1
|
Kim M, Lim KM. DEHP (di(2-ethylhexyl)phthalate) stimulates skin pigmentation by perturbing cytoskeletal homeostasis. Toxicol Res 2024; 40:487-497. [PMID: 38911535 PMCID: PMC11187019 DOI: 10.1007/s43188-024-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Phthalates are extensively employed plasticizers crucial for conferring flexibility and plasticity to polyvinyl chloride. Phthalates, including DEHP (di(2-ethylhexyl)phthalate), present in diverse products, have been identified in fine dust and are capable of infiltrating the body, potentially posing health hazards. Importantly, melanocytes, existing at the basal layer of the epidermis, are susceptible to toxic substances. In our study, we employed the 3D human pigmented epidermis model, MelanoDerm™, along with the B16F10 murine melanoma cell line, to examine the influence of DEHP exposure on melanocytes. The exposure to low concentrations of DEHP (~ 5 μM), resulted in the extension of melanocyte dendrites, indicating the stimulation of melanocytes. Analysis of gene expression and protein profiles unveiled the up-regulation of MITF, Arpc2, and TRP1 genes subsequent to DEHP exposure, indicating alterations in cytoskeletal and melanosome-related genetic and protein components in melanocytes. Notably, increased pigmentation was observed in MelanoDerm™ following DEHP exposure. DEHP-stimulated reactive oxygen species generation appeared to be involved in these events since the antioxidant, ascorbic acid attenuated ROS generation and MITF upregulation. Collectively, our study demonstrated that DEHP exposure can induce cytoskeletal disturbance and skin pigmentation through oxidative stress.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
2
|
Katsuyama Y, Hiyama K, Sawamura A, Kawase I, Okano Y, Masaki H. Pyridoxine Has a Potential to Prevent the Appearance of Pigmented Spots: Effects on the Phagocytosis and Differentiation of Keratinocytes. Biol Pharm Bull 2022; 45:1378-1384. [DOI: 10.1248/bpb.b22-00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Bowman DM, Kaji I, Goldenring JR. Altered MYO5B Function Underlies Microvillus Inclusion Disease: Opportunities for Intervention at a Cellular Level. Cell Mol Gastroenterol Hepatol 2022; 14:553-565. [PMID: 35660026 PMCID: PMC9304615 DOI: 10.1016/j.jcmgh.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital diarrheal disorder resulting in life-threatening secretory diarrhea in newborns. Inactivating and nonsense mutations in myosin Vb (MYO5B) have been identified in MVID patients. Work using patient tissues, cell lines, mice, and pigs has led to critical insights into the pathology of MVID and a better understanding of both apical trafficking in intestinal enterocytes and intestinal stem cell differentiation. These studies have demonstrated that loss of MYO5B or inactivating mutations lead to loss of apical sodium and water transporters, without loss of apical CFTR, accounting for the major pathology of the disease. In addition, loss of MYO5B expression induces the formation of microvillus inclusions through apical bulk endocytosis that utilizes dynamin and PACSIN2 and recruits tight junction proteins to the sites of bulk endosome formation. Importantly, formation of microvillus inclusions is not required for the induction of diarrhea. Recent investigations have demonstrated that administration of lysophosphatidic acid (LPA) can partially reestablish apical ion transporters in enterocytes of MYO5B KO mice. In addition, further studies have shown that MYO5B loss induces an imbalance in Wnt/Notch signaling pathways that can lead to alterations in enterocyte maturation and tuft cell lineage differentiation. Inhibition of Notch signaling leads to improvements in those cell differentiation deficits. These studies demonstrate that directed strategies through LPA receptor activation and Notch inhibition can bypass the inhibitory effects of MYO5B loss. Thus, effective strategies may be successful in MVID patients and other congenital diarrhea syndromes to reestablish proper apical membrane absorption of sodium and water in enterocytes and ameliorate life-threatening congenital diarrhea.
Collapse
Affiliation(s)
- Deanna M Bowman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
4
|
Myung CH, Lee JE, Jo CS, Park JI, Hwang JS. Regulation of Melanophilin (Mlph) gene expression by the glucocorticoid receptor (GR). Sci Rep 2021; 11:16813. [PMID: 34413386 PMCID: PMC8376885 DOI: 10.1038/s41598-021-96276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Mlph plays a crucial role in regulating skin pigmentation through the melanosome transport process. Although Mlph is a major component involved in melanosome transport, the mechanism that regulates the expression of the Mlph gene has not been identified. In this study, we demonstrate that Mlph expression is regulated by the glucocorticoid receptor (GR). Alteration of GR activity using a specific GR agonist or antagonist only regulated the expression of Mlph among the 3 key melanosome transport proteins. Translocation of GR from the cytosol into the nucleus following Dex treatment was confirmed by separating the cytosol and nuclear fractions and by immunofluorescence staining. In ChIP assays, Dex induced GR binding to the Mlph promoter and we determined that Dex induced the GR binding motif on the Mlph promoter. Our findings contribute to understanding the regulation of Mlph expression and to the novel role of GR in Mlph gene expression.
Collapse
Affiliation(s)
- Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
5
|
Hushcha Y, Blo I, Oton-Gonzalez L, Mauro GD, Martini F, Tognon M, Mattei MD. microRNAs in the Regulation of Melanogenesis. Int J Mol Sci 2021; 22:ijms22116104. [PMID: 34198907 PMCID: PMC8201055 DOI: 10.3390/ijms22116104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Melanogenesis is the process leading to the synthesis of melanin, the main substance that influences skin color and plays a pivotal role against UV damage. Altered melanogenesis is observed in several pigmentation disorders. Melanogenesis occurs in specialized cells called melanocytes, physically and functionally related by means of autocrine and paracrine interplay to other skin cell types. Several external and internal factors control melanin biosynthesis and operate through different intracellular signaling pathways, which finally leads to the regulation of microphthalmia-associated transcription factor (MITF), the key transcription factor involved in melanogenesis and the expression of the main melanogenic enzymes, including TYR, TYRP-1, and TYRP-2. Epigenetic factors, including microRNAs (miRNAs), are involved in melanogenesis regulation. miRNAs are small, single-stranded, non-coding RNAs, of approximately 22 nucleotides in length, which control cell behavior by regulating gene expression, mainly by binding the 3′ untranslated region (3′-UTR) of target mRNAs. This review collects data on the miRNAs involved in melanogenesis and how these miRNAs can modulate target gene expression. Bringing to light the biological function of miRNAs could lead to a wider understanding of epigenetic melanogenesis regulation and its dysregulation. This knowledge may constitute the basis for developing innovative treatment approaches for pigmentation dysregulation.
Collapse
Affiliation(s)
| | - Irene Blo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Lucia Oton-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Giulia Di Mauro
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
- Correspondence: ; Tel.: +39-0532-455534
| |
Collapse
|
6
|
Lee EJ, Kim J, Jeong MK, Lee YM, Chung YJ, Kim EM. Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:15-26. [PMID: 33361534 PMCID: PMC7756534 DOI: 10.4196/kjpp.2021.25.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Peptides are short chain of amino acids linked by peptide bonds. They are widely used as effective and biocompatible active ingredients in cosmetic industry. In this study, we developed novel peptide mixture and identified its anti-pigmentation effect on melanocytes and keratinocytes. Our results revealed that peptide mixture inhibited melanosome biogenesis through the regulation of microphthalmia-associated transcription factor, a key factor of melanogenesis in melanocytes. And we observed that peptide mixture inhibited melanosome uptake through the reduction of protease-activated receptor 2, a phagocytosis-related receptor in keratinocytes. Furthermore, peptide mixture activated autophagy system resulting in degradation of transferred melanosomes in keratinocytes. The anti-pigmentation effect of multi-targeting peptide mixture was assessed in a human skin equivalent model (MelanoDerm). Melanin contents in epidermal layer were significantly decreased by topical treatment of peptide mixture, suggesting that it can be applied as a novel cosmetics material having a whitening function.
Collapse
Affiliation(s)
| | - Jandi Kim
- Caregen R&D Center, Anyang 14119, Korea
| | | | | | | | | |
Collapse
|
7
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
8
|
Kim M, Lee CS, Lim KM. Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels. Int J Mol Sci 2019; 20:ijms20225665. [PMID: 31726751 PMCID: PMC6888388 DOI: 10.3390/ijms20225665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Rhododenol (RD), a whitening cosmetic ingredient, was withdrawn from the market due to RD-induced leukoderma (RIL). While many attempts have been made to clarify the mechanism underlying RIL, RIL has not been fully understood yet. Indeed, affected subjects showed uneven skin pigmentation, but the features are different from vitiligo, a skin hypopigmentary disorder, alluding to events more complex than simple melanocyte cytotoxicity. Here, we discovered that rhododenol treatment reduced the number of melanocytes in a pigmented 3D human skin model, Melanoderm™, confirming the melanocyte toxicity of RD. Of note, melanocytes that survived in the RD treated tissues exhibited altered morphology, such as extended dendrites and increased cell sizes. Consistently with this, sub-cytotoxic level of RD increased cell size and elongated dendrites in B16 melanoma cells. Morphological changes of B16 cells were further confirmed in the immunocytochemistry of treated cells for actin and tubulin. Even more provoking, RD up-regulated the expression of tyrosinase and TRP1 in the survived B16 cells. Evaluation of mRNA expression of cytoskeletal proteins suggests that RD altered the cytoskeletal dynamic favoring cell size expansion and melanosome maturation. Collectively, these results suggest that RD not only induces cytotoxicity in melanocytes but also can lead to a profound perturbation of melanocyte integrity even at sub-cytotoxic levels.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Chang-Seok Lee
- Department of Beauty and Cosmetic Science, College of Health Science, Eulji University, Seongnam-si 13135, Korea
- Correspondence: (C.-S.L.); (K.-M.L.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (C.-S.L.); (K.-M.L.)
| |
Collapse
|
9
|
Lee JA, Hwang SJ, Hong SC, Myung CH, Lee JE, Park JI, Hwang JS. Identification of MicroRNA Targeting Mlph and Affecting Melanosome Transport. Biomolecules 2019; 9:biom9070265. [PMID: 31288473 PMCID: PMC6681522 DOI: 10.3390/biom9070265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/13/2023] Open
Abstract
Melanosomes undergo a complex maturation process and migrate into keratinocytes. Melanophilin (Mlph), a protein complex involving myosin Va (MyoVa) and Rab27a, enables the movement of melanosomes in melanocytes. In this study, we found six miRNAs targeting Mlph in mouse using two programs (http://targetscan.org and DianaTools). When melan-a melanocytes were treated with six synthesized microRNAs, miR-342-5p, miR-1839-5p, and miR-3082-5p inhibited melanosome transport and induced melanosome aggregation around the nucleus. The other microRNAs, miR-5110, miR-3090-3p, and miR-186-5p, did not inhibit melanosome transport. Further, miR-342-5p, miR-1839-5p, and miR-3082-5p decreased Mlph expression. The effect of miR-342-5p was the strongest among the six synthesized miRNAs. It inhibited melanosome transport in melan-a melanocytes and reduced Mlph expression in mRNA and protein levels in a dose-dependent manner; however, it did not affect Rab27a and MyoVa expressions, which are associated with melanosome transport. To examine miR-342-5p specificity, we performed luciferase assays in a mouse melanocyte-transfected reporter vector including Mlph at the 3′-UTR (untranslated region). When treated with miR-342-5p, luciferase activity that had been reduced by approximately 50% was restored after inhibitor treatment. Therefore, we identified a novel miRNA affecting Mlph and melanosome transport, and these results can be used for understanding Mlph expression and skin pigmentation regulation.
Collapse
Affiliation(s)
- Jeong Ah Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Seok Joon Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Sung Chan Hong
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea.
| |
Collapse
|
10
|
Taira N, Katsuyama Y, Yoshioka M, Okano Y, Masaki H. 3-O-Glyceryl-2-O-hexyl ascorbate suppresses melanogenesis by interfering with intracellular melanosome transport and suppressing tyrosinase protein synthesis. J Cosmet Dermatol 2017; 17:1209-1215. [PMID: 29115012 DOI: 10.1111/jocd.12451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ascorbic acid (AsA) has multifunctional benefits on skin beauty, such as the reduction in oxidative stress and the induction of collagen production. Among them, the prevention and improvement of skin pigmentation by AsA is a most important benefit for people. However, it is well known that AsA not only is quite unstable in formulations but it also has a low capability of skin penetration due to its hydrophilic property. In addition, existing water-soluble AsA derivatives that were developed to improve its stability also have low skin penetration. AIM To investigate the potential of a newly synthesized amphiphilic derivative of AsA, 3-O-Glyceryl-2-O-hexyl ascorbate (VC-HG), which has an added glyceryl group and a hexyl group, on skin beauty focusing on its skin lightening/whitening effects. METHODS DNA microarray analysis and real-time PCR were used to clarify the effects of VC-HG on melanogenesis using B16 mouse melanoma cells. The effects of VC-HG on melanin synthesis, tyrosinase protein levels, and the inhibition of tyrosinase activity were evaluated. RESULTS DNA microarray analysis revealed that treatment with VC-HG downregulated the expression of genes encoding tyrosinase and MyosinVa. Further, real-time PCR analysis showed the downregulation of tyrosinase, MyosinVa, Rab27a, and Kinesin mRNAs following VC-HG treatment. In addition, VC-HG caused decreases in tyrosinase protein levels and melanin synthesis. CONCLUSION We conclude that VC-HG has an impact on skin lightening/whitening by inhibiting tyrosinase protein synthesis and interfering with intracellular melanosome transport.
Collapse
Affiliation(s)
| | | | | | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| |
Collapse
|
11
|
Katsuyama Y, Taira N, Yoshioka M, Okano Y, Masaki H. Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autophagy. Biochem Biophys Res Commun 2017; 485:126-130. [DOI: 10.1016/j.bbrc.2017.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/07/2023]
|
12
|
Inhibitory effect of 2-methyl-naphtho[1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation. Sci Rep 2016; 6:29189. [PMID: 27381646 PMCID: PMC4933902 DOI: 10.1038/srep29189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Melanosomes are lysosome-related organelles with specialized capabilities of melanin synthesis and movement mediated by the Rab27a-Melanophilin-MyosinVa protein complex. In this study, we found that 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO) induced melanosome aggregation around the nucleus in melan-a melanocytes and in melan-a melanocytes/SP-1 keratinocyte co-cultures without inducing toxicity or changing the melanin content. Western blot and real-time PCR analyses showed that MNQO decreased expression of the Rab27a, Melanophilin and MyosinVa proteins and mRNAs, respectively, in melan-a melanocytes. In a reconstituted human epidermis model, treatment with 0.001% MNQO reduced skin pigmentation. Also, MNQO reduced skin pigmentation in brown guinea pigs induced by UVB irradiation. These results indicated that regulation of melanosome transport may serve as a good target for new skin depigmenting agents and MNQO itself could be a candidate.
Collapse
|
13
|
Desmet E, Bracke S, Forier K, Taevernier L, Stuart MCA, De Spiegeleer B, Raemdonck K, Van Gele M, Lambert J. Characterization data on the topical carrier DDC642. Data Brief 2016; 7:1204-10. [PMID: 27408923 PMCID: PMC4927961 DOI: 10.1016/j.dib.2016.03.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/12/2016] [Accepted: 03/26/2016] [Indexed: 12/28/2022] Open
Abstract
This article contains original data, figures and methods used in the characterization of the liposomal carrier ‘DDC642’ for topical applications, described in “An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: proof-of-concept in the treatment of psoriasis” (Desmet et al., 2016) [1]. Several elastic liposomal formulations have been evaluated for their ability to encapsulate and deliver RNA interference (RNAi) molecules to cultured primary skin cells. The efficiency and effectiveness of these liposomes were compared to that of our previously characterized liposomes, the ‘SECosomes’ (SEC) (Geusens et al., 2010) [2]. After selection of a potential superior carrier, based on encapsulation and transfection efficiency data (Desmet et al., 2016) [1], the selected DDC642 liposomes were characterized more in-depth. Herein, a detailed characterization of the DDC642 liposome and RNAi-loaded lipoplexes is given, including the matching protocols.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University, Ghent, Belgium
| | | | - Katrien Forier
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Center of Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Lien Taevernier
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Marc C A Stuart
- Electron microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Koen Raemdonck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Jo Lambert
- Department of Dermatology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Desmet E, Bracke S, Forier K, Taevernier L, Stuart MCA, De Spiegeleer B, Raemdonck K, Van Gele M, Lambert J. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis. Int J Pharm 2016; 500:268-74. [PMID: 26806466 DOI: 10.1016/j.ijpharm.2016.01.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
Abstract
RNA interference (RNAi) is a rapidly emerging approach for targeted gene silencing to alleviate disease pathology. However, lack of efficient carriers for targeted delivery delays the clinical translation of RNAi. An interesting target for local RNAi therapeutics is the skin as it allows direct access to target cells. Still, applications are limited due to the effective skin barrier which hinders penetration. Herein, a description is given of a liposomal carrier, called 'DDC642', capable of delivering RNAi molecules to the epidermis of impaired and intact human skin, without targeting the dermis or circulatory system. In a psoriasis tissue model, down-regulation of the psoriasis marker human beta-defensin 2 by DDC642-delivered siRNA was confirmed, providing proof-of-concept. These liposomes thus hold great potential as topical delivery system for RNAi therapeutics in the treatment of numerous skin diseases.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University, Ghent, Belgium.
| | - Stefanie Bracke
- Department of Dermatology, Ghent University, Ghent, Belgium.
| | - Katrien Forier
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Center for Nano and Biophotonics, Ghent University, Ghent, Belgium.
| | - Lien Taevernier
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium.
| | - Marc C A Stuart
- Electron microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Bart De Spiegeleer
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium.
| | - Koen Raemdonck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| | | | - Jo Lambert
- Department of Dermatology, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Suppression of antifolate resistance by targeting the myosin Va trafficking pathway in melanoma. Neoplasia 2014; 15:826-39. [PMID: 23814494 DOI: 10.1593/neo.13320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023] Open
Abstract
Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX) altered melanogenesis and accelerated the exportation of melanosomes; however, the cellular and molecular processes by which MTX is trapped into melanosomes and exported out of cells have not been elucidated. In this study, we identified myosin Va (MyoVa) as a possible mediator of these cellular processes. The results demonstrated that melanoma treatment with MTX leads to Akt2-dependent MyoVa phosphorylation, which enhances its ability to interact with melanosomes and accelerates their exportation. To understand the mechanism(s) by which MTX activates Akt2, we examined the effects of this drug on the activity of protein phosphatase 2A, an Akt inhibitor activated by the methylation of its catalytic subunit. Taken together, this study identified a novel trafficking pathway in melanoma that promotes tumor resistance through Akt2/MyoVa activation. Because of these findings, we explored several MTX combination therapies to increase the susceptibility of melanoma to this drug. By avoiding MTX exportation, we observed that the E2F1 apoptotic pathway is functional in melanoma, and its induction activates p73 and apoptosis protease-activating factor 1 following a p53-autonomous proapoptotic signaling event.
Collapse
|
16
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
17
|
Sheppard HM, Ussher JE, Verdon D, Chen J, Taylor JA, Dunbar PR. Recombinant adeno-associated virus serotype 6 efficiently transduces primary human melanocytes. PLoS One 2013; 8:e62753. [PMID: 23646140 PMCID: PMC3640030 DOI: 10.1371/journal.pone.0062753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The study of melanocyte biology is important to understand their role in health and disease. However, current methods of gene transfer into melanocytes are limited by safety or efficacy. Recombinant adeno-associated virus (rAAV) has been extensively investigated as a gene therapy vector, is safe and is associated with persistent transgene expression without genome integration. There are twelve serotypes and many capsid variants of rAAV. However, a comparative study to determine which rAAV is most efficient at transducing primary human melanocytes has not been conducted. We therefore sought to determine the optimum rAAV variant for use in the in vitro transduction of primary human melanocytes, which could also be informative to future in vivo studies. We have screened eight variants of rAAV for their ability to transduce primary human melanocytes and identified rAAV6 as the optimal serotype, transducing 7-78% of cells. No increase in transduction was seen with rAAV6 tyrosine capsid mutants. The number of cells expressing the transgene peaked at 6-12 days post-infection, and transduced cells were still detectable at day 28. Therefore rAAV6 should be considered as a non-integrating vector for the transduction of primary human melanocytes.
Collapse
Affiliation(s)
- Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
18
|
Dynoodt P, Speeckaert R, De Wever O, Chevolet I, Brochez L, Lambert J, Van Gele M. miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int J Oncol 2013; 42:1443-51. [PMID: 23404256 DOI: 10.3892/ijo.2013.1823] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/07/2012] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression which play important roles in tumorigenesis and cancer metastasis. Since they are often highly deregulated in various types of cancer, miRNAs may be effective treatment targets. miRNA profiling studies of melanoma have led to the identification of several tumor suppressor miRNAs. One of these include miR-145, although functional data proving its specific function are limited. Therefore, in this study, we examined the expression levels of miR-145 in three melanoma cell lines (BLM, FM3P and WM793). Additional gain-of-function experiments revealed that miR-145 exerts an anti-proliferative effect in the primary, non-invasive melanoma cell line, WM793, whereas cell migration and the invasive potential of metastatic melanoma cells was suppressed following transfection with miR-145 mimics. In order to investigate the mechanisms by which miR-145 exerts its invasion suppressor function, we examined the expression level of target genes [fascin homolog 1 (FSCN1), myosin‑Va (MYO5A and SOX9] and that of an indirect target (RAB27A) following the overexpression of miR-145. The results showed that SOX9, MYO5A and RAB27A were not involved in the biological effects caused by miR-145 mimics. Surprisingly, we discovered that miR-145 in melanoma, in contrast to many other tumor types, does not necessarily act via the target, FSCN1, since the downregulation of FSCN1 did not inhibit cell proliferation or migration but, on the contrary, increased cell invasion in two out of the three melanoma cell lines examined. Our in vitro data is in accordance with previously reported in vivo data describing the low expression of FSCN1 in malignant melanomas when compared to dysplastic nevi, suggesting that the expression of FSCN1 decreases as the formation and progression stage of melanoma advances. In conclusion, our data provide evidence that miR-145 is an invasion suppressor in metastatic melanoma cells. Despite the fact that it remains unclear which genes or pathways are regulated by miR-145 in melanoma, miR-145 may serve as a useful therapeutic agent in melanoma when re-expressed in situ.
Collapse
Affiliation(s)
- Peter Dynoodt
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Dynoodt P, Mestdagh P, Van Peer G, Vandesompele J, Goossens K, Peelman LJ, Geusens B, Speeckaert RM, Lambert JLW, Van Gele MJL. Identification of miR-145 as a key regulator of the pigmentary process. J Invest Dermatol 2013; 133:201-9. [PMID: 22895360 DOI: 10.1038/jid.2012.266] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current treatments for hyperpigmentation are often associated with a lack of efficacy and adverse side effects. We hypothesized that microRNA (miRNA)-based treatments may offer an attractive alternative by specifically targeting key genes in melanogenesis. The aim of this study was to identify miRNAs interfering with the pigmentary process and to assess their functional role. miRNA profiling was performed on mouse melanocytes after three consecutive treatments involving forskolin and solar-simulated UV (ssUV) irradiation. Sixteen miRNAs were identified as differentially expressed in treated melan-a cells versus untreated cells. Remarkably, a 15-fold downregulation of miR-145 was detected. Overexpression or downregulation of miR-145 in melan-a cells revealed reduced or increased expression of Sox9, Mitf, Tyr, Trp1, Myo5a, Rab27a, and Fscn1, respectively. Moreover, a luciferase reporter assay demonstrated direct targeting of Myo5a by miR-145 in mouse and human melanocytes. Immunofluorescence tagging of melanosomes in miR-145-transfected human melanocytes displayed perinuclear accumulation of melanosomes with additional hypopigmentation of harvested cell pellets. In conclusion, this study has established an miRNA signature associated with forskolin and ssUV treatment. The significant down- or upregulation of major pigmentation genes, after modulating miR-145 expression, suggests a key role for miR-145 in regulating melanogenesis.
Collapse
Affiliation(s)
- Peter Dynoodt
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chang H, Choi H, Joo KM, Kim D, Lee TR. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin-myosin Va interaction. Pigment Cell Melanoma Res 2012; 25:765-72. [PMID: 22863119 DOI: 10.1111/pcmr.12002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan-a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan-a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan-a melanocytes were co-cultured with SP-1 keratinocytes or stimulated by α-MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.
Collapse
Affiliation(s)
- Huikyoung Chang
- R&D Center, AmorePacific Corporation, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | | | | | | | | |
Collapse
|
21
|
Van Gele M, Geusens B, Speeckaert R, Dynoodt P, Vanhoecke B, Van Den Bossche K, Lambert J. Development of a 3D pigmented skin model to evaluate RNAi-induced depigmentation. Exp Dermatol 2011; 20:773-5. [PMID: 21707757 DOI: 10.1111/j.1600-0625.2011.01319.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Because current skin whitening agents often have insufficient efficacy and side effects, we aim to develop effective and safe therapeutics using RNA interference (RNAi). We established a pigmented human-reconstructed skin model as a first step in the development of novel siRNA-based depigmenting agents. Histological characterization revealed that our model had a similar morphology as normal human skin, expressed keratinocyte differentiation as well as basement membrane markers, and showed a high degree of pigmentation. The utility of the model to study RNAi-induced depigmentation was validated by incorporation of melanocytes transfected with siRNA against tyrosinase, a key enzyme in skin pigmentation. This resulted in a strong reduction in pigmentation and inhibition of melanin transfer proving that siRNA-mediated gene silencing in melanocytes worked successfully in our model. Therefore, this self-made 3D skin model will be a useful and easy tool to validate the whitening potential of candidate genes with a presumed function in melanin synthesis or transfer.
Collapse
|
22
|
Jacobs K, Van Gele M, Forsyth R, Brochez L, Vanhoecke B, De Wever O, Bracke M. P-cadherin counteracts myosin II-B function: implications in melanoma progression. Mol Cancer 2010; 9:255. [PMID: 20860798 PMCID: PMC2949802 DOI: 10.1186/1476-4598-9-255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant transformation of melanocytes is frequently attended by a switch in cadherin expression profile as shown for E- and N-cadherin. For P-cadherin, downregulation in metastasizing melanoma has been demonstrated, and over-expression of P-cadherin in melanoma cell lines has been shown to inhibit invasion. The strong invasive and metastatic nature of cutaneous melanoma implies a deregulated interplay between intercellular adhesion and migration-related molecules RESULTS In this study we performed a microarray analysis to compare the mRNA expression profile of an invasive BLM melanoma cell line (BLM LIE) and the non-invasive P-cadherin over-expression variant (BLM P-cad). Results indicate that nonmuscle myosin II-B is downregulated in BLM P-cad. Moreover, myosin II-B plays a major role in melanoma migration and invasiveness by retracting the tail during the migratory cycle, as shown by the localization of myosin II-B stress fibers relative to Golgi and the higher levels of phosphorylated myosin light chain. Analysis of P-cadherin and myosin II-B in nodular melanoma sections and in a panel of melanoma cell lines further confirmed that there is an inverse relationship between both molecules. CONCLUSIONS Therefore, we conclude that P-cadherin counteracts the expression and function of myosin II-B, resulting in the suppression of the invasive and migratory behaviour of BLM melanoma cells.
Collapse
Affiliation(s)
- Koen Jacobs
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent University, De Pintelaan 185, Ghent 9000, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhu Z, He J, Jia X, Jiang J, Bai R, Yu X, Lv L, Fan R, He X, Geng J, You R, Dong Y, Qiao D, Lee KB, Smith GW, Dong C. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in Alpaca (Lama pacos) skin melanocytes. Domest Anim Endocrinol 2010; 38:200-9. [PMID: 20036482 DOI: 10.1016/j.domaniend.2009.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/25/2009] [Accepted: 10/21/2009] [Indexed: 11/20/2022]
Abstract
Although the influence of endocrine factors is well established, the molecular and cellular mechanisms controlling coat color are not completely understood. A major mechanism for post-transcriptional regulation of gene expression is through the action of microRNAs (miRNAs), which anneal to the 3' untranslated region of mRNAs in a sequence-specific fashion and either block translation or promote transcript degradation. In this study, we investigated the expression of miRNAs in the skin of alpacas with brown vs white coat color using a microarray screen; identified potential mRNA targets for identified miRNAs among coat color genes; and subsequently determined the ability of a specific, differentially expressed miRNA (miR-25) to suppress expression of micropthalmia-associated transcription factor (MITF), a predicted miR-25 target gene that regulates genes linked to coat color. Expression of 10 different miRNA species in the skin of alpacas with brown vs white coat color was identified from microarray screens. Of the 10 alpaca skin miRNAs identified, predicted binding sites in the 3' untranslated region of RNAs encoding for known genes linked to coat color were primarily for miR-25, but sites were also identified for miR-129 and miR-377. Potential miR-25 binding sites were present in transcripts encoding for 11 coat color genes, including MITF. An inverse relationship between transcript abundance for MITF and miR-25 was observed in skin samples collected from alpacas with white vs brown coat color. Furthermore, overexpression of miR-25 in cultured melanocytes reduced MITF mRNA and protein abundance and corresponding mRNA abundance for the MITF-regulated enzymes tyrosinase and tyrosinase-related protein 1. Results support a novel functional role for miRNA-25 in the regulation of gene expression linked to coat color.
Collapse
Affiliation(s)
- Z Zhu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Geusens B, Sanders N, Prow T, Van Gele M, Lambert J. Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv 2010; 6:1333-49. [PMID: 19941411 DOI: 10.1517/17425240903304032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the 1990s, RNA interference (RNAi) has become a major subject of interest, not only as a tool for biological research, but also, more importantly, as a therapeutic approach for gene-related diseases. The use of short-interfering RNAs (siRNAs) for the sequence-specific knockdown of disease-causing genes has led to numerous preclinical and even a few clinical studies. Applications for cutaneous delivery of therapeutic siRNA are now emerging owing to a strong demand for effective treatments of various cutaneous disorders. Although successful studies have been performed using several different delivery techniques, most of these techniques encounter limitations for translation to the clinic with regards to patient compliance. This review describes the principal findings and applications in cutaneous RNAi therapy and focuses on the promises and pitfalls of the delivery systems.
Collapse
Affiliation(s)
- B Geusens
- Ghent University Hospital, Department of Dermatology, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 2009; 22:268-82. [DOI: 10.1111/j.1755-148x.2009.00558.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J Control Release 2008; 133:214-20. [PMID: 18973779 DOI: 10.1016/j.jconrel.2008.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/24/2022]
Abstract
The aim of this work was to develop a system that can deliver siRNA into cells present in the human epidermis. More specifically, we wanted to block the expression of a specific Myosin Va exon F containing isoform that is physiologically involved in melanosome transport in human melanocytes. Therefore, we prepared and investigated the capacity of ultradeformable cationic liposomes (UCLs) to deliver siRNA in hard-to-transfect human primary melanocytes. UCLs were formulated from different w:w ratios (6:1, 8:1 and 10:1) of the cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and the edge activator sodium cholate. Subsequently, UCL/siRNA complexes were prepared and their particle size, surface charge, deformability, cytotoxicity, transfection efficiency and long-term stability were tested. The best results were obtained with UCLs composed of a DOTAP/NaChol ratio of 6:1 (w:w) which are promising for future in vivo experiments.
Collapse
|
27
|
Chapter 6 New Insights into Melanosome Transport in Vertebrate Pigment Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:245-302. [DOI: 10.1016/s1937-6448(08)01606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|