1
|
Teerawattanapong N, Srisawat L, Narkdontri T, Yenchitsomanus PT, Tangjittipokin W, Plengvidhya N. The effects of transcription factor 7-like 2 rs7903146 and paired box 4 rs2233580 variants associated with type 2 diabetes on the therapeutic efficacy of hypoglycemic agents. Heliyon 2024; 10:e27047. [PMID: 38439836 PMCID: PMC10909763 DOI: 10.1016/j.heliyon.2024.e27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Aim This study aims to investigate the effects of the TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) variants associated with T2D on the therapeutic efficacies of various HAs in patients with T2D after follow-up for 3 years. Methods A total of 526 patients who were followed up at the Diabetic Clinic of Siriraj Hospital during 2016-2019 were enrolled. The variants TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) were genotyped using the RNase H2 enzyme-based amplification (rhAmp) technique and the associations between genotypes and glycemic control after treatments with different combinations HA were evaluated using Generalized Estimating Equations (GEE) analysis. Results Patients who carried TCF7L2 rs7903146C/T + T/T genotypes when they were treated with biguanide alone had significantly lower fasting plasma glucose (FPG) than those of the patients who carried the C/C genotype (p = 0.01). Patients who carried the PAX4 rs2233580 G/G genotype when they were treated with sulfonylurea alone had significantly lower FPG than those of the patients who carried G/A + A/A genotypes (p = 0.04). Conclusion Genotypes of TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) variants associated with T2D influence the therapeutic responses to biguanide and sulfonylurea. Different genotypes of these two variants might distinctively affect the therapeutic effects of HAs. This finding provides evidence of pharmacogenetics in the treatment of diabetes.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lanraphat Srisawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tassanee Narkdontri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-DO), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Teerawattanapong N, Tangjarusritaratorn T, Narkdontri T, Santiprabhob J, Tangjittipokin W. Investigation of Monogenic Diabetes Genes in Thai Children with Autoantibody Negative Diabetes Requiring Insulin. Diabetes Metab Syndr Obes 2024; 17:795-808. [PMID: 38375489 PMCID: PMC10875177 DOI: 10.2147/dmso.s409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Purpose The objective of this study was to clarify the phenotypic characteristics of monogenic diabetes abnormalities in Thai children with autoantibody-negative insulin. Patients and Methods Two hundred and thirty-one Thai type 1 diabetes (T1D) patients out of 300 participants with recent-onset diabetes were analyzed for GAD65 and IA2 pancreatic autoantibodies. A total of 30 individuals with T1D patients with negative autoantibody were screened for 32 monogenic diabetes genes by whole-exome sequencing (WES). Results All participants were ten men and twenty women. The median age to onset of diabetes was 8 years and 3 months. A total of 20 people with monogenic diabetes carried genes related to monogenic diabetes. The PAX4 (rs2233580) in ten patients with monogenic diabetes was found. Seven variants of WFS1 (Val412Ala, Glu737Lys, Gly576Ser, Cys673Tyr, Arg456His, Lys424Glu, and Gly736fs) were investigated in patients in this study. Furthermore, the pathogenic variant, rs115099192 (Pro407Gln) in the GATA4 gene was found. Most patients who carried PAX4 (c.575G>A, rs2233580) did not have a history of DKA. The pathogenic variant GATA4 variant (c.1220C>A, rs115099192) was found in a patient with a history of DKA. Conclusion This study demonstrated significant genetic overlap between autoantibody-negative diabetes and monogenic diabetes using WES. All candidate variants were considered disease risk with clinically significant variants. WES screening was the first implemented to diagnose monogenic diabetes in Thai children, and fourteen novel variants were identified in this study and need to be investigated in the future.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanida Tangjarusritaratorn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Tassanee Narkdontri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jeerunda Santiprabhob
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Endocrinology & Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
3
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:1762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
| |
Collapse
|
4
|
Islam MN, Rabby MG, Hossen MM, Kamal MM, Zahid MA, Syduzzaman M, Hasan MM. In silico functional and pathway analysis of risk genes and SNPs for type 2 diabetes in Asian population. PLoS One 2022; 17:e0268826. [PMID: 36037214 PMCID: PMC9423640 DOI: 10.1371/journal.pone.0268826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Type 2 diabetes (T2D) has earned widespread recognition as a primary cause of death, disability, and increasing healthcare costs. There is compelling evidence that hereditary factors contribute to the development of T2D. Clinical trials in T2D have mostly focused on genes and single nucleotide polymorphisms (SNPs) in protein-coding areas. Recently, it was revealed that SNPs located in noncoding areas also play a significant impact on disease vulnerability. It is required for cell type-specific gene expression. However, the precise mechanism by which T2D risk genes and SNPs work remains unknown. We integrated risk genes and SNPs from genome-wide association studies (GWASs) and performed comprehensive bioinformatics analyses to further investigate the functional significance of these genes and SNPs. We identified four intriguing transcription factors (TFs) associated with T2D. The analysis revealed that the SNPs are engaged in chromatin interaction regulation and/or may have an effect on TF binding affinity. The Gene Ontology (GO) study revealed high enrichment in a number of well-characterized signaling pathways and regulatory processes, including the STAT3 and JAK signaling pathways, which are both involved in T2D metabolism. Additionally, a detailed KEGG pathway analysis identified two major T2D genes and their prospective therapeutic targets. Our findings underscored the potential functional significance of T2D risk genes and SNPs, which may provide unique insights into the disease’s pathophysiology.
Collapse
Affiliation(s)
- Md. Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Munnaf Hossen
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Md. Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Syduzzaman
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Division of Plant Science, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ang SF, Low S, Ng TP, Tan CS, Ang K, Lim Z, Tang WE, Subramaniam T, Sum CF, Lim SC. Ethnic-Specific Type 2 Diabetes Risk Factor PAX4 R192H Is Associated with Attention-Specific Cognitive Impairment in Chinese with Type 2 Diabetes. J Alzheimers Dis 2022; 88:241-249. [DOI: 10.3233/jad-220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) has been shown to increase the risks of cognitive decline and dementia. Paired box gene 4 (PAX4), a transcription factor for beta cell development and function, has recently been implicated in pathways intersecting Alzheimer’s disease and T2DM. Objective: In this report, we evaluated the association of the ethnic-specific PAX4 R192H variant, a T2DM risk factor for East Asians which contributes to earlier diabetes onset, and cognitive function of Chinese T2DM patients. Methods: 590 Chinese patients aged 45–86 from the SMART2D study were genotyped for PAX4 R192H variation using Illumina OmniExpress-24 Array. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) which had been validated in the Singapore population was administered to assess five cognitive domains: immediate memory, visuospatial/constructional, language, attention, and delayed memory. Multiple linear regression was used to assess the association of the R192H risk allele and cognitive domains. Results: Patients with two PAX4 R192H risk alleles showed significantly lower attention index score (β= –8.46, 95% CI [–13.71, –3.21], p = 0.002) than patients with wild-type alleles after adjusting for age, gender, diabetes onset age, HbA1c, body-mass index, renal function, lipid profiles, systolic blood pressure, metformin usage, smoking history, education level, Geriatric Depression Scale score, and presence of APOE ɛ4 allele. Conclusion: Ethnic-specific R192H variation in PAX4 is associated with attention-specific cognitive impairment in Chinese with T2DM. Pending further validation studies, determining PAX4 R192H genotype may be helpful for early risk assessment of early-onset T2DM and cognitive impairment to improve diabetes care.
Collapse
Affiliation(s)
- Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Serena Low
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Gerontology Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clara S.H. Tan
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Ziliang Lim
- National Healthcare Group Polyclinics (NHGP), Singapore
| | - Wern Ee Tang
- National Healthcare Group Polyclinics (NHGP), Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre (AdMC) c/o Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
- Diabetes Centre, Admiralty Medical Centre (AdMC) c/o Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
| |
Collapse
|
6
|
Hosoe J, Suzuki K, Miya F, Kato T, Tsunoda T, Okada Y, Horikoshi M, Shojima N, Yamauchi T, Kadowaki T. Structural basis of ethnic-specific variants of PAX4 associated with type 2 diabetes. Hum Genome Var 2021; 8:25. [PMID: 34226521 PMCID: PMC8257626 DOI: 10.1038/s41439-021-00156-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Recently, we conducted genome-wide association studies of type 2 diabetes (T2D) in a Japanese population, which identified 20 novel T2D loci that were not associated with T2D in Europeans. Moreover, nine novel missense risk variants, such as those of PAX4, were not rare in the Japanese population, but rare in Europeans. We report in silico structural analysis of ethnic-specific variants of PAX4, which suggests the pathogenic effect of these variants.
Collapse
Affiliation(s)
- Jun Hosoe
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Suzuki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,CREST, JST, Tokyo, Japan
| | - Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,CREST, JST, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Metabolism and Nutrition, Teikyo University Mizonokuchi Hospital, Kawasaki, Kanagawa, Japan. .,Toranomon Hospital, Tokyo, Japan.
| |
Collapse
|
7
|
Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY) 2021; 13:16786-16803. [PMID: 34162761 PMCID: PMC8266315 DOI: 10.18632/aging.203214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is one of the most common aggressive cancers. The discovery of an effective biomarker is necessary for GC diagnosis. In this study, we confirmed that Paired box gene 4 (PAX4) is up-regulated in GC tissues and cells via quantitative real time polymerase chain reaction (qRT-PCR), western blot and immunohistochemical staining. It was also identified that PAX4 contributed to GC cell proliferation, migration and invasion through Cell Counting Kit-8, BrdU, flow cytometry assay, colony formation assay, transwell assays, and wound healing assay. miR-27b-3p was confirmed with the binding site with PAX4 using ChIP assay and served as a tumor suppressor that inhibiting GC cell growth and metastasis, and reversed the effect of PAX4. Bioinformatics prediction and dual luciferase assay results demonstrated that miR-27b-3p targeted Grb2, which could alter the function of miR-27b-3p. Furthermore, the transcriptional control of PAX4-regulated miR-27b-3p activated the Ras-ERK pathway. Taken together, the PAX4/miR-27b-3p/Grb2 loop is known to be involved in GC cell promotion, and can be seen as a promising target for GC therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Li Ding
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| |
Collapse
|
8
|
Cho SB, Jang JH, Chung MG, Kim SC. Exome Chip Analysis of 14,026 Koreans Reveals Known and Newly Discovered Genetic Loci Associated with Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:231-240. [PMID: 32794382 PMCID: PMC8024163 DOI: 10.4093/dmj.2019.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Most loci associated with type 2 diabetes mellitus (T2DM) discovered to date are within noncoding regions of unknown functional significance. By contrast, exonic regions have advantages for biological interpretation. METHODS We analyzed the association of exome array data from 14,026 Koreans to identify susceptible exonic loci for T2DM. We used genotype information of 50,543 variants using the Illumina exome array platform. RESULTS In total, 7 loci were significant with a Bonferroni adjusted P=1.03×10-6. rs2233580 in paired box gene 4 (PAX4) showed the highest odds ratio of 1.48 (P=1.60×10-10). rs11960799 in membrane associated ring-CH-type finger 3 (MARCH3) and rs75680863 in transcobalamin 2 (TCN2) were newly identified loci. When we built a model to predict the incidence of diabetes with the 7 loci and clinical variables, area under the curve (AUC) of the model improved significantly (AUC=0.72, P<0.05), but marginally in its magnitude, compared with the model using clinical variables (AUC=0.71, P<0.05). When we divided the entire population into three groups-normal body mass index (BMI; <25 kg/m2), overweight (25≤ BMI <30 kg/m2), and obese (BMI ≥30 kg/m2) individuals-the predictive performance of the 7 loci was greatest in the group of obese individuals, where the net reclassification improvement was highly significant (0.51; P=8.00×10-5). CONCLUSION We found exonic loci having a susceptibility for T2DM. We found that such genetic information is advantageous for predicting T2DM in a subgroup of obese individuals.
Collapse
Affiliation(s)
- Seong Beom Cho
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| | - Jin Hwa Jang
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| | - Myung Guen Chung
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| | - Sang Cheol Kim
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
9
|
Gao A, Gu B, Zhang J, Fang C, Su J, Li H, Han R, Ye L, Wang W, Ning G, Wang J, Gu W. Missense Variants in PAX4 Are Associated with Early-Onset Diabetes in Chinese. Diabetes Ther 2021; 12:289-300. [PMID: 33216280 PMCID: PMC7843779 DOI: 10.1007/s13300-020-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/27/2020] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION East Asians are more susceptible to early-onset diabetes than Europeans and exhibit reduced insulin secretion at earlier stages. PAX4 plays a critical role in the development of β-cells. The dysfunction-missense variants PAX4 R192H and PAX4 R192S are common in East Asians but rare in Europeans. Therefore, we aim to investigate the diabetes-associated genes, including PAX4 R192H/S, in East Asians with early-onset diabetes. METHODS Exome variants of 80 Chinese early-onset diabetes patients (onset age < 35 years) after the exclusion of type 1 diabetes (T1D) were detected by a customized gene panel covering 32 known diabetes-associated genes. Then, 229 subjects with early-onset diabetes (T1D excluded) and 1679 controls from the Chinese population were genotyped to validate the association of PAX4 R192H/S with early-onset diabetes and related phenotypes. RESULTS The gene panel detected 11 monogenic diabetes patients with five novel mutations among the 80 early-onset diabetes patients. Asian-specifically enriched PAX4 R192H and R192S were associated with early-onset diabetes (R192H: OR 1.88, 95% CI 1.37-2.60, P = 8.41 × 10-5; R192S: OR 1.71, 95% CI 1.17-2.51, P = 0.005). In early-onset diabetes patients, PAX4 R192H carriers had higher haemoglobin A1c (HbA1c) levels (P = 0.030) and lower 2 h C-peptide levels in the oral glucose tolerance test (OGTT) (P = 0.040); R192S carriers had lower fasting C-peptide (FCP) (P = 0.011) and 2 h C-peptide levels (P = 0.033) in OGTT than non-variant carriers. CONCLUSIONS The ethnic-specific enrichment of PAX4 R192H/S predisposing East Asians to early-onset diabetes with decreased C-peptide levels may be one explanation of the discrepancy of diabetes between East Asians and Europeans. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT01938365).
Collapse
Affiliation(s)
- Aibo Gao
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bin Gu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Juan Zhang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Chen Fang
- The Second Affiliated Hospital of Soochow University, Soochow, 215004, China
| | - Junlei Su
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Haorong Li
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Rulai Han
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Lei Ye
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Weiqing Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
| | - Weiqiong Gu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
| |
Collapse
|
10
|
Panneerselvam A, Kannan A, Mariajoseph-Antony LF, Prahalathan C. PAX proteins and their role in pancreas. Diabetes Res Clin Pract 2019; 155:107792. [PMID: 31325538 DOI: 10.1016/j.diabres.2019.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Gene regulatory factors that govern the expression of heritable information come in an array of flavors, chiefly with transcription factors, the proteins which bind to regions of specific genes and modulate gene transcription, subsequently altering cellular function. PAX transcription factors are sequence-specific DNA-binding proteins exerting its regulatory activity in many tissues. Notably, three members of the PAX family namely PAX2, PAX4 and PAX6 have emerged as crucial players at multiple steps of pancreatic development and differentiation and also play a pivotal role in the regulation of pancreatic islet hormones synthesis and secretion. Providing a comprehensive outline of these transcription factors and their primordial and divergent roles in the pancreas is far-reaching in contemporary diabetes research. Accordingly, this review furnishes an outline of the role of pancreatic specific PAX regulators in the development of the pancreas and its associated disorders.
Collapse
Affiliation(s)
- Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
11
|
Ang SF, Tan CSH, Wang L, Dorajoo R, Fong JCW, Kon WYC, Lian JX, Ang K, Rahim JB, Jeevith B, Lee SBM, Tang WE, Subramanium T, Sum CF, Liu JJ, Lim SC. PAX4 R192H is associated with younger onset of Type 2 diabetes in East Asians in Singapore. J Diabetes Complications 2019; 33:53-58. [PMID: 30528630 DOI: 10.1016/j.jdiacomp.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/04/2018] [Accepted: 10/07/2018] [Indexed: 11/24/2022]
Abstract
AIMS Young-onset T2D (YT2D) is associated with a more fulminant course and greater propensity for diabetic complications. The association of PAX4 R192H (rs2233580) variation with YT2D was inconsistent partly because of its Asian-specificity and under-representation of Asians in international consortiums. Interestingly, in our preliminary YT2D (mean = 25 years old) cohort, the prevalence of PAX4 R192H variant was remarkably higher (21.4%) than the general population. Therefore, we sought to determine whether PAX4 R192H is associated with younger onset of T2D in our East Asian (Chinese) population. METHODS Genotyping of PAX4 R192H was carried out using Illumina OmniExpress BeadChips as part of a genome-wide association study. Data analysis was performed using SPSS Ver. 22. RESULTS PAX4 R192H genotype was associated with younger onset age (CC: 47.1, CT: 46.0, TT: 42.6) after adjusting for gender, F = 5.402, p = 0.005. Independently, onset of diabetes was younger among males by 2.52 years, 95% CI [-3.45, -1.59], p < 0.0001. HOMA-IR and HOMA-%B were not significantly different across genotypes for a subset (n = 1045) of the cohort. CONCLUSIONS Minor allele (T) of PAX4 R192H is associated with younger onset diabetes among Chinese in Singapore. Determining this genotype is important for identifying at-risk individuals for earlier onset diabetes and diabetic complications.
Collapse
Affiliation(s)
- Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Clara S H Tan
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Ling Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jessie C W Fong
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Winston Y C Kon
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Joyce X Lian
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | | | - Babitha Jeevith
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore
| | | | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore
| | - Tavintharan Subramanium
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore; Diabetes Center, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Chee Fang Sum
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore; Diabetes Center, Khoo Teck Puat Hospital (KTPH), Singapore
| | - Jian Jun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital (KTPH), Singapore; Diabetes Center, Khoo Teck Puat Hospital (KTPH), Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women. J Diabetes Investig 2018; 9:1196-1202. [PMID: 29352517 PMCID: PMC6123053 DOI: 10.1111/jdi.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. MATERIALS AND METHODS A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. RESULTS The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. CONCLUSIONS The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Li
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Liangkun Ma
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Fan Ping
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Juntao Liu
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xueyan Wu
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jiangfeng Mao
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xi Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Min Nie
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
13
|
Xu Y, Wang Y, Song Y, Deng J, Chen M, Ouyang H, Lai L, Li Z. Generation and Phenotype Identification of PAX4 Gene Knockout Rabbit by CRISPR/Cas9 System. G3 (BETHESDA, MD.) 2018; 8:2833-2840. [PMID: 29950431 PMCID: PMC6071587 DOI: 10.1534/g3.118.300448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/25/2018] [Indexed: 01/26/2023]
Abstract
Paired-homeodomain transcription factor 4 (PAX4) gene encodes a transcription factor which plays an important role in the generation, differentiation, development, and survival of insulin-producing β-cells during mammalian pancreas development. PAX4 is a key diabetes mellitus (DM) susceptibility gene, which is associated with many different types of DM, including T1DM, T2DM, maturity onset diabetes of the young 9 (MODY9) and ketosis prone diabetes. In this study, a novel PAX4 gene knockout (KO) model was generated through co-injection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) mRNA/sgRNA into rabbit zygotes. Typical phenotypes of growth retardation, persistent hyperglycemia, decreased number of insulin-producing β cells and increased number of glucagon-producing α cells were observed in the homozygous PAX4 KO rabbits. Furthermore, DM associated phenotypes including diabetic nephropathy, hepatopathy, myopathy and cardiomyopathy were also observed in the homozygous PAX4 KO rabbits but not in the wild type (WT) controls and the heterozygous PAX4 KO rabbits. In summary, this is the first PAX4 gene KO rabbit model generated by CRISPR/Cas9 system. This novel rabbit model may provide a new platform for function study of PAX4 gene in rabbit and gene therapy of human DM in clinical trails.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yong Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
14
|
Malenczyk K, Szodorai E, Schnell R, Lubec G, Szabó G, Hökfelt T, Harkany T. Secretagogin protects Pdx1 from proteasomal degradation to control a transcriptional program required for β cell specification. Mol Metab 2018; 14:108-120. [PMID: 29910119 PMCID: PMC6034064 DOI: 10.1016/j.molmet.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Specification of endocrine cell lineages in the developing pancreas relies on extrinsic signals from non-pancreatic tissues, which initiate a cell-autonomous sequence of transcription factor activation and repression switches. The steps in this pathway share reliance on activity-dependent Ca2+ signals. However, the mechanisms by which phasic Ca2+ surges become converted into a dynamic, cell-state-specific and physiologically meaningful code made up by transcription factors constellations remain essentially unknown. METHODS We used high-resolution histochemistry to explore the coincident expression of secretagogin and transcription factors driving β cell differentiation. Secretagogin promoter activity was tested in response to genetically manipulating Pax6 and Pax4 expression. Secretagogin null mice were produced with their pancreatic islets morphologically and functionally characterized during fetal development. A proteomic approach was utilized to identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome and verified in vitro by focusing on Pdx1 retention. RESULTS Here, we show that secretagogin, a Ca2+ sensor protein that controls α and β cell turnover in adult, is in fact expressed in endocrine pancreas from the inception of lineage segregation in a Pax4-and Pax6-dependent fashion. By genetically and pharmacologically manipulating secretagogin expression and interactome engagement in vitro, we find secretagogin to gate excitation-driven Ca2+ signals for β cell differentiation and insulin production. Accordingly, secretagogin-/- fetuses retain a non-committed pool of endocrine progenitors that co-express both insulin and glucagon. We identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome complex to prevent Pdx1 degradation through proteasome inactivation. This coincides with retained Nkx6.1, Pax4 and insulin transcription in prospective β cells. CONCLUSIONS In sum, secretagogin scales the temporal availability of a Ca2+-dependent transcription factor network to define β cell identity.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Gert Lubec
- Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden.
| |
Collapse
|
15
|
Martins BR, Souza SWD, Welter M, Volanski W, França SN, Alberton D, Picheth G, Rego FGDM. Polymorphisms rs2233575 and rs712701 in the paired box 4 gene are not associated with type 1 diabetes in children. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Martin-Montalvo A, Lorenzo PI, López-Noriega L, Gauthier BR. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opin Ther Targets 2016; 21:77-89. [PMID: 27841034 DOI: 10.1080/14728222.2017.1257000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Petra I Lorenzo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Livia López-Noriega
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Benoit R Gauthier
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| |
Collapse
|