1
|
Qin Y, Zhang R, Liu W, Xu X, Chen F. Salidroside Prevents Keloid Fibroblast Aggressive Progression by Upregulating miR-26a-5p to Inhibit JAG1. Cell Biochem Biophys 2025; 83:2577-2587. [PMID: 39825059 DOI: 10.1007/s12013-025-01667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Salidroside, a natural herb, exerts considerable anti-tumor effects in various human cancers. Evidence unveils that Salidroside mediates gene expression to affect cancer progression. Our work intended to uncover the molecular mechanism of Salidroside functional role in keloid. Expression analysis for JAG1 and miR-26a-5p in tissues and cells was performed using qRT-PCR or western blotting. For functional analysis, cell proliferation, apoptosis and migration were ascertained by CCK-8, flow cytometry and Transwell assay, respectively. The putative binding relationship between JAG1 and miR-26a-5p was further confirmed by dual-luciferase reporter assay. Salidroside exerted pharmacological properties in keloid and impaired keloid fibroblast (KF) viability. JAG1 was upregulated in keloid tissues, and its expression was repressed by Salidroside in KFs. Salidroside depleted KF proliferation and migration but stimulated apoptosis, and JAG1 knockdown largely strengthened the functional effects of Salidroside. MiR-26a-5p interacted with JAG1 3'UTR and expressed with an opposite pattern with JAG1 in keloid. Inhibition of miR-26a-5p largely abolished the effects of JAG1 knockdown in Salidroside-treated KFs, leading to the recovery of KF aggressive behaviors. Salidroside blocked KF aggressive progression by upregulating miR-26a-5p to inhibit JAG1, which provided evidence on the anti-tumor effects of Salidroside in human keloid.
Collapse
Affiliation(s)
- Yanlei Qin
- Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China
| | - Rongrong Zhang
- Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China
| | - Weihong Liu
- Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China
| | - Xunhua Xu
- Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China
| | - Fangxing Chen
- Department of Radiology, CR&WISCO GENERAL HOSPITAL, Wuhan, 430000, Hubei, China.
| |
Collapse
|
2
|
Wei K, Shi Y, Wang M, He L, Xu H, Wang H, Chai L, Zhou L, Zou Y, Guo L. Schwann cells secrete IGFBP5 to facilitate the growth of keloids. Life Sci 2025; 369:123534. [PMID: 40049369 DOI: 10.1016/j.lfs.2025.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/01/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Keloids (KD) are noncancerous fibroproliferative tumors exhibiting cancer-like traits, encompass aggressive unregulated growth, absence of natural regression, and a significantly high rate of recurrence. The precise molecular mechanisms underlying KD pathology remain poorly understood. In this study, we employed single-cell sequencing to examine the characteristics of cells in KD and normal scar (NS) tissue. We evaluated Schwann cells and their secretory protein IGFBP5 function in KD. Then, the recombinant IGFBP5 protein was employed to elucidate the regulatory roles of IGFBP5 in the proliferation, migration, invasion, angiogenesis, and cell cycle of keloids fibroblasts (KF). The rabbit ear scar model was utilized to ascertain the function of IGFBP5 in vivo. We demonstrated that in KD, the proportion of Schwann cells was 4.13 times that of NS. Besides, the IGFBP5 gene exhibited an expression level that was 8.02 times higher in KD Schwann cells compared to those in NS Schwann cells. High IGFBP5 expression was positively associated with the cell proliferation, migration, invasion, angiogenesis, and cell cycle of KF. Additionally, the p53/p21/Cyclin D1 pathway regulated cell cycle and promoted cell proliferation, which was suppressed after rIGFBP5 administration. These findings suggest that Schwann cells infiltrate in KD and secrete IGFBP5 protein to promote KD growth, and targeting IGFBP5 or Schwann cell infiltration could offer novel therapeutic strategies for KD.
Collapse
Affiliation(s)
- Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Yiran Shi
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Lu He
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan 430000, China
| | - Haijie Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China.
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China.
| |
Collapse
|
3
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
4
|
Cariba S, Srivastava A, Bronsema K, Kouthouridis S, Zhang B, Payne SL. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. ACS Biomater Sci Eng 2024; 10:7566-7576. [PMID: 39601321 PMCID: PMC11633653 DOI: 10.1021/acsbiomaterials.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cutaneous wound healing is a complex process involving various cellular and molecular interactions, resulting in the formation of a collagen-rich scar with imperfect function and morphology. Dermal fibroblasts are crucial to successful wound healing, migrating to the wound site where they are activated to provide extracellular matrix remodeling and wound closure. Peripheral nerves have been shown to play an important role in wound healing, with loss or damage to these nerves often leading to impaired healing and the formation of chronic nonhealing wounds. Previous research has suggested that sensory nerves secrete trophic factors that can regulate wound healing, including fibroblast activation; however, the direct cell-cell interaction between nerves and fibroblasts has not been extensively studied. To address this knowledge gap, we developed an in vitro co-culture model using a device called the IFlowPlate. This model supports the long-term viability of multiple cell types while allowing for direct contact between sensory nerve cells and dermal fibroblasts. Using the IFlowPlate, we demonstrate that co-culture of dorsal root ganglia with dermal fibroblasts increases fibroblast proliferation, collagen and α-smooth muscle actin expression, and secretion of pro-wound healing factors, suggesting that nerves can promote wound healing by modulating fibroblast activation. The IFlowPlate offers a user-friendly and high-throughput platform to study the in vitro interactions between nerves and a variety of cell types that can be applied to wound healing and other important biological processes.
Collapse
Affiliation(s)
- Solsa Cariba
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Avika Srivastava
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Kendra Bronsema
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Sonya Kouthouridis
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Boyang Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Samantha L. Payne
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
5
|
Primerano A, De Domenico E, Cianfarani F, De Luca N, Floriddia G, Teson M, Cristofoletti C, Cardarelli S, Scaglione GL, Baldini E, Cangelosi D, Uva P, Reinoso Sánchez JF, Roubaty C, Dengjel J, Nyström A, Mastroeni S, Ulisse S, Castiglia D, Odorisio T. Histone deacetylase inhibition mitigates fibrosis-driven disease progression in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:568-579. [PMID: 38820176 DOI: 10.1093/bjd/ljae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in siblings with RDEB suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACi) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by enzyme-linked immunosorbent assay (ELISA). The effects of givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by a collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, and ELISA for released transforming growth factor (TGF)-β1. RNA sequencing was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACi lowered fibrotic traits, including contractility, TGF-β1 release and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting the eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalized protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections seen in people with RDEB. CONCLUSIONS Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments in RDEB.
Collapse
Affiliation(s)
| | | | | | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Massimo Teson
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Silvia Cardarelli
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Enke Baldini
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Carole Roubaty
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexander Nyström
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| | | | - Salvatore Ulisse
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| |
Collapse
|
6
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Lin X, Lai Y. Scarring Skin: Mechanisms and Therapies. Int J Mol Sci 2024; 25:1458. [PMID: 38338767 PMCID: PMC10855152 DOI: 10.3390/ijms25031458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Skin injury always results in fibrotic, non-functional scars in adults. Although multiple factors are well-known contributors to scar formation, the precise underlying mechanisms remain elusive. This review aims to elucidate the intricacies of the wound healing process, summarize the known factors driving skin cells in wounds toward a scarring fate, and particularly to discuss the impact of fibroblast heterogeneity on scar formation. To the end, we explore potential therapeutic interventions used in the treatment of scarring wounds.
Collapse
Affiliation(s)
- Xinye Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Mason W, Levin AM, Buhl K, Ouchi T, Parker B, Tan J, Ashammakhi N, Jones LR. Translational Research Techniques for the Facial Plastic Surgeon: An Overview. Facial Plast Surg 2023; 39:466-473. [PMID: 37339663 DOI: 10.1055/a-2113-5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The field of facial plastic and reconstructive surgery (FPRS) is an incredibly diverse, multispecialty field that seeks innovative and novel solutions for the management of physical defects on the head and neck. To aid in the advancement of medical and surgical treatments for these defects, there has been a recent emphasis on the importance of translational research. With recent technological advancements, there are now a myriad of research techniques that are widely accessible for physician and scientist use in translational research. Such techniques include integrated multiomics, advanced cell culture and microfluidic tissue models, established animal models, and emerging computer models generated using bioinformatics. This study discusses these various research techniques and how they have and can be used for research in the context of various important diseases within the field of FPRS.
Collapse
Affiliation(s)
- William Mason
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Science, Henry Ford Health, Detroit, Michigan
- Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - Katherine Buhl
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Takahiro Ouchi
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Bianca Parker
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Jessica Tan
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan
- College of Human Medicine, Michigan State University, Michigan
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
9
|
Li J, Jiang Y, Zhai X. Circ_0008450 regulates keloid-derived fibroblast proliferation, migration, invasion and apoptosis with increased IGFBP5 through sponging miR-1224-5p. Burns 2023; 49:1392-1402. [PMID: 36918335 DOI: 10.1016/j.burns.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Keloids (KD) are benign fibroproliferative tumors and circular RNAs (circRNAs) may participate in KD progression. At present, whether circ_0008450 regulates keloid-derived fibroblast phenotypes remains unclear. This study aimed to explore the functions of circ_0008450 in keloid (KD)-derived fibroblast phenotypes and the underlying mechanism. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay was performed to determine the expression of circ_0008450, miR-1224-5p, insulin like growth factor binding protein 5 (IGFBP5) and extracellular matrix (ECM)-related markers. 5-Ethynyl-2'-deoxyuridine (EdU) assay was conducted to assess cell proliferation ability. Flow cytometry analysis was used to analyze cell cycle and cell apoptosis. Scratch assay and transwell assay were utilized to examine cell migration and invasion. Mechanism assays were executed to verify the relations of circ_0008450, miR-1224-5p and IGFBP5. RESULTS Circ_0008450 was highly expressed in KD tissues and KD-derived fibroblasts. Circ_0008450 silencing inhibited KD-derived fibroblast proliferation, cell cycle, and motility and promoted apoptosis. The effect of circ_0008450 knockdown on KD-derived fibroblast processes was ameliorated by miR-1224-5p downregulation. IGFBP5 was a target gene of miR-1224-5p. IGFBP5 upregulation abated miR-1224-5p-mediated effects on KD-derived fibroblast processes. CONCLUSION Circ_0008450 promoted KD-derived fibroblast proliferation, migration, and invasion and repressed apoptosis via sponging miR-1224-5p and elevating IGFBP5.
Collapse
Affiliation(s)
- Jian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Yang Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Xiaomei Zhai
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City 450052, Henan, China.
| |
Collapse
|
10
|
Hahn JM, Combs KA, Powell HM, Supp DM. A role for vitamin D and the vitamin D receptor in keloid disorder. Wound Repair Regen 2023; 31:563-575. [PMID: 37458255 DOI: 10.1111/wrr.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Keloids are disfiguring fibroproliferative lesions that can occur in susceptible individuals following any skin injury. They are extremely challenging to treat, with relatively low response rates to current therapies and high rates of recurrence after treatment. Although several distinct genetic loci have been associated with keloid formation in different populations, there has been no single causative gene yet identified and the molecular mechanisms guiding keloid development are incompletely understood. Further, although it is well known that keloids are more commonly observed in populations with dark skin pigmentation, the basis for increased keloid risk in skin of colour is not yet known. Because individuals with dark skin pigmentation are at higher risk for vitamin D deficiency, the role of vitamin D in keloid pathology has gained interest in the keloid research community. A limited number of studies have found lower serum vitamin D levels in patients with keloids, and reduced expression of the vitamin D receptor (VDR) in keloid lesions compared with uninjured skin. Vitamin D has documented anti-inflammatory, anti-proliferative and pro-differentiation activities, suggesting it may have a therapeutic role in suppression of keloid fibrosis. Here we review the evidence supporting a role for vitamin D and VDR in keloid pathology.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Heather M Powell
- Departments of Materials Science and Engineering and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Zhu YO, MacDonnell S, Kaplan T, Liu C, Ali Y, Rangel SM, Wipperman MF, Belback M, Sun DS, Ren Z, Zhou XA, Halasz G, Morton L, Kundu RV. Defining a Unique Gene Expression Profile in Mature and Developing Keloids. JID INNOVATIONS 2023; 3:100211. [PMID: 37564104 PMCID: PMC10410242 DOI: 10.1016/j.xjidi.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 08/12/2023] Open
Abstract
Keloids are benign, fibroproliferative dermal tumors that typically form owing to abnormal wound healing. The current standard of care is generally ineffective and does not prevent recurrence. To characterize keloid scars and better understand the mechanism of their formation, we performed transcriptomic profiling of keloid biopsies from a total of 25 subjects of diverse racial and ethnic origins, 15 of whom provided a paired nonlesional sample, a longitudinal sample, or both. The transcriptomic signature of nonlesional skin biopsies from subjects with keloids resembled that of control skin at baseline but shifted to closely match that of keloid skin after dermal trauma. Peripheral keloid skin and rebiopsied surrounding normal skin both showed upregulation of epithelial-mesenchymal transition markers, extracellular matrix organization, and collagen genes. These keloid signatures strongly overlapped those from healthy wound healing studies, usually with greater perturbations, reinforcing our understanding of keloids as dysregulated and exuberant wound healing. In addition, 219 genes uniquely regulated in keloids but not in normal injured or uninjured skin were also identified. This study provides insights into mature and developing keloid signatures that can act as a basis for further validation and target identification in the search for transformative keloid treatments.
Collapse
Affiliation(s)
- Yuan O. Zhu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | | | | | - Chien Liu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Yasmeen Ali
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie M. Rangel
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Madeleine Belback
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong Alan Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabor Halasz
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Lori Morton
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Roopal V. Kundu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal 2023; 21:207. [PMID: 37587491 PMCID: PMC10428592 DOI: 10.1186/s12964-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers. Recent advances in the study of keloids have led to novel insights into cellular communication among components of the keloid microenvironment as well as potential therapeutic targets for treating keloids. In this review, we summarized the nature of genetic and epigenetic regulation in keloid-derived fibroblasts, epithelial-to-mesenchymal transition of keratinocytes, immune cell infiltration into keloids, the differentiation of keloid-derived stem cells, endothelial-to-mesenchymal transition of vascular endothelial cells, extracellular matrix synthesis and remodeling, and uncontrolled angiogenesis in keloids with the aim of identifying new targets for therapeutic benefit. Video Abstract.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hailong Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huan Qian
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Zhang J, Liu L, Li X, Shen X, Yang G, Deng Y, Hu Z, Zhang J, Lu Y. 5-ALA-PDT induced ferroptosis in keloid fibroblasts via ROS, accompanied by downregulation of xCT, GPX4. Photodiagnosis Photodyn Ther 2023:103612. [PMID: 37220842 DOI: 10.1016/j.pdpdt.2023.103612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Keloids display many cancerous properties, including uncontrolled and invasive growth, high rates of recurrence as well as similar bioenergetics. 5-aminolevulinic acid-based photodynamic therapy (5-ALA-PDT) is an effective treatment that performs cytotoxic effects by producing reactive oxygen species (ROS), which is linked to lipid peroxidation and ferroptosis. Herein, we explored underlying mechanisms of 5-ALA-PDT against keloids. We identified that 5-ALA-PDT led to elevated levels of ROS and lipid peroxidation in keloid fibroblasts, accompanied by downregulation of xCT and GPX4, which are associated with anti-oxidation effects and ferroptosis inhibition. These results may indicate that 5-ALA-PDT treatment increases ROS while inhibiting xCT and GPX4, thus promoting lipid peroxidation to induce ferroptosis in keloid fibroblasts.
Collapse
Affiliation(s)
- Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lulu Liu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinying Li
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoxiao Shen
- Bioengineering College of Chongqing University, Chongqing, China
| | - Guihong Yang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yumeng Deng
- Department of Dermatology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengwei Hu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junbo Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Yuangang Lu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
14
|
Liu F, Yu T, Liu J, Yang Q, Wu J, Ren J, Zhu N. IGFBP-7 secreted by adipose-derived stem cells inhibits keloid formation via the BRAF/MEK/ERK signaling pathway. J Dermatol Sci 2023:S0923-1811(23)00125-1. [PMID: 37316358 DOI: 10.1016/j.jdermsci.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Adipose tissue-derived stem cells (ASCs) have important clinical significance as regulators of skin scar tissue regeneration. ASCs inhibit keloid formation and increase insulin-like growth factor-binding protein-7 (IGFBP-7) expression. However, whether ASCs inhibit keloid formation through IGFBP-7 remains unclear. OBJECTIVE We aimed to assess the roles of IGFBP-7 in keloid formation. METHODS We analyzed the proliferation, migration, and apoptosis of keloid fibroblasts (KFs) treated with recombinant IGFBP-7 (rIGFBP-7) or by co-culture with ASCs using CCK8 assays, transwell assays, and flow cytometry, respectively. In addition, immunohistochemical staining, quantitative polymerase chain reaction, human umbilical vein endothelial cell tube formation, and western blotting experiments were used to assess keloid formation. RESULTS IGFBP-7 expression was significantly lower in keloid tissues than that in normal skin tissues. Stimulation of KFs with rIGFBP-7 at different concentrations or by co-culture with ASCs resulted in decreased KF proliferation. Additionally, KF stimulation with rIGFBP-7 resulted in increased apoptosis of KFs. IGFBP-7 also reduced angiogenesis in a concentration-dependent manner, and stimulation with different rIGFBP-7 concentrations or co-culture of KFs with ASCs inhibited the expression of transforming growth factor-β1, vascular endothelial growth factor, collagen I, interleukin (IL)-6, IL-8, B-raf proto-oncogene (BRAF), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK) in KFs. CONCLUSION Collectively, our findings suggested that ASC-derived IGFBP-7 prevented keloid formation by inhibiting the BRAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Fang Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianlan Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Kim JW, Ko JM, Lee DY, Shin JW. A Case Report of Rubinstein-Taybi Syndrome Presenting with Extensive Keloid Formation and Review of Literature. Ann Dermatol 2023; 35:S19-S24. [PMID: 37853858 PMCID: PMC10608378 DOI: 10.5021/ad.20.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 10/20/2023] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is an extremely rare genetic disorder affecting multi-organ systems. A tendency to form keloid is one of the common dermatologic manifestations. We describe a 23-year-old female presented with extensive keloids which developed spontaneously. She had typical facial features, broad thumbs, and dental defects, which were suspicious features of genetic syndrome. Direct sequencing for cyclic-AMP-regulated enhancer binding protein revealed a novel mutation. So far, 23 cases of RSTS have been reported in Korean literature. To the best of our knowledge, this is the first report in Korea to describe confirmed case of RSTS with extensive keloids as a chief manifestation.
Collapse
Affiliation(s)
- Jee-Woo Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Dong Yoon Lee
- Department of Dermatology, Dankook University Hospital, Cheonan, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
16
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
17
|
Yu Y, Dong Y, Deng B, Yang T. IncRNA MIAT Accelerates Keloid Formation by miR-411-5p/JAG1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:81-92. [PMID: 36734859 DOI: 10.1615/critreveukaryotgeneexpr.2022044734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) regulates the biological functions of many kinds of cells. The aim of this study is to explore the mechanism of MIAT and how it affects keloid progression. The expressions of MIAT, JAG1, and miR-411-5p in keloid tissues and keloid fibroblasts (KEL FIBs) were quantified by conducting Western blot and quantitative reverse transcription polymerase chain reaction analyses. The influences of MIAT, JAG1, and miR-411-5p on the abilities of KEL FIBs to proliferate, migrate, and invade were assessed by means of the CCK-8, wound healing, and Transwell experiments. To determine the binding relationship among MIAT, JAG1, and miR-411-5p, we performed luciferase reporter and RIP experiments. In keloid tissues and KEL FIBs, MIAT and JAG1 were upregulated while miR-411-5p was downregulated. Knocking-down MIAT or JAG1 significantly inhibited proliferation, migration and invasion. On the contrary, suppressing miR-411-5p expression produced an opposite effect. With regard to mechanisms, MIAT sponged miR-411-5p, which targeted JAG1. MIAT accelerates keloid formation by modulating the miR-411-5p/JAG1 axis.
Collapse
Affiliation(s)
- Yingyan Yu
- Department of Dermatology, University of Electronic Science and Technology of China Hospital, Chengdu 611731, Sichuan, China
| | - Yujie Dong
- Department of Dermatology, Kun Ming Li Du Medical Beauty Hospital, Kunming 650000, Yunnan, China
| | - Benyuan Deng
- Department of General Surgery, West China Health Care Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting Yang
- Department of Plastic Surgery and Cosmetic Dermatology, West China School/Hospital of Stomatology Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
18
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Zhu Z, Ni S, Zhang J, Yuan Y, Bai Y, Yin X, Zhu Z. Genome-wide analysis of dysregulated RNA-binding proteins and alternative splicing genes in keloid. Front Genet 2023; 14:1118999. [PMID: 36777722 PMCID: PMC9908963 DOI: 10.3389/fgene.2023.1118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: The pathogenesis of keloids remains unclear. Methods: In this study, we analyzed RNA-Seq data (GSE113619) of the local skin tissue of 8 keloid-prone individuals (KPI) and 6 healthy controls (HC) before and 42 days after trauma from the gene expression omnibus (GEO) database. The differential alternative splicing (AS) events associated with trauma healing between KPIs and HCs were identifified, and their functional differences were analyzed by gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathways. The co-expression relationship of differentially alternative splicing genes and differentially expressed RNA binding proteins (RBPs) was established subsequently. Results: A total of 674 differential AS events between the KD42 and the KD0 and 378 differential AS events between the HD42 and the HD0 were discovered. Notably, most of the differential genes related to keloids are enriched in actin, microtubule cells, and cortical actin cytoskeletal tissue pathway. We observed a signifificant association between AS genes (EPB41, TPM1, NF2, PARD3) and trauma healing in KPIs and HCs. We also found that the differential expression of healthy controls-specifific trauma healing-related RBPs (TKT, FDPS, SAMHD1) may affect the response of HCs to trauma healing by regulating the AS of downstream trauma healing-related genes such as DCN and DST. In contrast, KPIs also has specifific differential expression of trauma healing related RBPs (S100A9, HspB1, LIMA1, FBL), which may affect the healing response of KPIs to trauma by regulating the AS of downstream trauma healing-related genes such as FN1 and TPM1. Discussion: Our results were innovative in revealing early wound healing-related genes (EPB41, TPM1, NF2, PARD3) in KPI from the perspective of AS regulated by RBPs.
Collapse
Affiliation(s)
- Zhen Zhu
- Hangzhou Plastic Surgery Hospital, Hangzhou, China
| | - Shuangying Ni
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ying Yuan
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yun Bai
- Department of Plastic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xueli Yin
- Functional Experiment Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Institute of Dermatology, Anhui Medical University, Hefei, China,The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China,*Correspondence: Zhengwei Zhu,
| |
Collapse
|
20
|
Low Baseline Expression of Fibrotic Genes in an Ex Vivo Human Skin Model is a Potential Indicator of Excessive Skin Scarring. Plast Reconstr Surg Glob Open 2022; 10:e4626. [PMID: 36389611 PMCID: PMC9653186 DOI: 10.1097/gox.0000000000004626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
UNLABELLED One of the challenges plastic surgeons face is the unpredictability of postoperative scarring. The variability of wound healing and subsequent scar formation across patients makes it virtually impossible to predict if a patient's surgery will result in excessive fibrosis and scarring, possibly amounting to keloids or hypertrophic scars. There is a need to find predictive molecular indicators of patients or skin location with high risk of excessive scarring. We hypothesized that baseline expression levels of fibrotic genes in the skin can serve as a potential indicator of excessive scarring. METHODS An ex vivo model of skin fibrosis was used with abdominal and breast skin tissue from 45 patients undergoing breast reduction and/or abdominoplasty. Fibrosis was induced in skin explants in organ culture with transforming growth factor-β (TFGβ). Fibrotic gene response was assessed via quantitative real-time polymerase chain reaction and correlated with skin location, age, and baseline levels of fibrotic genes. RESULTS The increase in TFGβ-induced fibronectin1 (FN1) gene expression in skin explants was significantly higher than for Collagen 1A1, alpha smooth muscle actin, and connective tissue growth factor. Also, FN1 expression positively correlated with donor age. Moreover, lower expression of the fibrotic genes FN1, Collagen 1A1, and alpha smooth muscle actin correlated with a more pronounced fibrotic response, represented by higher induction levels of these genes. CONCLUSIONS Skin sites exhibit different baseline levels of profibrotic genes. Further, low baseline expression levels of fibrotic genes FN1, Collagen 1A1, and alpha smooth muscle actin, in donor skin may indicate a potential for excessive scarring of the skin.
Collapse
|
21
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
22
|
Wang X, Liang B, Li J, Pi X, Zhang P, Zhou X, Chen X, Zhou S, Yang R. Identification and characterization of four immune-related signatures in keloid. Front Immunol 2022; 13:942446. [PMID: 35967426 PMCID: PMC9365668 DOI: 10.3389/fimmu.2022.942446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
A keloid is a fibroproliferative disorder of unknown etiopathogenesis that requires ill-defined treatment. Existing evidence indicates that the immune system plays an important role in the occurrence and development of keloid. However, there is still a lack of research on the immune-related signatures of keloid. Here we identified immune-related signatures in keloid and explored their pathological mechanisms. Transcriptomic datasets (GSE7890, GSE92566, and GSE44270) of keloid and normal skin tissues were obtained from the Gene Expression Omnibus database. The overlap of differentially expressed genes and immune-related genes was considered as differentially expressed immune-related genes (DEIGs). Functional analysis, expression, and distribution were applied to explore the function and characteristics of DEIGs, and the expression of these DEIGs in keloid and normal skin tissues was verified by immunohistochemistry. Finally, we conducted interactive network analysis and immune infiltration analysis to determine the therapeutic potential and immune correlation. We identified four DEIGs (LGR5, PTN, JAG1, and DKK1). In these datasets, only GSE7890 met the screening criteria. In the GSE7890 dataset, DKK1 and PTN were downregulated in keloid, whereas JAG1 and LGR5 were upregulated in keloid. In addition, we obtained the same conclusion through immunohistochemistry. Functional analysis indicated that these four DEIGs were mainly involved in stem cell, cell cycle, UV response, and therapy resistance. Through interactive network analysis, we found that these DEIGs were associated with drugs currently used to treat keloid, such as hydrocortisone, androstanolone, irinotecan, oxaliplatin, BHQ-880, and lecoleucovorin. Finally, many immune cells, including CD8+ T cells, resting memory CD4+ T cells, and M1 macrophages, were obtained by immune infiltration analysis. In conclusion, we identified four immune signaling molecules associated with keloid (LGR5, PTN, JAG1, and DKK1). These immune-related signaling molecules may be important modules in the pathogenesis of keloid. Additionally, we developed novel therapeutic targets for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bo Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiehua Li
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Peng Zhang
- Neijiang Health Vocational College, Neijiang, China
| | - Xinzhu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| |
Collapse
|
23
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
25
|
Feng F, Liu M, Pan L, Wu J, Wang C, Yang L, Liu W, Xu W, Lei M. Biomechanical Regulatory Factors and Therapeutic Targets in Keloid Fibrosis. Front Pharmacol 2022; 13:906212. [PMID: 35614943 PMCID: PMC9124765 DOI: 10.3389/fphar.2022.906212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
Keloids are fibroproliferative skin disorder caused by abnormal healing of injured or irritated skin and are characterized by excessive extracellular matrix (ECM) synthesis and deposition, which results in excessive collagen disorders and calcinosis, increasing the remodeling and stiffness of keloid matrix. The pathogenesis of keloid is very complex, and may include changes in cell function, genetics, inflammation, and other factors. In this review, we aim to discuss the role of biomechanical factors in keloid formation. Mechanical stimulation can lead to excessive proliferation of wound fibroblasts, deposition of ECM, secretion of more pro-fibrosis factors, and continuous increase of keloid matrix stiffness. Matrix mechanics resulting from increased matrix stiffness further activates the fibrotic phenotype of keloid fibroblasts, thus forming a loop that continuously invades the surrounding normal tissue. In this process, mechanical force is one of the initial factors of keloid formation, and matrix mechanics leads to further keloid development. Next, we summarized the mechanotransduction pathways involved in the formation of keloids, such as TGF-β/Smad signaling pathway, integrin signaling pathway, YAP/TAZ signaling pathway, and calcium ion pathway. Finally, some potential biomechanics-based therapeutic concepts and strategies are described in detail. Taken together, these findings underscore the importance of biomechanical factors in the formation and progression of keloids and highlight their regulatory value. These findings may help facilitate the development of pharmacological interventions that can ultimately prevent and reduce keloid formation and progression.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mingying Liu
- School of Comprehensive Health Management, Xihua University, Chengdu, China
| | - Lianhong Pan
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chunli Wang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wanqian Liu
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Wanqian Liu, ; Wei Xu, ; Mingxing Lei,
| | - Wei Xu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Wanqian Liu, ; Wei Xu, ; Mingxing Lei,
| | - Mingxing Lei
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Wanqian Liu, ; Wei Xu, ; Mingxing Lei,
| |
Collapse
|
26
|
Expression of Fibrosis-Related Genes in Liver and Kidney Fibrosis in Comparison to Inflammatory Bowel Diseases. Cells 2022; 11:cells11030314. [PMID: 35159124 PMCID: PMC8834113 DOI: 10.3390/cells11030314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Fibrosis is an important feature of inflammatory bowel diseases (IBD), but its pathogenesis is incompletely understood. Our aim was to identify genes important for fibrosis in IBD by comparison with kidney and liver fibrosis. First, we performed bioinformatics analysis of Gene Expression Omnibus datasets of liver and kidney fibrosis and identified CXCL9, THBS2, MGP, PTPRC, CD52, GZMA, DPT and DCN as potentially important genes with altered expression in fibrosis. We then performed qPCR analysis of the selected genes’ expression on samples of fibrotic kidney, liver, Crohn’s disease (CD) with and without fibrosis and ulcerative colitis (UC), in comparison to corresponding normal tissue. We found significantly altered expression in fibrosis for all selected genes. A significant difference for some genes was observed in CD with fibrosis in comparison to CD without fibrosis and UC. We conclude that similar changes in the expression of selected genes in liver, kidney fibrosis and IBD provide further evidence that fibrosis in IBD might share common mechanisms with other organs, supporting the hypothesis that fibrosis is the common pathway in diseases of various organs. Some genes were already active in IBD with inflammation without fibrosis, suggesting the early activation of profibrotic pathways or overlapping function in fibrosis and inflammation.
Collapse
|
27
|
Wang J, Shen J. LncRNA HOXA11-AS aggravates the keloid formation by targeting miR-148b-3p/IGFBP5 axis. Biochem Biophys Res Commun 2021; 581:60-67. [PMID: 34655977 DOI: 10.1016/j.bbrc.2021.09.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Long non-coding RNA (lncRNA) homeobox (HOX) A11 antisense (HOXA11-AS) mediates cell-biological phenotypes of keloid fibroblasts and influence the keloid progression, yet the underlying mechanism need to be further understood. HOXA11-AS, microRNA miR-148b-3p and Insulin like growth factor binding protein 5 (IGFBP5) expression were detected by RT-qPCR or western blot. CCK-8 and colony formation assays were applied to examine the cell proliferation. The cell migration was determined via Transwell migration assays. The cell apoptosis was determined by western blots with anti-Bax antibodies and anti-Cleaved Caspase-3 antibodies. The interplay between miR-148b-3p, HOXA11-AS and IGFBP5 was confirmed by luciferase reporter or RNA immunoprecipitation assay. The amplification of HOXA11-AS and IGFBP5 was detected in keloid and keloid fibroblasts, while miR-148b-3p expression was reduced. Moreover, downregulation of HOXA11-AS in keloid fibroblasts inhibited cell proliferation, migration and triggered apoptosis. Mechanically, HOXA11-AS was proved to sponge miR-148b-3p and abrogate the inhibition on miR-148b-3p target, IGFBP5 mRNA, thus promoting keloid fibroblasts proliferation, migration and inhibiting apoptosis. These results find that HOXA11-AS promotes keloid progression by miR-148b-3p/IGFBP5 axis, suggesting the potential of targeting HOXA11-AS/miR-148b-3p/IGFBP5 axis to combat keloid.
Collapse
Affiliation(s)
- Juan Wang
- Department of Dermatology, Hubei Provincial Hospital of TCM, Wuhan, 430000, Hubei, China
| | - Jing Shen
- Department of Dermatology, Hubei Provincial Hospital of TCM, Wuhan, 430000, Hubei, China.
| |
Collapse
|
28
|
Stevenson AW, Melton PE, Moses EK, Wallace HJ, Wood FM, Rea S, Danielsen PL, Alghamdi M, Hortin N, Borowczyk J, Deng Z, Manzur M, Fear MW. A methylome and transcriptome analysis of normal human scar cells reveals a role for FOXF2 in scar maintenance. J Invest Dermatol 2021; 142:1489-1498.e12. [PMID: 34687743 DOI: 10.1016/j.jid.2021.08.445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Scar is maintained for life and increases in size during periods of growth such as puberty. Epigenetic changes in fibroblasts after injury may underpin the maintenance and growth of scar. Here, we, combined methylome and transcriptome data from normotrophic mature scar and contralateral uninjured normal skin fibroblasts to identify potential regulators of scar maintenance. 219 significantly differentially expressed and 1199 significantly differentially methylated promoters were identified, of which there were 12 genes both significantly differentially methylated and expressed. Of these the two transcription factors, Forkhead Box F2 (FOXF2) and Mohawk Homeobox (MKX) were selected for further analysis. Immunocytochemistry and qPCR suggested FOXF2 but not MKX had elevated expression in scar fibroblasts. Using RNASeq, FOXF2 knockdown was shown to significantly reduce expression of extracellular matrix related genes, whilst MKX did not appear to affect similar pathways. Finally, FOXF2 knockdown was also shown to significantly decrease collagen I production in scar and keloid fibroblasts. This study provides insights into the maintenance of normotrophic scar, suggesting FOXF2 is an important regulator of this process. Targeting genes responsible for maintenance of scar phenotype may ameliorate scar appearance and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia.
| | - Phillip E Melton
- School of Population and Global Health, The University of Western Australia, Perth, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Eric K Moses
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Hilary J Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; School of Medicine, The University of Notre Dame Australia, Fremantle, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Suzanne Rea
- Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Patricia L Danielsen
- Department of Dermatology and Copenhagen Wound Healing Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalised Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nicole Hortin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Mitali Manzur
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
29
|
Gao N, Lu L, Ma X, Liu Z, Yang S, Han G. Targeted inhibition of YAP/TAZ alters the biological behaviours of keloid fibroblasts. Exp Dermatol 2021; 31:320-329. [PMID: 34623712 DOI: 10.1111/exd.14466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Abnormal activation of fibroblasts plays a crucial role in keloid development. However, the mechanism of fibroblast activation remains to be determined. YAP/TAZ are key molecules in the Hippo signalling pathway that promote cell proliferation and inhibit apoptosis. Here, we show that keloid fibroblasts have higher levels of YAP/TAZ mRNA and proteins on primary culture. Targeted knockdown of endogenous YAP or TAZ significantly inhibited cell proliferation, reduced cell migration, induced cell apoptosis and down-regulated collagen1a1 production by keloid fibroblasts. Moreover, we demonstrate that verteporfin, an inhibitor of YAP/TAZ, has similar but stronger inhibitory effects on fibroblasts compared to YAP/TAZ knockdown. Our study provides evidence that YAP/TAZ may be involved in the pathogenesis of keloids. Targeted inhibition of YAP/TAZ could change the biological behaviours of fibroblasts and can potentially be used as therapy for keloids.
Collapse
Affiliation(s)
- Na Gao
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Zhengyi Liu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Beijing, China
| |
Collapse
|
30
|
Kim S, Lee SE, Yi S, Jun S, Yi YS, Nagar H, Kim CS, Shin C, Yeo MK, Kang YE, Oh SH. Tauroursodeoxycholic Acid Decreases Keloid Formation by Reducing Endoplasmic Reticulum Stress as Implicated in the Pathogenesis of Keloid. Int J Mol Sci 2021; 22:ijms221910765. [PMID: 34639105 PMCID: PMC8509846 DOI: 10.3390/ijms221910765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-β signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.
Collapse
Affiliation(s)
- Sunje Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Seong Eun Lee
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Shinae Yi
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
| | - Harsha Nagar
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Cuk-Seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Chungmin Shin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Yea Eun Kang
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| |
Collapse
|
31
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
32
|
Hahn JM, McFarland KL, Combs KA, Anness MC, Supp DM. Analysis of HOX gene expression and the effects of HOXA9 overexpression in fibroblasts derived from keloid lesions and normal skin. Wound Repair Regen 2021; 29:777-791. [PMID: 33811779 DOI: 10.1111/wrr.12917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
Keloids are fibroproliferative lesions resulting from an abnormal wound healing process due to pathological mechanisms that remain incompletely understood. Keloids tend to occur more frequently in anterior versus posterior body regions (e.g., ears, face, upper torso); this has been attributed to higher skin tension in those areas, although this has not yet been conclusively proven. Previous studies reported reduced expression of multiple homeobox (HOX) genes in keloid versus normal fibroblasts, suggesting a role for HOX genes in keloid pathology. However, HOX genes are differentially expressed along the anterior-posterior axis. Hypothetically, differential HOX expression may be due to differences in body sites, as matched donor sites are often unavailable for keloids and normal skin. To better understand the basis for differential HOX gene expression in cells from keloids compared with normal skin, we compared HOXA7, HOXA9, HOXC8 and HOXC11 expression in keloid and normal skin-derived fibroblasts from various body sites. When keloid (N = 20) and normal (N = 12) fibroblast cell strains were evaluated, expression of HOXA7, HOXA9 and HOXC8 was significantly lower in keloid versus normal fibroblasts. However, HOX gene expression was lower in fibroblasts from more anterior versus posterior body sites. When keloid and normal cells from similar body sites were compared, differential HOX expression was not observed. To investigate the phenotypic relevance of HOX expression, HOXA9 was overexpressed in keloid and normal fibroblasts. HOXA9 overexpression did not affect proliferation but significantly reduced fibroblast migration and altered gene expression. The results suggest that differential HOX expression may be due to differences in positional identity between keloid and normal fibroblasts. However, HOX genes can potentially regulate fibroblast phenotype, suggesting that differential HOX gene expression may play a role in keloid development in anterior body sites.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kevin L McFarland
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Meridith C Anness
- Women in Science and Engineering Program and Undergraduate Program in Medical Sciences, University of Cincinnati, Cincinnati, Ohio, USA.,Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| |
Collapse
|
33
|
Antifibrotic effects of Hypocrellin A combined with LED red light irradiation on keloid fibroblasts by counteracting the TGF-β/Smad/autophagy/apoptosis signalling pathway. Photodiagnosis Photodyn Ther 2021; 34:102202. [PMID: 33556618 DOI: 10.1016/j.pdpdt.2021.102202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
Keloids are characterized by abnormal proliferation of fibroblasts and continuous deposition of extracellular matrix (ECM) components. In the field of dermopathy, photodynamic therapy (PDT) with visible light has been increasingly investigated. The natural photosensitizer Hypocrellin A (HA) was shown to have excellent light induced anticancer, antimicrobial and antiviral activities. In this experiment, we investigated the impacts of HA united light-emitting diode (LED) red light irradiation on human keloid fibroblast cells (KFs). Our results showed that HA combined with red light irradiation treatment (HA-R-PDT) decreased KF viability, reduced KF collagen production and ECM accumulation, inhibited cell proliferation, suppressed cell invasion and induced cell apoptosis. Moreover, our observations demonstrated that the TGF-β/Smad signalling pathway and autophagy were restrained by HA-R-PDT. TGF-β1 could promote autophagy in KFs through both the Smad and ERK pathways, while inhibition of autophagy altered the TGF-β1 levels through negative feedback. Therefore, HA-R-PDT suppressed cell hyperproliferation, collagen synthesis and ECM accumulation of KFs by regulating the TGF-β1-ERK-autophagy-apoptosis signalling pathway. HA-R-PDT deserves systematic investigation as a potential therapeutic strategy for keloids, and autophagy might be a promising candidate in the treatment of KFs.
Collapse
|
34
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol 2021; 30:146-161. [PMID: 32479693 PMCID: PMC7818137 DOI: 10.1111/exd.14121] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Although hypertrophic scars and keloids both generate excessive scar tissue, keloids are characterized by their extensive growth beyond the borders of the original wound, which is not observed in hypertrophic scars. Whether or not hypertrophic scars and keloids are two sides of the same coin or in fact distinct entities remains a topic of much debate. However, proper comparison between the two ideally occurs within the same study, but this is the exception rather than the rule. For this reason, the goal of this review was to summarize and evaluate all publications in which both hypertrophic scars and keloids were studied and compared to one another within the same study. The presence of horizontal growth is the mainstay of the keloid diagnosis and remains the strongest argument in support of keloids and hypertrophic scars being distinct entities, and the histopathological distinction is less straightforward. Keloidal collagen remains the strongest keloid parameter, but dermal nodules and α-SMA immunoreactivity are not limited to hypertrophic scars alone. Ultimately, the current hypertrophic scars-keloid differences are mostly quantitative in nature rather than qualitative, and many similar abnormalities exist in both lesions. Nonetheless, the presence of similarities does not equate the absence of fundamental differences, some of which may not yet have been uncovered given how much we still have to learn about the processes involved in normal wound healing. It therefore seems pertinent to continue treating hypertrophic scars and keloids as separate entities, until such a time as new findings more decisively convinces us otherwise.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Frank B. Niessen
- Department of Plastic SurgeryAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rik J. Scheper
- Department of PathologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
35
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|
36
|
BTXA regulates the epithelial-mesenchymal transition and autophagy of keloid fibroblasts via modulating miR-1587/miR-2392 targeted ZEB2. Biosci Rep 2020; 39:220731. [PMID: 31652445 PMCID: PMC6822502 DOI: 10.1042/bsr20190679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Keloids are very resistant to treatment in dermatology and plastic surgical practice. The present study aimed to explore the underlying mechanism of botulinum toxin A (BTXA) treated human skin keloid fibroblasts (HSFBs) proving some new insights into keloids treatment. Expression of miR-1587 and miR-2392 were significantly down-regulated in keloid tissues and HSFBs, while the ZEB2 was a target of both and up-regulated in keloid tissues and HSFBs compared with the normal controls. BTXA could significantly increase the expression of miR-1587 and miR-2392 but decrease the expression of ZEB2. BTXA could significantly inhibit the proliferation, cell cycle, and migration and promote apoptosis and autophagy of HSFBs; however, miR-1587 and miR-2392 inhibitors could reverse these effects of BTXA on HSFBs. Silencing ZEB2 could significantly attenuate the effects of miR-1587 and miR-2392 inhibitors in promoting cell proliferation and migration and suppressing apoptosis and autophagy of HSFBs after treating with BTXA. BTXA could suppress the proliferation and migration and promote apoptosis and autophagy of HSFBs via modulating miR-1587/miR-2392 targeted ZEB2.
Collapse
|
37
|
Abstract
Fibrosis is characterized by aberrant myofibroblast accumulation and excessive extracellular matrix deposition, which leads to organ failure and significantly contributes to mortality worldwide. Exosomes, which are extracellular nanovesicles with a diameter of 30-100 nm that are secreted into the extracellular space by various types of cells, facilitate intercellular communication by delivering different cargos such as proteins, mRNAs and microRNAs. Growing evidence indicates that exosomes play an important role in various fibrotic diseases. A deeper understanding of the effects of exosomes in fibrosis may help in exploring new diagnostic and therapeutic targets. In this review, we summarize recent findings on exosomes in fibrotic diseases, with a special focus on exosomal cargo dysregulation and their potential diagnostic and therapeutic value in fibrosis.
Collapse
Affiliation(s)
- Xi-Ji Qin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jia-Xiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars. Biomedicines 2020; 8:biomedicines8070181. [PMID: 32605309 PMCID: PMC7400180 DOI: 10.3390/biomedicines8070181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
As a part of an abnormal healing process of dermal injuries and irritation, keloid scars arise on the skin as benign fibroproliferative tumors. Although the etiology of keloid scarring remains unsettled, considerable recent evidence suggested that keloidogenesis may be driven by epigenetic changes, particularly, DNA methylation. Therefore, genome-wide scanning of methylated cytosine-phosphoguanine (CpG) sites in extracted DNA from 12 keloid scar fibroblasts (KF) and 12 control skin fibroblasts (CF) (six normal skin fibroblasts and six normotrophic fibroblasts) was conducted using the Illumina Human Methylation 450K BeadChip in two replicates for each sample. Comparing KF and CF used a Linear Models for Microarray Data (Limma) model revealed 100,000 differentially methylated (DM) CpG sites, 20,695 of which were found to be hypomethylated and 79,305 were hypermethylated. The top DM CpG sites were associated with TNKS2, FAM45B, LOC723972, GAS7, RHBDD2 and CAMKK1. Subsequently, the most functionally enriched genes with the top 100 DM CpG sites were significantly (p ≤ 0.05) associated with SH2 domain binding, regulation of transcription, DNA-templated, nucleus, positive regulation of protein targeting to mitochondrion, nucleoplasm, Swr1 complex, histone exchange, and cellular response to organic substance. In addition, NLK, CAMKK1, LPAR2, CASP1, and NHS showed to be the most common regulators in the signaling network analysis. Taken together, these findings shed light on the methylation status of keloids that could be implicated in the underlying mechanism of keloid scars formation and remission.
Collapse
|
39
|
Treatment of keloids with a single dose of low-energy superficial X-ray radiation to prevent recurrence after surgical excision: An in vitro and in vivo study. J Am Acad Dermatol 2020; 83:1304-1314. [PMID: 32540415 DOI: 10.1016/j.jaad.2020.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although keloids have been empirically treated with steroids and radiation, evidence-based radiation parameters for keloid therapy are lacking. OBJECTIVE To determine evidence-based radiation parameters for blocking keloid fibroblast proliferation in vitro and apply them to patients. METHODS The effects of various radiation parameters and steroids on cell proliferation, cell death, and collagen production in keloid explants and fibroblasts were evaluated with standard assays. Effective radiation parameters were then tested on patients. RESULTS No differences were observed between the effects of 50 and 320 kV radiation or between single and fractionated radiation doses on keloid fibroblasts. A 3 Gy, 50 kV dose inhibited keloid fibroblast proliferation in culture, whereas 9 Gy completely blocked their outgrowth from explants by inducing multiple cell death pathways and reducing collagen levels. Thirteen of 14 keloids treated with a single 8 Gy, 50 kV dose of radiation did not recur, although 4 patients with 6 keloids were lost to follow-up. LIMITATIONS Seventy-five percent of patients received steroids for pruritus, whereas approximately 25% of patients were lost to follow-up. CONCLUSIONS A single 8 Gy dose of superficial 50 kV radiation delivered an average of 34 days after keloid excision maybe sufficient to minimize recurrence, including in individuals resistant to steroids. Higher radiation energies, doses, or fractions may be unnecessary for keloid therapy.
Collapse
|
40
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Sustained Release of Decoy Wnt Receptor (sLRP6E1E2)-Expressing Adenovirus Using Gel-Encapsulation for Scar Remodeling in Pig Model. Int J Mol Sci 2020; 21:ijms21062242. [PMID: 32213906 PMCID: PMC7139745 DOI: 10.3390/ijms21062242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
An adenoviral vector (Ad) expressing a Wnt decoy receptor (sLRP6E1E2) is known to induce an anti-fibrotic effect by inhibiting Wnt signaling. We evaluated its effects in vivo using pig models and attempted to introduce an alginate gel-matrix system to prolong the effect of the Ad. Transduction efficiency as to the biological activity of Ad in different forms was evaluated. Then, 50 days after the formation of full-thickness skin defects on the backs of Yorkshire pigs, scars were treated with each form of Ad. Therapeutic efficacy and various factors influencing scar formation and collagen rearrangement were analyzed. Inflammatory cell infiltration within the scar tissues was also evaluated. Decoy Wnt receptor (sLRP6E1E2)-expressing adenovirus treatment improved scar quality in a pig model. Loading this construct in alginate gel allows sustained virus release into local tissues and prolongs Ad activity, thus maintaining its therapeutic effect longer in vivo.
Collapse
|
42
|
Chondroitin Sulfate Promotes the Proliferation of Keloid Fibroblasts Through Activation of the Integrin and Protein Kinase B Pathways. Int J Mol Sci 2020; 21:ijms21061955. [PMID: 32182995 PMCID: PMC7139995 DOI: 10.3390/ijms21061955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Keloids are dermal fibroproliferative tumors that arise beyond the boundary of the original wound edges and invades adjacent tissue. Keloids are characterized by the extensive production of extracellular matrix (ECM) and abnormal fibroblast proliferation. Chondroitin sulfate (CS) is one of the major structural components of cartilage and ECM. Recently, we reported the over-accumulation of CS in keloid lesions. Keloid-derived fibroblasts (KFs) and normal dermal fibroblasts (NFs) were incubated with CS. The fibroblast proliferation rate was analyzed using a tetrazolium salt colorimetric assay. The activation of the intracellular signaling pathway was analyzed by Western blotting. Wortmannin, a PI3K inhibitor, and anti-integrin antibodies were tested to investigate the mechanism of the CS-induced cell proliferation. CS strongly stimulated the proliferation of KFs, but not NFs. The analysis of the intracellular signal transduction pathway revealed that the stimulation effect of CS on KF proliferation was due to the activation of the protein kinase B (AKT) pathway and that integrin α1 was responsible for this phenomenon. We revealed that CS probably activates the AKT pathway through integrin to induce KF proliferation. CS may be a novel clinical therapeutic target in keloids.
Collapse
|
43
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
44
|
Searle T, Ali FR, Al-Niaimi F. The role of pharmacogenetics in keloid scar treatment: A literature review. Scars Burn Heal 2020; 6:2059513120941704. [PMID: 32922964 PMCID: PMC7446553 DOI: 10.1177/2059513120941704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The pathophysiology of keloid scars is still not fully understood and a universally reliable effective treatment has not been identified. Pharmacogenetics explores how drug response to a particular therapy can relate to genetic variations. PURPOSE To investigate how pharmacogenetics could be applied to keloid scars and the relevance of this to clinical practice. METHODS We reviewed the literature and discuss our current knowledge of pharmacogenomics in the treatment of keloid scars. A literature search was performed using the terms 'Pharmacogenetics', 'Pharmacogenomics', 'Keloid' and 'Scar'. We searched the PubMed, MEDLINE and EMBASE databases to find the relevant articles. Only articles in English were chosen. The level of evidence was evaluated and selected accordingly listing the studies with the highest level of evidence first. RESULTS Treatments including corticosteroid injections and 5-fluorouracil can be effective in some patients, but less so in others. Polymorphisms of the glucocorticoid receptor and variants of CCL2, YAP1, miR-21-5p and NF-κβ might be responsible for different responses to treatments used in keloid scars such as 5-fluorouracil. Small molecule inhibitors might be utilised to target other implicated genes. CONCLUSION Pharmacogenetics aims to produce the most efficacious patient outcomes while reducing adverse effects. Understanding the pharmacogenetics of keloid scars could lead to a new era of personalised medicine in the treatment of keloid scars. At present, there is some evidence (level 3b/4) to suggest genetic variations that are responsible to drug response in keloids, but further research in this field is required. LAY SUMMARY The varied response to similar therapeutic treatments in keloids has prompted the consideration of the role of genetic variants on response in the form of pharmacogenetics. Pharmacogenetics refers to drugs and their metabolism and action based on genetic influences. The ideal scenario would involve the selection of treatment based on the individual's specific genetic variants to ensure maximum efficacy with minimal toxicity. Some evidence currently points to genetic variations in some keloid patients that might be of relevance to the treating clinician.
Collapse
Affiliation(s)
- Tamara Searle
- University of Birmingham Medical School, Birmingham, UK
| | - Faisal R Ali
- Dermatological Surgery & Laser Unit, St John’s Institute of Dermatology, Guy’s Hospital Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Firas Al-Niaimi
- Dermatological Surgery & Laser Unit, St John’s Institute of Dermatology, Guy’s Hospital Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Dermatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
45
|
Khan HA, Sahibzada MN, Paracha MM. Comparison of the efficacy of intralesional bleomycin versus intralesional triamcinolone acetonide in the treatment of keloids. Dermatol Ther 2019; 32:e13036. [DOI: 10.1111/dth.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 07/20/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Hina A Khan
- Department of DermatologyLady Reading Hospital Peshawar Peshawar Pakistan
| | | | - Mohammad M Paracha
- Department of DermatologyLady Reading Hospital Peshawar Peshawar Pakistan
| |
Collapse
|
46
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Liu Y, Xu S, Zu T, Li F, Sang S, Liu C, An Y, Mi B, Orgill DP, Murphy GF, Lian CG. Reversal of TET-mediated 5-hmC loss in hypoxic fibroblasts by ascorbic acid. J Transl Med 2019; 99:1193-1202. [PMID: 30837678 DOI: 10.1038/s41374-019-0235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/16/2018] [Accepted: 12/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hypoxia resulting in hypoxia-inducible factor-1 alpha (HIF-1α) induction is known to drive scar formation during cutaneous wound healing, and may be responsible for excessive fibrosis inherent to hypertrophic scars and keloids. Because epigenetic pathways play an important role in regulation of fibrosing processes, we evaluated patient scars for DNA hydroxymethylation (5-hydroxymethylcytosine; 5-hmC) status and documented a significant decrease in scar fibroblasts. To test this finding in vitro, human fibroblasts were cultured with cobalt chloride (CoCl2), a known stimulant of HIF-1α. HIF-1α induced so resulted in loss of 5-hmC similar to that seen in naturally occurring scars and was associated with significant downregulation of one of the 5-hmC converting enzymes-ten-eleven translocation 3 (TET3)-as well as increased expression of phosphorylated focal adhesion kinase (p-FAK), which is important in wound contracture. These changes were partially reversed by exposure to ascorbic acid, a recognized epigenetic regulator potentially capable of minimizing excessive scar formation and promoting a more regenerative healing response. Our results provide a novel and translationally relevant mechanism whereby epigenetic regulation of scar formation may be manipulated at the level of fibroblast DNA hydroxymethylation.
Collapse
Affiliation(s)
- Yukun Liu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuyun Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tingjian Zu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Li
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shengbo Sang
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia Liu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang An
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bobin Mi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|
49
|
Huang C, Liu L, You Z, Du Y, Ogawa R. Managing keloid scars: From radiation therapy to actual and potential drug deliveries. Int Wound J 2019; 16:852-859. [PMID: 30864269 DOI: 10.1111/iwj.13104] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
The aetiology of keloids is becoming clearer, but many questions remain, including about the most optimal treatment. Current therapies include surgical excision, radiotherapy, and various pharmaceutical drugs. However, none of these drugs are keloid-specific. Moreover, all current interventions are associated with high recurrence rates. Here, we review the pharmaceutical interventions that are currently available. All are based on the fact that keloids are an expanding solid mass with intense chronic inflammation at its advancing edges. Consequently, current pharmaceuticals aim to reduce the mass and/or symptoms of keloids, similar to surgery and radiotherapy. They include chemotherapies, immunotherapies, volume-reducing therapies, and anti-inflammatory therapies. We also describe new advances in keloid pharmaceuticals. They include drugs that were designed to treat systemic diseases such as hypertension or breast cancer but were found to also treat keloids. Furthermore, recent progress in genetic, epigenetic, and stem cell therapies suggests that they could become useful in the keloid field. This review of pharmaceutical advances will hopefully promote additional research and the development of effective and specific pharmaceuticals for keloids.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Longwei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
50
|
Zhou J, Yi Z, Fu Q. Dynamic decreased expression and hypermethylation of secreted frizzled-related protein 1 and 4 over the course of pulmonary fibrosis in mice. Life Sci 2019; 218:241-252. [PMID: 30586565 DOI: 10.1016/j.lfs.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
Abstract
Aberrantly activated Wnt signaling pathway and dysregulation of extracellular antagonists of Wnt signaling have been revealed in pulmonary fibrosis. In this study we evaluated the expression of secreted frizzled-related proteins (SFRPs) and their aberrant promoter methylation to investigate the involvement of epigenetic regulation in pulmonary fibrosis. The pulmonary fibrosis induced by intratracheal injection of bleomycin (BLM) into mice was adopted. The transcription and relative protein expression of SFRPs were detected at Day 7 (D7), D14, and D21. DNA methylation analysis was performed by methylation-specific polymerase chain reaction (MSP). A DNA methyltransferase (DNMT) inhibitor (5-aza-2'-deoxycytidine; 5-aza) was used for demethylation and the relative β-catenin expression levels were measured to assess overactivity of the canonical Wnt signaling pathway. The transcription and protein expression of SFRP1 significantly decreased at D14 and D21, whereas the transcription and protein expression of SFRP4 significantly decreased at D7 and stayed downregulated until D21. The significantly hypermethylated promoters of SFRP1 and SFRP4 resulted in impaired transcription and decreased expression during pulmonary fibrosis in mice. Besides, reactivation of SFRP1 and SFRP4 by 5-aza reduced β-catenin mRNA and protein expression in vivo and in vitro. Animal experiments confirmed that 5-aza could significantly alleviate bleomycin-induced pulmonary fibrosis in mice. Thus, changes of promoter hypermethylation might downregulate SFRP1 and SFRP4 at different stages of pulmonary fibrosis, and the finding supports the usefulness of DNMT inhibitors, which might effectively reverse activation of β-catenin and reduce pulmonary fibrosis in mice. These data provide a possible new direction in the research on pulmonary fibrosis treatments.
Collapse
Affiliation(s)
- Junfei Zhou
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zheng Yi
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Qiang Fu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, HengYang 421001, PR China
| |
Collapse
|