be the pathogenic variant. The patient exhibited progressive myocardial fibrosis, left ventricular remodeling, and life-threatening arrhythmias. Genetic testing within families is useful for risk stratification in pediatric HCM patients.
Collapse
Affiliation(s)
- Natsuko Inagaki
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
- Department of Clinical Genetics Center, Tokyo Medical University, Tokyo, Japan.
| | - Tomoya Okano
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | | | - Masatsune Fujii
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Yoshinao Yazaki
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Yasuyoshi Takei
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takeharu Hayashi
- Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Satomi
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Kanamori H, Yamada Y, Ito Y, Shirosaki K, Yamagishi S, Maeda Y, Kudo Y, Umeyama T, Takahashi N, Kato M, Hasegawa Y, Matsubara K, Shinoda M, Obara H, Irie R, Tsujikawa H, Okita H, Nguyen PT, Saigo K, Mitsunaga S, Inoue I, Kitagawa Y, Kuroda T. Noninvasive graft monitoring using donor-derived cell-free DNA in Japanese liver transplantation. Hepatol Res 2024; 54:300-314. [PMID: 37850337 DOI: 10.1111/hepr.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
AIM To evaluate the use of donor-derived cell-free DNA (dd-cfDNA) in diagnosing graft injuries in Japanese liver transplantation (LTx), including family-related living donors. METHODS A total of 321 samples from 10 newly operated LTx recipients were collected to monitor the early dynamics of dd-cfDNA levels after LTx. Fifty-five samples from 55 recipients were collected during protocol biopsies (PB), whereas 36 samples from 27 recipients were collected during event biopsies, consisting of 11 biopsy-proven acute rejection (AR), 20 acute dysfunctions without rejection (ADWR), and 5 chronic rejections. The levels of dd-cfDNA were quantified using a next-generation sequencer based on single nucleotide polymorphisms. RESULTS The dd-cfDNA levels were elevated significantly after LTx, followed by a rapid decline to the baseline in patients without graft injury within 30 days post-LTx. The dd-cfDNA levels were significantly higher in the 11 samples obtained during AR than those obtained during PB (p < 0.0001), which decreased promptly after treatment. The receiver operator characteristic curve analysis of diagnostic ability yielded areas under the curve of 0.975 and 0.897 for AR (rejection activity index [RAI] ≥3) versus PB and versus non-AR (ADWR + PB). The dd-cfDNA levels during AR were elevated earlier and correlated more strongly with the RAI (r = 0.740) than aspartate aminotransferase/alanine aminotransferase. The dd-cfDNA levels were neither associated with graft fibrosis based on histology nor the status of donor-specific antibodies in PB samples. CONCLUSIONS Donor-derived cell-free DNA serves as a sensitive biomarker for detecting graft injuries in LTx. Further large-scale cohort studies are warranted to optimize its use in differentiating various post-LTx etiologies.
Collapse
Affiliation(s)
- Hiroki Kanamori
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Yamada
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ito
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koji Shirosaki
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoko Yamagishi
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yutaro Maeda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Kudo
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoshige Umeyama
- Department of Pediatric Surgery, St Luke's International Hospital, Tokyo, Japan
| | - Nobuhiro Takahashi
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mototoshi Kato
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Digestive Diseases Center, International University of Health and Welfare School of Medicine, Mita Hospital, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Rie Irie
- Department of Diagnostic Pathology, Nippon Koukan Hospital, Kawasaki, Japan
| | - Hanako Tsujikawa
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kenichi Saigo
- Department of Transplantation Surgery, Japan Community Health Care Organization, Chiba Hospital, Chiba, Japan
| | - Shigeki Mitsunaga
- Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
- Kanagawa Children's Medical Center, Kanagawa, Japan
| |
Collapse
|
18
|
Shima T, Kinjo T, Park S, Sonoda M. Perinatal clinical course of Vici syndrome associated with novel EPG5 variants: unique cardiac changes and difficulty with foetal diagnosis. BMJ Case Rep 2024; 17:e255847. [PMID: 38182173 PMCID: PMC10773411 DOI: 10.1136/bcr-2023-255847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Vici syndrome is a genetic disorder involving autophagy dysfunction caused by biallelic pathogenic variants in ectopic P-granules 5 autophagy tethering factor (EPG5). We report the perinatal clinical course of a neonate with Vici syndrome with a unique cardiac presentation. Foetal ultrasonography (US) detected right ventricular hypertrophy, hypoplastic left ventricle and narrowing of the foramen ovale, which were alleviated after birth. Agenesis of the corpus callosum and cerebellar hypoplasia were missed antenatally. After delivery, the patient was clinically diagnosed with Vici syndrome and two novel pathogenic mutations were detected in EPG5 The T-cell receptor repertoire was selectively skewed in the Vβ2 family. Immunological prophylaxis and tube feeding were introduced. Early diagnosis helps parents accept their child's prognosis and decide on a care plan. However, US has limited potential to detect clinical phenotypes associated with Vici syndrome. Foetal MRI may detect the characteristic abnormalities and contribute to antenatal diagnosis.
Collapse
Affiliation(s)
- Takashi Shima
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Tadamune Kinjo
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Sungyeon Park
- Department of Hematology, Infection, and Immunology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| | - Motoshi Sonoda
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
19
|
Lenz TL. HLA Genes: A Hallmark of Functional Genetic Variation and Complex Evolution. Methods Mol Biol 2024; 2809:1-18. [PMID: 38907887 DOI: 10.1007/978-1-0716-3874-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The major histocompatibility complex (MHC) with its highly polymorphic HLA genes represents one of the most intensely studied genomic regions in the genome. MHC proteins play a key role in antigen-specific immunity and are associated with a wide range of complex diseases. Despite decades of research and many advances in the field, the characterization and interpretation of its genetic and genomic variability remain challenging. Here an overview is provided of the MHC, the nature of its exceptional variability, and the complex evolutionary processes assumed to drive this variability. Highlighted are also recent advances in the field that promise to improve our understanding of the variability in the MHC and in antigen-specific immunity more generally.
Collapse
Affiliation(s)
- Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
20
|
Takada S, Silva S, Zamorano I, Pérez A, Iwabuchi C, Miyake N. Human phenotype caused by biallelic KDM4B frameshift variant. Clin Genet 2024; 105:72-76. [PMID: 37526414 DOI: 10.1111/cge.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
KDM4B (MIM*609765, NM_015015.3, formerly JMJD2B) encodes a histone demethylase and regulates gene expression via demethylation, mainly of H3K9 tri-methylation. Heterozygous KDM4B loss-of-function variants cause autosomal dominant intellectual developmental disorder 65 (MIM#619320), which is characterized by global developmental delay, intellectual disability, language and gross motor delays, structural brain anomalies, characteristic facial features, and clinodactyly. Although the majority of reported patients have de novo pathogenic variants, some patients inherit pathogenic variants from affected parents. To our knowledge, only 23 patients with heterozygous KDM4B variants have been reported to date, and there are no reports of patients with biallelic KDM4B pathogenic variants. Herein, we report a female patient with a biallelic KDM4B frameshift variant (NM_015015.3: c.1384_1394delinsGGG, p.(Leu462Glyfs*43)) located at exon 12 of 23 protein-coding exons, which is thought to be subject to nonsense-mediated mRNA decay and no protein production. She presented developmental and language delays and a hypotonic and characteristic face. The patient's phenotype was more obvious than that of her mother, who is heterozygous for the same variant. Although declining birth rate (embryonic lethality in male mice) in homozygous knockout mice has been demonstrated, our report suggests that homozygous KDM4B frameshift variants can be viable in humans at least female.
Collapse
Affiliation(s)
- Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sebastián Silva
- Child Neurology Service, Hospital de Puerto Montt, Puerto Montt, Chile
- Escuela de Medicina, Universidad San Sebastián, Puerto Montt, Chile
| | - Ivonne Zamorano
- Adult Neurology Service, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Andrea Pérez
- Radiology Service, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Chisato Iwabuchi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Chida-Nagai A, Tonoki H, Makita N, Ishiyama H, Ihara M, Maruo Y, Tsujioka T, Sasaki D, Izumi G, Yamazawa H, Kato N, Ito M, Fujimura M, Sasaki O, Takeda A. A Noonan-like pediatric patient with a de novo CBL pathogenic variant and an RNF213 polymorphism p.R4810K presenting with cardiopulmonary arrest due to left main coronary artery ostial atresia. Am J Med Genet A 2023; 191:2837-2842. [PMID: 37554039 DOI: 10.1002/ajmg.a.63370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Left main coronary artery ostial atresia (LMCAOA) is an extremely rare condition. Here, we report the case of a 14-year-old boy with Noonan syndrome-like disorder in whom LMCAOA was detected following cardiopulmonary arrest. The patient had been diagnosed with Noonan syndrome-like disorder with a pathogenic splice site variant of CBL c.1228-2 A > G. He suddenly collapsed when he was running. After administering two electric shocks using an automated external defibrillator, the patient's heartbeat resumed. Cardiac catheterization confirmed the diagnosis of LMCAOA. Left main coronary artery angioplasty was performed. The patient was discharged without neurological sequelae. Brain magnetic resonance imaging revealed asymptomatic Moyamoya disease. In addition, RNF213 c.14429 G > A p.R4810K was identified. There are no reports on congenital coronary malformations of compound variations of RNF213 and CBL. In contrast, the RNF213 p.R4810K polymorphism has been established as a risk factor for angina pectoris and myocardial infarction in adults, and several congenital coronary malformations due to genetic abnormalities within the RAS/MAPK signaling pathway have been reported. This report aims to highlight the risk of sudden death in patients with RASopathy and RNF213 p.R4810K polymorphism and emphasize the significance of actively searching for coronary artery morphological abnormalities in these patients.
Collapse
Affiliation(s)
- Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Hidefumi Tonoki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Medical Genetics Center, Tenshi Hospital, Sapporo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuji Maruo
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Takao Tsujioka
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Gaku Izumi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Hirokuni Yamazawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Nobuyasu Kato
- Department of Cardiovascular Surgery, Hokkaido University, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatrics, Tenshi Hospital, Sapporo, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
22
|
Okubo Y, Shibuya M, Nakamura H, Kawashima A, Kodama K, Endo W, Inui T, Togashi N, Aihara Y, Shirota M, Funayama R, Niihori T, Fujita A, Nakayama K, Aoki Y, Matsumoto N, Kure S, Kikuchi A, Haginoya K. Neonatal developmental and epileptic encephalopathy with movement disorders and arthrogryposis: A case report with a novel missense variant of SCN1A. Brain Dev 2023; 45:505-511. [PMID: 37442734 DOI: 10.1016/j.braindev.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Variants of SCN1A represent the archetypal channelopathy associated with several epilepsy syndromes. The clinical phenotypes have recently expanded from Dravet syndrome. CASE REPORT: We present a female patient with the de novo SCN1A missense variant, c.5340G > A (p. Met1780Ile). The patient had various clinical features with neonatal onset SCN1A epileptic encephalopathy, arthrogryposis multiplex congenita, thoracic hypoplasia, thoracic scoliosis, and hyperekplexia. CONCLUSION: Our findings are compatible with neonatal developmental and epileptic encephalopathy with movement disorders and arthrogryposis; the most severe phenotype probably caused by gain-of-function variant of SCN1A. The efficacy of sodium channel blocker was also discussed. Further exploration of the phenotype-genotype relationship of SCN1A variants may lead to better pharmacological treatments and family guidance.
Collapse
Affiliation(s)
- Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan.
| | - Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Haruhiko Nakamura
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Aritomo Kawashima
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Shigeo Kure
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan; Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan.
| |
Collapse
|
23
|
Ura H, Togi S, Niida Y. Target-capture full-length double-stranded cDNA long-read sequencing through Nanopore revealed novel intron retention in patient with tuberous sclerosis complex. Front Genet 2023; 14:1256064. [PMID: 37829285 PMCID: PMC10565506 DOI: 10.3389/fgene.2023.1256064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a relatively common autosomal dominant disorder characterized by multiple dysplastic organ lesions and neuropsychiatric symptoms caused by loss-of-function mutation of either TSC1 or TSC2. The genetic diagnosis of inherited diseases, including TSC, in the clinical field is widespread using next-generation sequencing. The mutations in protein-coding exon tend to be verified because mutations directly cause abnormal protein. However, it is relatively difficult to verify mutations in the intron region because it is required to investigate whether the intron mutations affect the abnormal splicing of transcripts. In this study, we developed a target-capture full-length double-stranded cDNA sequencing method using Nanopore long-read sequencer (Nanopore long-read target sequencing). This method revealed the occurrence of intron mutation in the TSC2 gene and found that the intron mutation produces novel intron retention splicing transcripts that generate truncated proteins. The protein-coding transcripts were decreased due to the expression of the novel intron retention transcripts, which caused TSC in patients with the intron mutation. Our results indicate that Nanopore long-read target sequencing is useful for the detection of mutations and confers information on the full-length alternative splicing of transcripts for genetic diagnosis.
Collapse
Affiliation(s)
- Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
24
|
Kinota F, Droma Y, Kobayashi N, Horiuchi T, Kitaguchi Y, Yasuo M, Ota M, Hanaoka M. The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders. High Alt Med Biol 2023; 24:186-192. [PMID: 30475063 PMCID: PMC10516232 DOI: 10.1089/ham.2018.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in Sherpa highlanders. High Alt Med Biol. 24:186-192, 2023.-Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding PPARA is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the PPARA in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the PPARA were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741-rs5767700-rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the PPARA are likely to contribute to the high-altitude adaptation in Sherpa highlanders.
Collapse
Affiliation(s)
- Fumiya Kinota
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshimichi Horiuchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Division of Hepatology and Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
25
|
Matsushita I, Izumi H, Ueno S, Hayashi T, Fujinami K, Tsunoda K, Iwata T, Kiuchi Y, Kondo H. Functional Characteristics of Diverse PAX6 Mutations Associated with Isolated Foveal Hypoplasia. Genes (Basel) 2023; 14:1483. [PMID: 37510387 PMCID: PMC10379490 DOI: 10.3390/genes14071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The human fovea is a specialized pit structure in the central retina. Foveal hypoplasia is a condition where the foveal pit does not fully develop, and it is associated with poor vision. Autosomal dominant isolated foveal hypoplasia (FVH1) is a rare condition of foveal hypoplasia (FH) that lacks any other ocular manifestations. FVH1 is associated with hypomorphic mutations in the PAX6 gene that encodes a sequence-specific DNA-binding transcription factor for morphogenesis and evolution of the eye. We report our findings in 17 patients with PAX6 mutations associated with FVH1 or FH with aniridia and corneal opacities. Patients with three mutations, p.V78E, p.V83F and p.R128H, in the C-terminal subdomain of the paired domain (CTS) consistently have severe FH. Luciferase assays for a single reporter containing a representative PAX6 binding site indicated that the transcriptional activities of these mutations were significantly reduced, comparable to that of the truncation mutation of p.G65Rfs*5. Patients with p.P20S in the N-terminal subdomain of the paired domain, and a patient with p.N365K in the proline-serine-threonine-rich domain (PSTD) had mild FH. A patient with p.Q255L in the homeodomain had severe FH. The P20S and Q255L mutants did not affect the transcriptional activity. Mutant N365K has a retained DNA-binding activity but a reduced transcriptional activity, due to a low PSTD transactivation. These findings demonstrated that mutations associated with FVH1 underlie a functional divergence between DNA-binding ability and transcriptional activity. We conclude that a wide range of mutations in the PAX6 gene is not limited to the CST region and are responsible for FVH1.
Collapse
Affiliation(s)
- Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| | - Hiroto Izumi
- Department of Occupational Pneumology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| | - Shinji Ueno
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Kaoru Fujinami
- Department of Ophthalmology, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan; (K.F.); (K.T.)
| | - Kazushige Tsunoda
- Department of Ophthalmology, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan; (K.F.); (K.T.)
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan;
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima 734-8551, Japan;
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
26
|
Seyama R, Nishikawa M, Uchiyama Y, Hamada K, Yamamoto Y, Takeda M, Ochi T, Kishi M, Suzuki T, Hamanaka K, Fujita A, Tsuchida N, Koshimizu E, Misawa K, Miyatake S, Mizuguchi T, Makino S, Yao T, Ito H, Itakura A, Ogata K, Nagata KI, Matsumoto N. A missense variant at the RAC1-PAK1 binding site of RAC1 inactivates downstream signaling in VACTERL association. Sci Rep 2023; 13:9789. [PMID: 37328543 PMCID: PMC10275923 DOI: 10.1038/s41598-023-36381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
RAC1 at 7p22.1 encodes a RAC family small GTPase that regulates actin cytoskeleton organization and intracellular signaling pathways. Pathogenic RAC1 variants result in developmental delay and multiple anomalies. Here, exome sequencing identified a rare de novo RAC1 variant [NM_018890.4:c.118T > C p.(Tyr40His)] in a male patient. Fetal ultrasonography indicated the patient to have multiple anomalies, including persistent left superior vena cava, total anomalous pulmonary venous return, esophageal atresia, scoliosis, and right-hand polydactyly. After birth, craniofacial dysmorphism and esophagobronchial fistula were confirmed and VACTERL association was suspected. One day after birth, the patient died of respiratory failure caused by tracheal aplasia type III. The molecular mechanisms of pathogenic RAC1 variants remain largely unclear; therefore, we biochemically examined the pathophysiological significance of RAC1-p.Tyr40His by focusing on the best characterized downstream effector of RAC1, PAK1, which activates Hedgehog signaling. RAC1-p.Tyr40His interacted minimally with PAK1, and did not enable PAK1 activation. Variants in the RAC1 Switch II region consistently activate downstream signals, whereas the p.Tyr40His variant at the RAC1-PAK1 binding site and adjacent to the Switch I region may deactivate the signals. It is important to accumulate data from individuals with different RAC1 variants to gain a full understanding of their varied clinical presentations.
Collapse
Affiliation(s)
- Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
- Department of Biological Sciences, Nagoya University, Nagoya, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Yamamoto
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masahiro Takeda
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takanori Ochi
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Monami Kishi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Keiai Hospital, Saitama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shintaro Makino
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, Japan, 466-8550.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
27
|
Kawano O, Saito T, Sumitomo N, Takeshita E, Shimizu-Motohashi Y, Nakagawa E, Mizuma K, Tanifuji S, Itai T, Miyatake S, Matsumoto N, Takahashi Y, Mizusawa H, Sasaki M. Skeletal anomaly and opisthotonus in early-onset epileptic encephalopathy with KCNQ2 abnormality. Brain Dev 2023; 45:231-236. [PMID: 36631315 DOI: 10.1016/j.braindev.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Heterozygous KCNQ2 variants cause benign familial neonatal seizures and early-onset epileptic encephalopathy in an autosomal dominant manner; the latter is called KCNQ2 encephalopathy. No case of KCNQ2 encephalopathy with arthrogryposis multiplex congenita has been reported. Furthermore, early-onset scoliosis and opisthotonus have not been documented as characteristics of KCNQ2 encephalopathy. CASE REPORT A male infant born with scoliosis and arthrogryposis multiplex congenita developed intractable epilepsy on the second day of life. At 4 months of age, he developed opisthotonus. The opisthotonus was refractory to medication in the beginning, and it spontaneously disappeared at 8 months of age. Whole-exome sequencing revealed a novel de novo heterozygous variant in KCNQ2, NM_172107.4:c.839A > C, p.(Tyr280Ser). CONCLUSIONS Early-onset scoliosis, arthrogryposis multiplex congenita, and opisthotonus may be related to KCNQ2 encephalopathy.
Collapse
Affiliation(s)
- Osamu Kawano
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Noriko Sumitomo
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kanako Mizuma
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Sachiko Tanifuji
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
28
|
Nakahara E, Yamamoto KS, Ogura H, Aoki T, Utsugisawa T, Azuma K, Akagawa H, Watanabe K, Muraoka M, Nakamura F, Kamei M, Tatebayashi K, Shinozuka J, Yamane T, Hibino M, Katsura Y, Nakano-Akamatsu S, Kadowaki N, Maru Y, Ito E, Ohga S, Yagasaki H, Morioka I, Yamamoto T, Kanno H. Variant spectrum of PIEZO1 and KCNN4 in Japanese patients with dehydrated hereditary stomatocytosis. Hum Genome Var 2023; 10:8. [PMID: 36864026 PMCID: PMC9981561 DOI: 10.1038/s41439-023-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
Hereditary stomatocytosis (HSt) is a type of congenital hemolytic anemia caused by abnormally increased cation permeability of erythrocyte membranes. Dehydrated HSt (DHSt) is the most common subtype of HSt and is diagnosed based on clinical and laboratory findings related to erythrocytes. PIEZO1 and KCNN4 have been recognized as causative genes, and many related variants have been reported. We analyzed the genomic background of 23 patients from 20 Japanese families suspected of having DHSt using a target capture sequence and identified pathogenic/likely pathogenic variants of PIEZO1 or KCNN4 in 12 families.
Collapse
Affiliation(s)
- Erina Nakahara
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hiromi Ogura
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Takako Aoki
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Michiko Muraoka
- Department of Pediatrics, Fukuyama Medical Center, Okayama, Japan
| | - Fumihiko Nakamura
- Department of Laboratory Medicine, Nara Prefecture General Medical Center, Nara, Japan
| | - Michi Kamei
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Koji Tatebayashi
- Department of Neonatology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Jun Shinozuka
- Department of Pediatrics, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Takahisa Yamane
- Department of Hematology, Osaka City General Hospital, Osaka, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Yoshiya Katsura
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | | | - Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
29
|
Tamura T, Yamamoto Shimojima K, Shiihara T, Sakazume S, Okamoto N, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Interstitial microdeletions of 3q26.2q26.31 in two patients with neurodevelopmental delay and distinctive features. Am J Med Genet A 2023; 191:400-407. [PMID: 36345653 DOI: 10.1002/ajmg.a.63034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Interstitial microdeletions in the long arm of chromosome 3 are rare. In this study, we identified two patients with approximately 5-Mb overlapping deletions in the 3q26.2q26.31 region. Both patients showed neurodevelopmental delays, congenital heart defects, and distinctive facial features. One of them showed growth deficiency and brain abnormalities, as shown on a magnetic resonance imaging scan. Haploinsufficiency of NLGN1 and FNDC3B present in the common deletion region was considered to be responsible for neurodevelopmental delay and the distinctive features, respectively. The possibility of unmasked variants in PLD1 was considered and analyzed, but no possible pathogenic variant was found, and the mechanism of the congenital heart defects observed in the patients is unknown. Because 3q26.2q26.31 deletions are rare, more information is required to establish genotype-phenotype correlations associated with microdeletions in this region.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Shiihara
- Department of Neurology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Satoru Sakazume
- Department of Pediatrics, Japanese Red Cross Haramachi Hospital, Gunma, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
30
|
Sakamoto T, Ajiro M, Watanabe A, Matsushima S, Ueda K, Hagiwara M. Application of the CDK9 inhibitor FIT-039 for the treatment of KSHV-associated malignancy. BMC Cancer 2023; 23:71. [PMID: 36670405 PMCID: PMC9862866 DOI: 10.1186/s12885-023-10540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic infection with Kaposi's sarcoma-associated herpes virus (KSHV) in B lymphocytes causes primary effusion lymphoma (PEL), the most aggressive form of KSHV-related cancer, which is resistant to conventional chemotherapy. In this study, we report that the BCBL-1 KSHV+ PEL cell line does not harbor oncogenic mutations responsible for its aggressive malignancy. Assuming that KSHV viral oncogenes play crucial roles in PEL proliferation, we examined the effect of cyclin-dependent kinase 9 (CDK9) inhibitor FIT-039 on KSHV viral gene expression and KSHV+ PEL proliferation. We found that FIT-039 treatment impaired the proliferation of KSHV+ PEL cells and the expression of KSHV viral genes in vitro. The effects of FIT-039 treatment on PEL cells were further evaluated in the PEL xenograft model that retains a more physiological environment for the growth of PEL growth and KSHV propagation, and we confirmed that FIT-039 administration drastically inhibited PEL growth in vivo. Our current study indicates that FIT-039 is a potential new anticancer drug targeting KSHV for PEL patients.
Collapse
Affiliation(s)
- Tetsunori Sakamoto
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan ,Present address: Japanese Red Cross Otsu Hospital, Otsu, 520-8511 Japan
| | - Masahiko Ajiro
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501 Japan
| | - Akira Watanabe
- grid.258799.80000 0004 0372 2033Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8397 Japan
| | - Shingo Matsushima
- grid.258799.80000 0004 0372 2033Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501 Japan
| | - Keiji Ueda
- grid.136593.b0000 0004 0373 3971Division of Virology, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Masatoshi Hagiwara
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan
| |
Collapse
|
31
|
Yoshioka W, Iida A, Sonehara K, Yamamoto K, Oya Y, Mori-Yoshimura M, Kurashige T, Okubo M, Ogawa M, Matsuda F, Higasa K, Hayashi S, Nakamura H, Sekijima M, Okada Y, Noguchi S, Nishino I. Multidimensional analyses of the pathomechanism caused by the non-catalytic GNE variant, c.620A>T, in patients with GNE myopathy. Sci Rep 2022; 12:21806. [PMID: 36526893 PMCID: PMC9758176 DOI: 10.1038/s41598-022-26419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
GNE myopathy is a distal myopathy caused by biallelic variants in GNE, which encodes a protein involved in sialic acid biosynthesis. Compound heterozygosity of the second most frequent variant among Japanese GNE myopathy patients, GNE c.620A>T encoding p.D207V, occurs in the expected number of patients; however, homozygotes for this variant are rare; three patients identified while 238 homozygotes are estimated to exist in Japan. The aim of this study was to elucidate the pathomechanism caused by c.620A>T. Identity-by-descent mapping indicated two distinct c.620A>T haplotypes, which were not correlated with age onset or development of myopathy. Patients homozygous for c.620A>T had mildly decreased sialylation, and no additional pathogenic variants in GNE or abnormalities in transcript structure or expression of other genes related to sialic acid biosynthesis in skeletal muscle. Structural modeling of full-length GNE dimers revealed that the variant amino acid localized close to the monomer interface, but far from catalytic sites, suggesting functions in enzymatic product transfer between the epimerase and kinase domains on GNE oligomerization. In conclusion, homozygotes for c.620A>T rarely develop myopathy, while symptoms occur in compound heterozygotes, probably because of mildly decreased sialylation, due to partial defects in oligomerization and product trafficking by the mutated GNE protein.
Collapse
Affiliation(s)
- Wakako Yoshioka
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Aritoshi Iida
- grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Kyuto Sonehara
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan ,grid.136593.b0000 0004 0373 3971Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuki Yamamoto
- grid.32197.3e0000 0001 2179 2105Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Oya
- grid.419280.60000 0004 1763 8916Department of Neurology, National Center Hospital, NCNP, Kodaira, Japan
| | - Madoka Mori-Yoshimura
- grid.419280.60000 0004 1763 8916Department of Neurology, National Center Hospital, NCNP, Kodaira, Japan
| | - Takashi Kurashige
- grid.440118.80000 0004 0569 3483Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mariko Okubo
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| | - Megumu Ogawa
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Fumihiko Matsuda
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Higasa
- grid.410783.90000 0001 2172 5041Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Shinichiro Hayashi
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Harumasa Nakamura
- grid.419280.60000 0004 1763 8916Department of Clinical Research Support, Clinical Research & Education Promotion Division, National Center Hospital, NCNP, Kodaira, Japan
| | - Masakazu Sekijima
- grid.32197.3e0000 0001 2179 2105Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Noguchi
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Ichizo Nishino
- grid.419280.60000 0004 1763 8916Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, NCNP, Kodaira, Japan
| |
Collapse
|
32
|
TogoVar: A comprehensive Japanese genetic variation database. Hum Genome Var 2022; 9:44. [PMID: 36509753 PMCID: PMC9744889 DOI: 10.1038/s41439-022-00222-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
TogoVar ( https://togovar.org ) is a database that integrates allele frequencies derived from Japanese populations and provides annotations for variant interpretation. First, a scheme to reanalyze individual-level genome sequence data deposited in the Japanese Genotype-phenotype Archive (JGA), a controlled-access database, was established to make allele frequencies publicly available. As more Japanese individual-level genome sequence data are deposited in JGA, the sample size employed in TogoVar is expected to increase, contributing to genetic study as reference data for Japanese populations. Second, public datasets of Japanese and non-Japanese populations were integrated into TogoVar to easily compare allele frequencies in Japanese and other populations. Each variant detected in Japanese populations was assigned a TogoVar ID as a permanent identifier. Third, these variants were annotated with molecular consequence, pathogenicity, and literature information for interpreting and prioritizing variants. Here, we introduce the newly developed TogoVar database that compares allele frequencies among Japanese and non-Japanese populations and describes the integrated annotations.
Collapse
|
33
|
Suga A, Yoshitake K, Minematsu N, Tsunoda K, Fujinami K, Miyake Y, Kuniyoshi K, Hayashi T, Mizobuchi K, Ueno S, Terasaki H, Kominami T, Nao-I N, Mawatari G, Mizota A, Shinoda K, Kondo M, Kato K, Sekiryu T, Nakamura M, Kusuhara S, Yamamoto H, Yamamoto S, Mochizuki K, Kondo H, Matsushita I, Kameya S, Fukuchi T, Hatase T, Horiguchi M, Shimada Y, Tanikawa A, Yamamoto S, Miura G, Ito N, Murakami A, Fujimaki T, Hotta Y, Tanaka K, Iwata T. Genetic characterization of 1210 Japanese pedigrees with inherited retinal diseases by whole-exome sequencing. Hum Mutat 2022; 43:2251-2264. [PMID: 36284460 DOI: 10.1002/humu.24492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a phenotypically and genetically heterogeneous group of ocular disorders that cause visual loss via progressive retinal degeneration. Here, we report the genetic characterization of 1210 IRD pedigrees enrolled through the Japan Eye Genetic Consortium and analyzed by whole exome sequencing. The most common phenotype was retinitis pigmentosa (RP, 43%), followed by macular dystrophy/cone- or cone-rod dystrophy (MD/CORD, 13%). In total, 67 causal genes were identified in 37% (448/1210) of the pedigrees. The first and second most frequently mutated genes were EYS and RP1, associated primarily with autosomal recessive (ar) RP, and RP and arMD/CORD, respectively. Examinations of variant frequency in total and by phenotype showed high accountability of a frequent EYS missense variant (c.2528G>A). In addition to the two known EYS founder mutations (c.4957dupA and c.8805C>G) of arRP, we observed a frequent RP1 variant (c.5797C>T) in patients with arMD/CORD.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Laboratory of Aquatic Molecular Biology and Biotechnology, Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Minematsu
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroko Terasaki
- Nagoya University, Institutes of Innovation for Future Society, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Nao-I
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Go Mawatari
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan.,Department of Ophthalmology, Saitama Medical University, Iruma-gun, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuju Sekiryu
- Department of Ophthalmology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shuhei Kameya
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Takeo Fukuchi
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuhisa Hatase
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Yoshiaki Shimada
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Atsuhiro Tanikawa
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Gen Miura
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nana Ito
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Takuro Fujimaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan.,Kohinata Eye Clinic, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Chiyoda-ku, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
34
|
Ishikawa K, Sugimoto S, Oda M, Fujii M, Takahashi S, Ohta Y, Takano A, Ishimaru K, Matano M, Yoshida K, Hanyu H, Toshimitsu K, Sawada K, Shimokawa M, Saito M, Kawasaki K, Ishii R, Taniguchi K, Imamura T, Kanai T, Sato T. Identification of Quiescent LGR5 + Stem Cells in the Human Colon. Gastroenterology 2022; 163:1391-1406.e24. [PMID: 35963362 DOI: 10.1053/j.gastro.2022.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-β signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.
Collapse
Affiliation(s)
- Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ishimaru
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Hanyu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Center for Integrated Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Mariko Shimokawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Ohnami S, Naruoka A, Isaka M, Mizuguchi M, Nakatani S, Kamada F, Shimoda Y, Sakai A, Ohshima K, Hatakeyama K, Maruyama K, Ohde Y, Kenmotsu H, Takahashi T, Akiyama Y, Nagashima T, Urakami K, Ohnami S, Yamaguchi K. Comparison of genetic susceptibility to lung adenocarcinoma and squamous cell carcinoma in Japanese patients using a novel panel for cancer-related drug-metabolizing enzyme genes. Sci Rep 2022; 12:17928. [PMID: 36289279 PMCID: PMC9606290 DOI: 10.1038/s41598-022-22914-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
The differences in genetic susceptibility to lung adenocarcinoma and squamous cell carcinoma remain unclear. We developed a customized, targeted gene sequencing panel for efficient and sensitive identification of germline variants, including whole-gene deletion types for cancer-related drug-metabolizing enzyme genes in lung adenocarcinoma and squamous cell carcinoma. The minor allele frequencies of the variants, confirmed as clinically significant in the Japanese population, did not differ significantly from those of normal participants listed in the public database. Genotype analysis comparing lung adenocarcinoma (n = 559) and squamous cell carcinoma (n = 151) indicated that the variants of DPYD (rs190771411, Fisher's exact test, P = 0.045; rs200562975, P = 0.045) and ALDH2 (rs568781254, P = 0.032) were associated with an increased risk of squamous cell carcinoma compared to adenocarcinoma. Conversely, whole-gene deletion of CYP2A6 was associated with adenocarcinoma but not squamous cell carcinoma. Notably, whole-gene deletion of CYP2A6 was confirmed in 22 patients with lung adenocarcinoma but not in any patients with squamous cell carcinoma. Most patients with whole-gene deletion of CYP2A6 were female non-smokers. The discovery of a whole-gene deletion of CYP2A6 in patients with lung adenocarcinoma may have an important role in clinical practice and advance our understanding of CYP2A6 germline variants and their association with carcinogenesis or their susceptibility to lung adenocarcinoma.
Collapse
Affiliation(s)
- Sumiko Ohnami
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Akane Naruoka
- grid.415797.90000 0004 1774 9501Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Nagaizumi, Shizuoka Japan
| | - Mitsuhiro Isaka
- grid.415797.90000 0004 1774 9501Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka Japan
| | - Maki Mizuguchi
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Sou Nakatani
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Fukumi Kamada
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Yuji Shimoda
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Ai Sakai
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan ,grid.410830.eSRL, Inc, Tokyo, Japan
| | - Keiichi Ohshima
- grid.415797.90000 0004 1774 9501Medical Genetics Division, Shizuoka Cancer Center Research Institute, Nagaizumi, Shizuoka Japan
| | - Keiichi Hatakeyama
- grid.415797.90000 0004 1774 9501Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Nagaizumi, Shizuoka Japan
| | - Kouji Maruyama
- grid.415797.90000 0004 1774 9501Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Nagaizumi, Shizuoka Japan
| | - Yasuhisa Ohde
- grid.415797.90000 0004 1774 9501Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka Japan
| | - Hirotsugu Kenmotsu
- grid.415797.90000 0004 1774 9501Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka Japan
| | - Toshiaki Takahashi
- grid.415797.90000 0004 1774 9501Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka Japan
| | - Yasuto Akiyama
- grid.415797.90000 0004 1774 9501Immunotherapy Division, Shizuoka Cancer Center Research Institute, Nagaizumi, Shizuoka Japan
| | - Takeshi Nagashima
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan ,grid.410830.eSRL, Inc, Tokyo, Japan
| | - Kenichi Urakami
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Shumpei Ohnami
- grid.415797.90000 0004 1774 9501Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-Cho, Shizuoka Japan
| | - Ken Yamaguchi
- grid.415797.90000 0004 1774 9501Shizuoka Cancer Center, Nagaizumi, Shizuoka Japan
| |
Collapse
|
36
|
Kurihara S, Matsui H, Ohtake N, Aoki M, Sekine Y, Arai S, Koike H, Suzuki K, Miyazawa Y. Variants in HOXB13, G132E and F127C, Are Associated With Prostate Cancer Risk in Japanese Men. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:542-548. [PMID: 36060024 PMCID: PMC9425588 DOI: 10.21873/cdp.10139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Several studies have reported on the relationship between HOXB13 variants and an increased prostate cancer (PC) risk. To our knowledge there are not many studies on HOXB13 mutations in Japanese patients with prostate cancer, and there many issues remain uninvestigated. We herein clarified the association between HOXB13 genetic variants and PC risk in a Japanese population. PATIENTS AND METHODS PC patients were diagnosed at the Gunma University Hospital and affiliated hospitals from 1994 to 2016. Sanger sequencing was performed on the coding regions of the HOXB13 gene in 152 familial PC (FPC) patients. Genotyping was performed on single nucleotide variants (SNVs) found in Sanger sequencing in 230 FPC patients from 152 pedigrees and 197 sporadic PC (SPC) patients and 144 controls. Allelic frequency and clinical data for each variant were studied in cases and controls. RESULTS G132E and F127C were identified in FPC patients. The frequencies of G132E and F127C were significantly higher compared to the control group (p=0.039). In three families, seven PC patients shared the G132E variant, within second-to-third-degree relatives. It was not possible to clarify to pathogenicity of each SNV alone. CONCLUSION We found two significant variants of the HOXB13 gene, G132E, F127C by analyzing and comparing gene samples from PC and non-PC patients. Furthermore, the HOXB13 G132E variant was found significantly increased in the FPC group.
Collapse
Affiliation(s)
- Sota Kurihara
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Masanori Aoki
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Seiji Arai
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidekazu Koike
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
37
|
Komatsu K, Fukumura S, Minagawa K, Nakashima M, Saitsu H. A new case of concurrent existence of PRRT2-associated paroxysmal movement disorders with c.649dup variant and 16p11.2 microdeletion syndrome. Brain Dev 2022; 44:474-479. [PMID: 35400548 DOI: 10.1016/j.braindev.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The PRRT2 gene located at 16p11.2 encodes proline-rich transmembrane protein 2. In recent reviews, clinical spectrum caused by pathogenic PRRT2 variants is designated as PRRT2-associated paroxysmal movement disorders, which include paroxysmal kinesigenic dyskinesia, benign familial infantile epilepsy, and infantile convulsions with choreoathetosis, and hemiplegic migraine. The recurrent 16p11.2 microdeletion encompassing PRRT2 has also been reported to cause neurodevelopmental syndrome, associated with autism spectrum disorder. Although PRRT2 variants and 16p11.2 microdeletion cause each disease with the autosomal dominant manner, rare cases with bi-allelic PRRT2 variants or concurrent existence of PRRT2 variants and 16p11.2 microdeletion have been reported to show more severe phenotypes. CASE REPORT A 22-year-old man presents with episodic ataxia, paroxysmal kinesigenic dyskinesia, seizure, intellectual disability and autism spectrum disorder. He also has obesity, hypertension, hyperuricemia, and mild liver dysfunction. Exome sequencing revealed a c.649dup variant in PRRT2 in one allele and a de novo 16p11.2 microdeletion in another allele. CONCLUSIONS Our case showed combined clinical features of PRRT2-associated paroxysmal movement disorders and 16p11.2 microdeletion syndrome. We reviewed previous literatures and discussed phenotypic features of patients who completely lack the PRRT2 protein.
Collapse
Affiliation(s)
- Kazuyuki Komatsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Japan
| | | | - Kimio Minagawa
- Department of Pediatrics, Midorigaoka Ryoikuen Hospital and Home for Persons with Severe Motor and Intellectual Disabilities, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Japan.
| |
Collapse
|
38
|
Tatsuguchi A, Yamada T, Ueda K, Furuki H, Hoshimoto A, Nishimoto T, Omori J, Akimoto N, Gudis K, Tanaka S, Fujimori S, Shimizu A, Iwakiri K. Genetic analysis of Japanese patients with small bowel adenocarcinoma using next-generation sequencing. BMC Cancer 2022; 22:723. [PMID: 35778698 PMCID: PMC9250163 DOI: 10.1186/s12885-022-09824-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small bowel adenocarcinomas (SBAs) are rare and there is little comprehensive data on SBA genomic alterations for Asian patients. This study aimed to profile genomic alterations of SBA in Japanese patients using targeted next-generation sequencing (NGS). METHODS We examined 22 surgical resections from patients with primary SBA. SBA genomic alterations were analyzed by NGS. Mismatch repair (MMR) status was determined by immunohistochemical analysis. Mucin phenotypes were classified as gastric (G), intestinal (I), gastrointestinal (GI), and null (N) types on MUC2, MUC5AC, MUC6, and CD10 immunostaining. RESULTS The most common genomic alterations found in SBA tumors were TP53 (n = 16), followed by KRAS (n = 6), APC (n = 5), PIK3CA (n = 4), CTNNB1 (n = 3), KIT (n = 2), BRAF (n = 2), CDKN2A (n = 2), and PTEN (n = 2). Deficient MMR tumors were observed in 6 out of 22 patients. Tumor mucin phenotypes included 2 in G-type, 12 in I-type, 3 in GI-type, and 5 in N-type. APC and CTNNB1 mutations were not found in G-type and GI-type tumors. KRAS mutations were found in all tumor types except for G-type tumors. TP53 mutations were found in all tumor types. Although no single gene mutation was associated with overall survival (OS), we found that KRAS mutations were associated with significant worse OS in patients with proficient MMR tumors. CONCLUSIONS SBA genomic alterations in Japanese patients do not differ significantly from those reports in Western countries. Tumor localization, mucin phenotype, and MMR status all appear to impact SBA gene mutations.
Collapse
Affiliation(s)
- Atsushi Tatsuguchi
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Analytic Human Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Koji Ueda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Hiroyasu Furuki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Aitoshi Hoshimoto
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Takayoshi Nishimoto
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Jun Omori
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Naohiko Akimoto
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Katya Gudis
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Shu Tanaka
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Shunji Fujimori
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Katsuhiko Iwakiri
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
| |
Collapse
|
39
|
Yazar M, Ozbek P. Assessment of 13 in silico pathogenicity methods on cancer-related variants. Comput Biol Med 2022; 145:105434. [DOI: 10.1016/j.compbiomed.2022.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
|
40
|
Aoki S, Higashimoto K, Hidaka H, Ohtsuka Y, Aoki S, Mishima H, Yoshiura KI, Nakabayashi K, Hata K, Yatsuki H, Hara S, Ohba T, Katabuchi H, Soejima H. Aberrant hypomethylation at imprinted differentially methylated regions is involved in biparental placental mesenchymal dysplasia. Clin Epigenetics 2022; 14:64. [PMID: 35581658 PMCID: PMC9115938 DOI: 10.1186/s13148-022-01280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placental mesenchymal dysplasia (PMD) is a morphological abnormality resembling partial hydatidiform moles. It is often associated with androgenetic/biparental mosaicism (ABM) and complicated by Beckwith-Wiedemann syndrome (BWS), an imprinting disorder. These phenomena suggest an association between PMD and aberrant genomic imprinting, particularly of CDKN1C and IGF2. The existence of another type of PMD containing the biparental genome has been reported. However, the frequency and etiology of biparental PMD are not yet fully understood. RESULTS We examined 44 placental specimens from 26 patients with PMD: 19 of these were macroscopically normal and 25 exhibited macroscopic PMD. Genotyping by DNA microarray or short tandem repeat analysis revealed that approximately 35% of the macroscopic PMD specimens could be classified as biparental, while the remainder were ABM. We performed a DNA methylation analysis using bisulfite pyrosequencing of 15 placenta-specific imprinted differentially methylated regions (DMRs) and 36 ubiquitous imprinted DMRs. As expected, most DMRs in the macroscopic PMD specimens with ABM exhibited the paternal epigenotype. Importantly, the biparental macroscopic PMD specimens exhibited frequent aberrant hypomethylation at seven of the placenta-specific DMRs. Allelic expression analysis using single-nucleotide polymorphisms revealed that five imprinted genes associated with these aberrantly hypomethylated DMRs were biallelically expressed. Frequent aberrant hypomethylation was observed at five ubiquitous DMRs, including GRB10 but not ICR2 or ICR1, which regulate the expression of CDKN1C and IGF2, respectively. Whole-exome sequencing performed on four biparental macroscopic PMD specimens did not reveal any pathological genetic abnormalities. Clinical and molecular analyses of babies born from pregnancies with PMD revealed four cases with BWS, each exhibiting different molecular characteristics, and those between BWS and PMD specimens were not always the same. CONCLUSION These data clarify the prevalence of biparental PMD and ABM-PMD and strongly implicate hypomethylation of DMRs in the pathogenesis of biparental PMD, particularly placenta-specific DMRs and the ubiquitous GRB10, but not ICR2 or ICR1. Aberrant hypomethylation of DMRs was partial, indicating that it occurs after fertilization. PMD is an imprinting disorder, and it may be a missing link between imprinting disorders and placental disorders incompatible with life, such as complete hydatidiform moles and partial hydatidiform moles.
Collapse
Affiliation(s)
- Saori Aoki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Hidenori Hidaka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Yasufumi Ohtsuka
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
41
|
Takai E, Nakamura H, Chiku S, Kubo E, Ohmoto A, Totoki Y, Shibata T, Higuchi R, Yamamoto M, Furuse J, Shimizu K, Takahashi H, Morizane C, Furukawa T, Yachida S. Whole-exome Sequencing Reveals New Potential Susceptibility Genes for Japanese Familial Pancreatic Cancer. Ann Surg 2022; 275:e652-e658. [PMID: 32826389 DOI: 10.1097/sla.0000000000004213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The primary objective of this study was to identify novel genes that predispose people in the Japanese population to FPC. SUMMARY OF BACKGROUND DATA Familial history of pancreatic cancer is an important risk factor but, to date, few genes predisposing individuals to increased risk of developing FPC have been identified. METHODS We performed whole-exome sequencing of germline DNA from 81 Japanese FPC patients. We also investigated somatic gene alterations in 21 matched tumor tissues through whole-exome sequencing and copy number analysis. RESULTS Our germline variants identified previously known FPC susceptibility genes such as ATM and BRCA2, and several novel tumor suppressor genes with potentially deleterious variants for FPC. Interestingly, somatic whole-exome analysis demonstrated that most tumor samples with suspicious loss of heterozygosity of candidate genes were KRAS wild-types, implying that these cases may not have required KRAS activation as a driver event for carcinogenesis. CONCLUSIONS Our findings indicate that FPC patients harbor potentially deleterious causative germline variants in tumor suppressor genes, which are known to acquire somatic mutations in pancreatic cancer, and that somatic loss of heterozygosity of some FPC susceptibility genes may contribute to the development of FPC in the absence of somatic KRAS-activating mutation. Genetic testing for a wider variety of FPC-predisposition genes could provide better screening approach for high-risk groups of pancreatic cancer.
Collapse
Affiliation(s)
- Erina Takai
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Tokyo, Japan
| | - Emi Kubo
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiro Ohmoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kyoko Shimizu
- Department of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Takahashi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
42
|
Kasugai Y, Kohmoto T, Taniyama Y, Koyanagi YN, Usui Y, Iwase M, Oze I, Yamaguchi R, Ito H, Imoto I, Matsuo K. Association between germline pathogenic variants and breast cancer risk in Japanese women: The HERPACC study. Cancer Sci 2022; 113:1451-1462. [PMID: 35218119 PMCID: PMC8990868 DOI: 10.1111/cas.15312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 5%-10% of breast cancers are hereditary, caused by germline pathogenic variants (GPVs) in breast cancer predisposition genes. To date, most studies of the prevalence of GPVs and risk of breast cancer for each gene based on cases and noncancer controls have been conducted in Europe and the United States, and little information from Japanese populations is available. Furthermore, no studies considered confounding by established environmental factors and single-nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) together in GPV evaluation. To evaluate the association between GPVs in nine established breast cancer predisposition genes including BRCA1/2 and breast cancer risk in Japanese women comprehensively, we conducted a case-control study within the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (629 cases and 1153 controls). The associations between GPVs and the risk of breast cancer were assessed by odds ratios (OR) and 95% confidence intervals (CI) using logistic regression models adjusted for potential confounders. A total of 25 GPVs were detected among all cases (4.0%: 95% CI: 2.6-5.9), whereas four individuals carried GPVs in all controls (0.4%). The OR for breast cancer by all GPVs and by GPVs in BRCA1/2 was 12.2 (4.4-34.0, p = 1.74E-06) and 16.0 (4.2-60.9, p = 5.03E-0.5), respectively. A potential confounding with GPVs was observed for the GWAS-identified SNPs, whereas not for established environmental risk factors. In conclusion, GPVs increase the risk of breast cancer in Japanese women regardless of environmental factors and GWAS-identified SNPs. Future studies investigating interactions with environment and SNPs are warranted.
Collapse
Grants
- Aichi Cancer Center Joint Research Project on Priority Areas
- Grant-in-Aid for the Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan
- JP15ck0106177 AMED
- JP21ck0106553 AMED
- Cancer BioBank Aichi
- 17015018 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- 221S0001 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP16H06277(CoBiA) Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP18H03045 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- AMED
- Grants‐in‐Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
Collapse
Affiliation(s)
- Yumiko Kasugai
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohiro Kohmoto
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Human GeneticsGraduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yukari Taniyama
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko N. Koyanagi
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yoshiaki Usui
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Madoka Iwase
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Isao Oze
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Rui Yamaguchi
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Hidemi Ito
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Issei Imoto
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
43
|
Tomar S, Klinzing DC, Chen CK, Gan LH, Moscarello T, Reuter C, Ashley EA, Foo R. Causative Variants for Inherited Cardiac Conditions in a Southeast Asian Population Cohort. Circ Genom Precis Med 2022; 15:e003536. [DOI: 10.1161/circgen.121.003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Variable penetrance and late-onset phenotypes are key challenges for classifying causal as well as incidental findings in inherited cardiac conditions. Allele frequencies of variants in ancestry-specific populations, along with clinical variant analysis and interpretation, are critical to determine their true significance.
Methods:
Here, we carefully reviewed and classified variants in genes associated with inherited cardiac conditions based on a population whole-genome sequencing cohort of 4810 Singaporeans representing Southeast Asian ancestries.
Results:
Eighty-nine (1.85%) individuals carried either pathogenic or likely pathogenic variants across 25 genes. Forty-six (51.7%) had variants in causal genes for familial hyperlipidemia, but there were also recurrent variants in
SCN5A
and
MYBPC3
, causal genes for inherited arrhythmia and cardiomyopathy, which, despite previous reports, we determined to lack criteria for pathogenicity.
Conclusions:
Our findings highlight the incidence of disease-related variants in inherited cardiac conditions and emphasize the value of large-scale sequencing in specific ancestries. Follow-up detailed phenotyping and analysis of pedigrees are crucial because assigning pathogenicity will significantly affect clinical management for individuals and their family members.
Collapse
Affiliation(s)
- Swati Tomar
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - David C. Klinzing
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
- Khoo Teck Puat National University Children’s Medical Institute (C.K.C.), National University Health System, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore (C.K.C.)
| | - Ching Kit Chen
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - Louis Hanqiang Gan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
| | - Tia Moscarello
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Chloe Reuter
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Euan A. Ashley
- Centre for Inherited Cardiovascular Disease, Stanford University Medical Center, CA (T.M., C.R., E.A.A.)
| | - Roger Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore (S.T., D.C.K., C.K.C., L.H.G., R.F.)
- Cardiovascular Research Institute, National University Heart Centre (S.T., D.C.K., C.K.C., L.H.G., R.F.), National University Health System, Singapore
- Genome Institute of Singapore (R.F.)
| |
Collapse
|
44
|
Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One 2022; 17:e0265359. [PMID: 35299232 PMCID: PMC8929693 DOI: 10.1371/journal.pone.0265359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Intracranial aneurysms (IAs) cause subarachnoid hemorrhage, which has high rates of mortality and morbidity when ruptured. Recently, the role of rare variants in the genetic background of complex diseases has been increasingly recognized. The aim of this study was to identify rare variants for susceptibility to IA. Methods Whole-exome sequencing was performed on seven members of a Japanese pedigree with highly aggregated IA. Candidate genes harboring co-segregating rare variants with IA were re-sequenced and tested for association with IA using additional 500 probands and 323 non-IA controls. Functional analysis of rare variants detected in the pedigree was also conducted. Results We identified two gene variants shared among all four affected participants in the pedigree. One was the splicing donor c.1515+1G>A variant in NPNT (Nephronectin), which was confirmed to cause aberrant splicing by a minigene assay. The other was the missense p.P83T variant in CBY2 (Chibby family member 2). Overexpression of p.P83T CBY2 fused with red fluorescent protein tended to aggregate in the cytoplasm. Although Nephronectin has been previously reported to be involved in endothelial angiogenic functions, CBY2 is a novel molecule in terms of vascular pathophysiology. We confirmed that CBY2 was expressed in cerebrovascular smooth muscle cells in an isoform2-specific manner. Targeted CBY2 re-sequencing in additional case-control samples identified three deleterious rare variants (p.R46H, p.P83T, and p.L183R) in seven probands, showing a significant enrichment in the overall probands (8/501) compared to the controls (0/323) (p = 0.026, Fisher’s extract test). Conclusions NPNT and CBY2 were identified as novel susceptibility genes for IA. The highly heterogeneous and polygenic architecture of IA susceptibility can be uncovered by accumulating extensive analyses that focus on each pedigree with a high incidence of IA.
Collapse
|
45
|
Kaminow B, Ballouz S, Gillis J, Dobin A. Pan-human consensus genome significantly improves the accuracy of RNA-seq analyses. Genome Res 2022; 32:738-749. [PMID: 35256454 PMCID: PMC8997357 DOI: 10.1101/gr.275613.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
The Human Reference Genome serves as the foundation for modern genomic analyses. However, in its present form, it does not adequately represent the vast genetic diversity of the human population. In this study, we explored the consensus genome as a potential successor of the current reference genome and assessed its effect on the accuracy of RNA-seq read alignment. In order to find the best haploid genome representation, we constructed consensus genomes at the pan-human, super-population, and population levels, utilizing variant information from the 1000 Genomes Project. Using personal haploid genomes as the ground truth, we compared mapping errors for real RNA-seq reads aligned to the consensus genomes versus the reference genome. For reads overlapping homozygous variants, we found that the mapping error decreased by a factor of ~2-3 when the reference was replaced with the pan-human consensus genome. We also found that using more population-specific consensuses resulted in little to no increase overusing the pan-human consensus, suggesting a limit in the utility of incorporating more specific genomic variation. Replacing reference with consensus genomes impacts functional analyses, such as differential expressions of isoforms, genes, and splice junctions.
Collapse
Affiliation(s)
- Benjamin Kaminow
- Cold Spring Harbor Laboratory; Weill Cornell Graduate School of Medical Sciences
| | - Sara Ballouz
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research; School of Medical Sciences, University of New South Wales; Cold Spring Harbor Laboratory
| | | | | |
Collapse
|
46
|
Mutai H, Momozawa Y, Kamatani Y, Nakano A, Sakamoto H, Takiguchi T, Nara K, Kubo M, Matsunaga T. Whole exome analysis of patients in Japan with hearing loss reveals high heterogeneity among responsible and novel candidate genes. Orphanet J Rare Dis 2022; 17:114. [PMID: 35248088 PMCID: PMC8898489 DOI: 10.1186/s13023-022-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Heterogeneous genetic loci contribute to hereditary hearing loss; more than 100 deafness genes have been identified, and the number is increasing. To detect pathogenic variants in multiple deafness genes, in addition to novel candidate genes associated with hearing loss, whole exome sequencing (WES), followed by analysis prioritizing genes categorized in four tiers, were applied.
Results Trios from families with non-syndromic or syndromic hearing loss (n = 72) were subjected to WES. After segregation analysis and interpretation according to American College of Medical Genetics and Genomics guidelines, candidate pathogenic variants in 11 previously reported deafness genes (STRC, MYO15A, CDH23, PDZD7, PTPN11, SOX10, EYA1, MYO6, OTOF, OTOG, and ZNF335) were identified in 21 families. Discrepancy between pedigree inheritance and genetic inheritance was present in one family. In addition, eight genes (SLC12A2, BAIAP2L2, HKDC1, SVEP1, CACNG1, GTPBP4, PCNX2, and TBC1D8) were screened as single candidate genes in 10 families. Conclusions Our findings demonstrate that four-tier assessment of WES data is efficient and can detect novel candidate genes associated with hearing loss, in addition to pathogenic variants of known deafness genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02262-4.
Collapse
|
47
|
Tsuchida Y, Nagafuchi Y, Uehara T, Suzuki H, Yamada M, Kono M, Hatano H, Shoda H, Fujio K, Kosaki K. Rheumatoid arthritis in a patient with compound heterozygous variants in the COL11A2 gene and progressive hearing loss: A case report. Medicine (Baltimore) 2022; 101:e28828. [PMID: 35363175 PMCID: PMC9282103 DOI: 10.1097/md.0000000000028828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Collagen type XI alpha 2 chain is a component of type XI collagen and is expressed in various tissues including articular cartilage and tectorial membrane of the cochlea. Variants in the COL11A2 gene, which encodes collagen type XI alpha 2 chain, has been reported to cause hearing loss and has been associated with osteoarthritis and ossification of the posterior longitudinal ligament of the spine. Despite the importance of type XI collagen in the joints, association of rheumatoid arthritis (RA) with COL11A2 has not been reported. PATIENT CONCERNS The patient is a 60-year-old female, born to Japanese parents of no known consanguinity. She had progressive hearing loss since childhood. Her father also had progressive hearing loss before middle age. She developed joint pain in the knees and the hips in her forties. When she was 56, she developed polyarthritis. Rheumatoid factor and anti-CCP antibodies were positive. DIAGNOSES She was diagnosed with osteoarthritis and RA. Whole exome analysis detected 2 rare variants, c.4201C>T, p.(Arg1401Trp) and c4265C>T, p.(Pro1422Leu), in the COL11A2 gene (NM_080680.2). Whole genome analysis with a long insert size confirmed 2 variants that are in trans. INTERVENTIONS AND OUTCOMES She received a cochlear implant, which improved her hearing. She was treated with methotrexate, golimumab, tocilizumab, and upadacitinib with partial responses for her RA. LESSONS We herein report a patient with RA with compound heterozygous variants in the COL11A2 gene. Autoantibodies against type XI collagen are detected in the sera of patients with RA, suggesting the possibility that type XI collagen may be involved in the pathogenesis of RA as an autoantigen. The hearing loss and osteoarthritis in this patient may be due to the compound heterozygous variants in the COL11A2 gene, and the conformational changes induced by the variants may have changed the immunogenicity of type XI collagen, leading to the development of RA.
Collapse
Affiliation(s)
- Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
- Division of Clinical Genetics, Aichi Developmental Disability Center Hospital, Aichi, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Kono
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Sutoh Y, Komaki S, Yamaji T, Suzuki S, Katagiri R, Sawada N, Ono K, Ohmomo H, Hachiya T, Otsuka-Yamasaki Y, Takashima A, Umekage S, Iwasaki M, Shimizu A. Low MICA Gene Expression Confers an Increased Risk of Graves' Disease: A Mendelian Randomization Study. Thyroid 2022; 32:188-195. [PMID: 34861792 DOI: 10.1089/thy.2021.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Expression of natural killer group 2 member D (NKG2D) ligand (NKG2DL) plays a major role as a "danger signal" on stressed cells to promote removal of the latter by NKG2D-expressing cytotoxic lymphocytes. NKG2DL expression has been found in peripheral immune cells as well, such as in macrophages; however, the effect of this expression is yet to be determined. Methods: We determined instrumental variables (IVs; R2 <0.01 in linkage disequilibrium), explaining the major variance in major histocompatibility complex class I chain-related protein A (MICA) and B (MICB) gene expression levels from the expression-quantitative trait locus (eQTL) of NKG2DLs based on the RNA-seq analysis of peripheral blood mononuclear cells (PBMCs) from 381 Japanese. Simultaneously, the target outcomes were filtered by PheWAS from 58 health risks, using a community-based cohort study composed of 44,739 Japanese residents. Finally, we estimated the causal effect of gene expression levels on the outcomes using the Mendelian randomization approach. Results: We determined nine and four IVs, explaining 87.6% and 33.0% of MICA and MICB gene expression levels, respectively. In the association test, we identified 10 or 13 significant outcomes associated with the MICA or MICB eQTLs, respectively, as well as the causal effect of MICA expression on Graves' disease (GD) (p = 4.2 × 10-3; odds ratio per 1 S.D. difference in the expression: 0.983 [confidence interval: 0.971-0.995]), using the weighted median estimator, without significant pleiotropy (p > 0.05), and the results were consistent across the sensitivity analyses. Conclusions: Our study provide novel evidence associating NKG2DL expression with GD, an autoimmune thyroiditis; direction of the effect indicated the immunoregulatory role of MICA expression in PBMCs, suggesting the importance of further functional assays in inflammatory diseases.
Collapse
Affiliation(s)
- Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shiori Suzuki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
- Division of Cancer Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoko Katagiri
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Kanako Ono
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Akira Takashima
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - So Umekage
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
- Biomedical Laboratory Sciences, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
49
|
Hakui H, Kioka H, Miyashita Y, Nishimura S, Matsuoka K, Kato H, Tsukamoto O, Kuramoto Y, Takuwa A, Takahashi Y, Saito S, Ohta K, Asanuma H, Fu HY, Shinomiya H, Yamada N, Ohtani T, Sawa Y, Kitakaze M, Takashima S, Sakata Y, Asano Y. Loss-of-function mutations in the co-chaperone protein BAG5 cause dilated cardiomyopathy requiring heart transplantation. Sci Transl Med 2022; 14:eabf3274. [PMID: 35044787 DOI: 10.1126/scitranslmed.abf3274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure, characterized by ventricular dilatation and systolic dysfunction. Familial DCM is reportedly caused by mutations in more than 50 genes, requiring precise disease stratification based on genetic information. However, the underlying genetic causes of 60 to 80% of familial DCM cases remain unknown. Here, we identified that homozygous truncating mutations in the gene encoding Bcl-2-associated athanogene (BAG) co-chaperone 5 (BAG5) caused inherited DCM in five patients among four unrelated families with complete penetrance. BAG5 acts as a nucleotide exchange factor for heat shock cognate 71 kDa protein (HSC70), promoting adenosine diphosphate release and activating HSC70-mediated protein folding. Bag5 mutant knock-in mice exhibited ventricular dilatation, arrhythmogenicity, and poor prognosis under catecholamine stimulation, recapitulating the human DCM phenotype, and administration of an adeno-associated virus 9 vector carrying the wild-type BAG5 gene could fully ameliorate these DCM phenotypes. Immunocytochemical analysis revealed that BAG5 localized to junctional membrane complexes (JMCs), critical microdomains for calcium handling. Bag5-mutant mouse cardiomyocytes exhibited decreased abundance of functional JMC proteins under catecholamine stimulation, disrupted JMC structure, and calcium handling abnormalities. We also identified heterozygous truncating mutations in three patients with tachycardia-induced cardiomyopathy, a reversible DCM subtype associated with abnormal calcium homeostasis. Our study suggests that loss-of-function mutations in BAG5 can cause DCM, that BAG5 may be a target for genetic testing in cases of DCM, and that gene therapy may potentially be a treatment for this disease.
Collapse
Affiliation(s)
- Hideyuki Hakui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shunsuke Nishimura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ayako Takuwa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yusuke Takahashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Biomedical Imaging, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Kunio Ohta
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Nantan, Kyoto 629-0392, Japan
| | - Hai Ying Fu
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Haruki Shinomiya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriaki Yamada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masafumi Kitakaze
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Hamanaka K, Miyoshi K, Sun JH, Hamada K, Komatsubara T, Saida K, Tsuchida N, Uchiyama Y, Fujita A, Mizuguchi T, Gerard B, Bayat A, Rinaldi B, Kato M, Tohyama J, Ogata K, Shi YS, Saito K, Miyatake S, Matsumoto N. Amelioration of a neurodevelopmental disorder by carbamazepine in a case having a gain-of-function GRIA3 variant. Hum Genet 2022; 141:283-293. [PMID: 35031858 DOI: 10.1007/s00439-021-02416-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keita Miyoshi
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takao Komatsubara
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Institut Medical d'Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan.,Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|