1
|
Cianciulli A, Calvello R, Porro C, Lofrumento DD, Panaro MA. Inflammatory Skin Diseases: Focus on the Role of Suppressors of Cytokine Signaling (SOCS) Proteins. Cells 2024; 13:505. [PMID: 38534350 PMCID: PMC10968894 DOI: 10.3390/cells13060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Inflammatory skin diseases include a series of disorders characterized by a strong activation of the innate and adaptive immune system in which proinflammatory cytokines play a fundamental role in supporting inflammation. Skin inflammation is a complex process influenced by various factors, including genetic and environmental factors, characterized by the dysfunction of both immune and non-immune cells. Psoriasis (PS) and atopic dermatitis (AD) are the most common chronic inflammatory conditions of the skin whose pathogeneses are very complex and multifactorial. Both diseases are characterized by an immunological dysfunction involving a predominance of Th1 and Th17 cells in PS and of Th2 cells in AD. Suppressor of cytokine signaling (SOCS) proteins are intracellular proteins that control inflammatory responses by regulating various signaling pathways activated by proinflammatory cytokines. SOCS signaling is involved in the regulation and progression of inflammatory responses in skin-resident and non-resident immune cells, and recent data suggest that these negative modulators are dysregulated in inflammatory skin diseases such as PS and AD. This review focuses on the current understanding about the role of SOCS proteins in modulating the activity of inflammatory mediators implicated in the pathogenesis of inflammatory skin diseases such as PS and AD.
Collapse
Affiliation(s)
- Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy; (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy; (A.C.); (R.C.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy;
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy;
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy; (A.C.); (R.C.)
| |
Collapse
|
2
|
Gu Q, Tung KS, Lorenz UM. Treg-specific deletion of the phosphatase SHP-1 impairs control of inflammation in vivo. Front Immunol 2023; 14:1139326. [PMID: 37006301 PMCID: PMC10060847 DOI: 10.3389/fimmu.2023.1139326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction To achieve a healthy and functional immune system, a delicate balance exists between the activation of conventional T cells (Tcon cells) and the suppression by regulatory T cells (Treg). The tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, shapes this 'activation-suppression' balance by modulating Tcon cell resistance to Treg-mediated suppression. Treg cells also express SHP-1, but its role in influencing Treg function is still not fully understood. Methods We generated a Treg-specific SHP-1 deletion model, Foxp3Cre+ Shp-1f/f , to address how SHP-1 affects Treg function and thereby contributes to T cell homeostasis using a combination of ex vivo studies and in vivo models of inflammation and autoimmunity. Results We show that SHP-1 modulates Treg suppressive function at different levels. First, at the intracellular signaling level in Treg cells, SHP-1 attenuates TCR-dependent Akt phosphorylation, with loss of SHP-1 driving Treg cells towards a glycolysis pathway. At the functional level, SHP-1 expression limits the in vivo accumulation of CD44hiCD62Llo T cells within the steady state Tcon populations (both CD8+ as well as CD4+ Tcon). Further, SHP-1-deficient Treg cells are less efficient in suppressing inflammation in vivo; mechanistically, this appears to be due to a failure to survive or a defect in migration of SHP-1-deficient Treg cells to peripheral inflammation sites. Conclusion Our data identify SHP-1 as an important intracellular mediator for fine-tuning the balance between Treg-mediated suppression and Tcon activation/resistance.
Collapse
Affiliation(s)
- QinLei Gu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Kenneth S. Tung
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Ulrike M. Lorenz
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
3
|
Low SOCS3 expression in CD4 + T cells from pemphigus vulgaris patients enhanced Th1- and Th17-cell differentiation and exacerbated acantholysis via STAT activation. Mol Immunol 2022; 150:114-125. [PMID: 36030709 DOI: 10.1016/j.molimm.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Pemphigus vulgaris (PV) is a chronic inflammatory autoimmune blistering disease. Aberrant SOCS3/STAT pathway activation is associated with many autoimmune diseases. This study explored the relationship between activation of the SOCS3/STAT pathway and abnormally increased proportions of Th1 and Th17 cells in the peripheral blood of PV patients as well as the effect of CD4+ T cells with abnormal SOCS3/STAT pathway activation on acantholysis. METHODS In PV patients, the proportions of Th1 and Th17 cells in peripheral blood, the levels of IFN-γ and IL-17 in serum and the mRNA levels of SOCS3 and STAT1/3 in CD4+ T cells were detected. Then, SOCS3-knockdown primary CD4+ T cells were prepared, and cocultured with HaCaT cells. Finally, after SOCS3 knockdown and coculture, CD4+ T cells were collected, and the proportions of Th1 and Th17 cells, the protein levels of STAT1/3 and p-STAT1/3, and the levels of IFN-γ and IL-17 were measured. After 2 days of coculture, HaCaT cells were collected, inflammatory factors mRNA expression and acantholysis were assessed. RESULTS In PV patients, the proportions of Th1 (P = 0.016) and Th17 (P = 0.045) cells and the levels of IFN-γ (P = 0.010) were significantly increased. SOCS3 mRNA in CD4+ T cells was significantly decreased (P = 0.008), whereas STAT1 (P = 0.043) and STAT3 (P = 0.004) mRNA were significantly increased. After SOCS3 knockdown, the proportions of Th1 (P < 0.001) and Th17 (P = 0.006) cells, the levels of IFN-γ (P < 0.001) and IL-17 (P = 0.001), and the protein levels of p-STAT1 (P = 0.001) and p-STAT3 (P = 0.003) were significantly increased in the CD4+ T-shSOCS3-1 group. In the coculture system, the proportions of Th1 (P < 0.001) and Th17 (P < 0.001) cells, the levels of IFN-γ (P < 0.001) and IL-17 (P < 0.001), and the number of cell fragments (P < 0.001) were significantly increased in the CD4+ T-shSOCS3-1+HaCaT-PV-IgG group, whereas the protein level of desmoglein3 (Dsg3) was significantly decreased. In addition, PV-IgG significantly increased IFN-γ and IL-6 mRNA in HaCaT cells. CONCLUSION Low SOCS3 expression in CD4+ T cells from PV patients leads to overactivation of STAT, which causes CD4+ T cells to overdifferentiate into Th1 and Th17 cells. Additionally, PV-IgG-induced local inflammation in skin lesions, which is mediated by IFN-γ and IL-6, can aggravate this phenomenon. Furthermore, low SOCS3 expression in CD4+ T cells further exacerbates PV-IgG-induced acantholysis. Therefore, upregulating the expression of SOCS3 in CD4+ T cells of PV patients and maintaining the balance of the IFN-γ/STAT1/SOCS3 and IL-6/STAT3/SOCS3 pathways can alleviate acantholysis in patients with PV.
Collapse
|
4
|
Kiratikanon S, Chattipakorn SC, Chattipakorn N, Kumfu S. The regulatory effects of PTPN6 on inflammatory process: Reports from mice to men. Arch Biochem Biophys 2022; 721:109189. [DOI: 10.1016/j.abb.2022.109189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
|
5
|
Bechara R, Gaffen SL. '(m 6)A' stands for 'autoimmunity': reading, writing, and erasing RNA modifications during inflammation. Trends Immunol 2021; 42:1073-1076. [PMID: 34728144 DOI: 10.1016/j.it.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Covalent RNA modifications that regulate gene expression post transcriptionally, in particular N6-methyladenosine (m6A), are emerging as important regulators of autoimmune responses. Here, we highlight new findings describing the functional diversity and specificity of m6A modifications and their regulation in the context of autoimmunity.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, CEA, INSERM UMR 1184, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Le Kremlin Bicêtre, France.
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Lu J, Dumitrascu B, McDowell IC, Jo B, Barrera A, Hong LK, Leichter SM, Reddy TE, Engelhardt BE. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput Biol 2021; 17:e1008223. [PMID: 33513136 PMCID: PMC7875426 DOI: 10.1371/journal.pcbi.1008223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/10/2021] [Accepted: 08/07/2020] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance and additionally infers whether causal effects are activating or inhibitory. We apply BETS to transcriptional time-series data of differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: Overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is available as an open source software package at https://github.com/lujonathanh/BETS.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Bianca Dumitrascu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ian C. McDowell
- Element Genomics, A UCB Company, Durham, North Carolina, United States of America
| | - Brian Jo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alejandro Barrera
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Linda K. Hong
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Sarah M. Leichter
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Timothy E. Reddy
- Department of Genome Sciences, Duke University, Durham, North Carolina, United States of America
| | - Barbara E. Engelhardt
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
7
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Rezaeepoor M, Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Behzad M. Evaluation of Interleukin-23 and JAKs/STATs/SOCSs/ROR-γt Expression in Type 2 Diabetes Mellitus Patients Treated With or Without Sitagliptin. J Interferon Cytokine Res 2020; 40:515-523. [PMID: 33136467 DOI: 10.1089/jir.2020.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of interleukin-23 (IL-23) and the expression levels of related genes were evaluated in type 2 diabetes mellitus patients. The correlations between them were also determined. Thirty patients without sitagliptin (sitagliptin negative; SN), 30 patients with sitagliptin (sitagliptin positive; SP), and 30 healthy controls (HCs) were recruited. The level of IL-23 in the supernatant of anti CD3-activated peripheral blood mononuclear cells (PBMCs) was assessed using enzyme-linked immunosorbent assay. The expressions of IL-23, JAK1/JAK2/TYK2, STAT1/STAT3, ROR-γt, and SOCS1/SOCS3 in PBMCs were evaluated by real-time polymerase chain reaction. The production of IL-23 and the expressions of IL-23, JAK2, STAT3, and ROR-γt were observed to be enhanced in SN patients versus HCs, while the levels were decreased in SP patients versus SN patients (P < 0.05). SOCS1 and SOCS3 expressions were lower in SN patients than HCs, and their expressions were elevated in SP patients versus SN patients (P < 0.05). In SN patients, positive correlations between the IL-23 with fasting plasma glucose and HbA1c were observed, and JAK2/STAT3/ROR-γt were positively correlated with IL-23. JAK2, STAT3, and ROR-γt were positively related to each other and were negatively related to SOCS3. Enhanced IL-23/JAK2/STAT3/ROR-γt and reduced SOCS1/SOCS3 were found in SN patients. Sitagliptin may regulate the IL-23 and related gene expression.
Collapse
Affiliation(s)
- Mahsa Rezaeepoor
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mirhamed Hoseini-Aghdam
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahdi Behzad
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
10
|
Ets-2 deletion in myeloid cells attenuates IL-1α-mediated inflammatory disease caused by a Ptpn6 point mutation. Cell Mol Immunol 2020; 18:1798-1808. [PMID: 32203187 DOI: 10.1038/s41423-020-0398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
The SHP-1 protein encoded by the Ptpn6 gene has been extensively studied in hematopoietic cells in the context of inflammation. A point mutation in this gene (Ptpn6spin) causes spontaneous inflammation in mice, which has a striking similarity to neutrophilic dermatoses in humans. Recent findings highlighted the role of signaling adapters and kinases in promoting inflammation in Ptpn6spin mice; however, the underlying transcriptional regulation is poorly understood. Here, we report that SYK is important for driving neutrophil infiltration and initiating wound healing responses in Ptpn6spin mice. Moreover, we found that deletion of the transcription factor Ets2 in myeloid cells ameliorates cutaneous inflammatory disease in Ptpn6spin mice through transcriptional regulation of its target inflammatory genes. Furthermore, Ets-2 drives IL-1α-mediated inflammatory signaling in neutrophils of Ptpn6spin mice. Overall, in addition to its well-known role in driving inflammation in cancer, Ets-2 plays a major role in regulating IL-1α-driven Ptpn6spin-mediated neutrophilic dermatoses. Model for the role of ETS-2 in neutrophilic inflammation in Ptpn6spin mice. Mutation of the Ptpn6 gene results in SYK phosphorylation which then sequentially activates MAPK signaling pathways and activation of ETS-2. This leads to activation of ETS-2 target genes that contribute to neutrophil migration and inflammation. When Ets2 is deleted in Ptpn6spin mice, the expression of these target genes is reduced, leading to the reduced pathology in neutrophilic dermatoses.
Collapse
|
11
|
Castro-Sánchez P, Aguilar-Sopeña O, Alegre-Gómez S, Ramirez-Munoz R, Roda-Navarro P. Regulation of CD4 + T Cell Signaling and Immunological Synapse by Protein Tyrosine Phosphatases: Molecular Mechanisms in Autoimmunity. Front Immunol 2019; 10:1447. [PMID: 31297117 PMCID: PMC6607956 DOI: 10.3389/fimmu.2019.01447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs). While some PTPs are known to be important regulators of adhesion, ligand discrimination or the stimulation threshold, there is still little information about the regulatory role of PTPs in cytoskeleton rearrangements and endosomal compartment dynamics. Besides, spatial and temporal regulation of PTPs and substrates at the IS is only barely known. Consistent with an important role of PTPs in T cell activation, multiple mutations as well as altered expression levels or dynamic behaviors have been associated with autoimmune diseases. However, the precise mechanism for the regulation of T cell activation and effector function by PTPs in health and autoimmunity is not fully understood. Herein, we review the current knowledge about the regulatory role of PTPs in CD4+ T cell activation, IS assembly and effector function. The potential molecular mechanisms mediating the action of these enzymes in autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Rocio Ramirez-Munoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| |
Collapse
|
12
|
Marzano AV, Ortega-Loayza AG, Heath M, Morse D, Genovese G, Cugno M. Mechanisms of Inflammation in Neutrophil-Mediated Skin Diseases. Front Immunol 2019; 10:1059. [PMID: 31139187 PMCID: PMC6519315 DOI: 10.3389/fimmu.2019.01059] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/25/2019] [Indexed: 12/28/2022] Open
Abstract
Neutrophil-mediated skin diseases, originally named neutrophilic dermatoses (NDs), are a group of conditions due to an altered neutrophil recruitment and activation, characterized by polymorphic cutaneous manifestations with possible internal organ involvement. Although a number of diseases are included in this setting, the two prototypic forms are pyoderma gangrenosum (PG) and Sweet's syndrome (SS) which usually present with skin ulcers and plaque-type lesions, respectively. They have central features significantly overlapping with autoinflammatory conditions which manifest as repeated episodes of tissue inflammation. However, in contrast to appropriate inflammatory responses to insults or to autoimmune disease, there is an absence of identifiable pathogens, autoantibodies, or autoreactive lymphocytes. The recognition of monogenic autoinflammatory diseases which can present with NDs has led to study several genes involved in autoinflammation in NDs. Based on discovering of a number of mutations involving different autoinflammatory genes, neutrophil-mediated skin diseases are nowadays regarded as a spectrum of polygenic autoinflammatory conditions. Although disease mechanisms have not yet been completely elucidated, NDs are recognized as diseases involving dysfunctional cellular signaling mediated by pathways mainly related to inflammasome and IL-1 with the contributory role of IL-17 and other effector molecules. The precise elucidation of the above-mentioned pathologic mechanisms may pave the way to tailored treatments for patients with different neutrophil-mediated skin diseases.
Collapse
Affiliation(s)
- Angelo V Marzano
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Alex G Ortega-Loayza
- Department of Dermatology, OHSU Wound Care and Hyperbaric Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Michael Heath
- Department of Dermatology, Oregon Health and Science University, Portland, OR, United States
| | - Daniel Morse
- Department of Dermatology, Oregon Health and Science University, Portland, OR, United States
| | - Giovanni Genovese
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.,Medicina Interna, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
14
|
Sharma Y, Bashir S, Bhardwaj P, Ahmad A, Khan F. Protein tyrosine phosphatase SHP-1: resurgence as new drug target for human autoimmune disorders. Immunol Res 2017; 64:804-19. [PMID: 27216862 DOI: 10.1007/s12026-016-8805-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recognition of self-antigen and its destruction by the immune system is the hallmark of autoimmune diseases. During the developmental stages, immune cells are introduced to the self-antigen, for which tolerance develops. The inflammatory insults that break the immune tolerance provoke immune system against self-antigen, progressively leading to autoimmune diseases. SH2 domain containing protein tyrosine phosphatase (PTP), SHP-1, was identified as hematopoietic cell-specific PTP that regulates immune function from developing immune tolerance to mediating cell signaling post-immunoreceptor activation. The extensive research on SHP-1-deficient mice elucidated the diversified role of SHP-1 in immune regulation, and inflammatory process and related disorders such as cancer, autoimmunity, and neurodegenerative diseases. The present review focalizes upon the implication of SHP-1 in the pathogenesis of autoimmune disorders, such as allergic asthma, neutrophilic dermatosis, atopic dermatitis, rheumatoid arthritis, and multiple sclerosis, so as to lay the background in pursuance of developing therapeutic strategies targeting SHP-1. Also, new SHP-1 molecular targets have been suggested like SIRP-α, PIPKIγ, and RIP-1 that may prove to be the focal point for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yadhu Sharma
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Samina Bashir
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Puja Bhardwaj
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
15
|
Bajpai A, Ishii T, Miyauchi K, Gupta V, Nishio-Masaike Y, Shimizu-Yoshida Y, Kubo M, Kitano H. Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci Rep 2017; 7:15830. [PMID: 29158586 PMCID: PMC5696538 DOI: 10.1038/s41598-017-16155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis.
Collapse
Affiliation(s)
- Archana Bajpai
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
| | - Takashi Ishii
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
| | - Kosuke Miyauchi
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
| | - Vipul Gupta
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- The Systems Biology Institute, Tokyo, Japan
| | | | - Yuki Shimizu-Yoshida
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Masato Kubo
- RIKEN-IMS, Laboratory for Cytokine Regulation, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Tokyo, Japan
| | - Hiroaki Kitano
- RIKEN-IMS, Laboratory for Disease Systems Modeling, Yokohama, Japan.
- The Systems Biology Institute, Tokyo, Japan.
- Sony Computer Science Laboratories, Inc, Tokyo, Japan.
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
16
|
Adhikari A, Martel C, Marette A, Olivier M. Hepatocyte SHP-1 is a Critical Modulator of Inflammation During Endotoxemia. Sci Rep 2017; 7:2218. [PMID: 28533521 PMCID: PMC5440389 DOI: 10.1038/s41598-017-02512-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Liver hepatocytes (Hep) are known to be central players during the inflammatory response to systemic infection. Interestingly, the protein tyrosine phosphatases (PTP) SHP-1, has been recognized as a major regulator of inflammation; however their implication in the control of Hep-mediated inflammatory response is still unknown. To study its implication in the regulation of the Hep-mediated inflammatory response during endotoxemia, Cre-Lox mice with a Hep-specific Ptpn6 deletion (Ptpn6H-KO) were injected with LPS. In contrast to the wild-type mice (Ptpn6f/f) that started to die by 24 hrs post-inoculation, the Ptpn6H-KO mice exhibited mortality by 6 hrs. In parallel, higher amounts of metabolic markers, pro-inflammatory mediators and circulating cytokines were detected in Ptpn6H-KO mice. Primary Hep obtained from Ptpn6H-KO, also showed increased secretion of pro-inflammatory cytokines and nitric oxide (NO) comparatively to its wild type (Ptpn6f/f) counterpart. Pharmacological approaches to block TNF-α and NO production protected both the Ptpn6f/f and the Ptpn6H-KO mice against deadly LPS-mediated endotoxemia. Collectively, these results establish hepatocyte SHP-1 is a critical player regulating systemic inflammation. Our findings further suggest that SHP-1 activation could represent a new therapeutic avenue to better control inflammatory-related pathologies.
Collapse
Affiliation(s)
- Anupam Adhikari
- Department of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute of the McGill University Health Centre and Infectious Diseases and Immunity in Global Health Program, Montréal, Québec, Canada
| | - Caroline Martel
- Department of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute of the McGill University Health Centre and Infectious Diseases and Immunity in Global Health Program, Montréal, Québec, Canada
| | - André Marette
- Heart and Lung Institute (Laval Hospital), Université Laval, Québec, QC, Canada
| | - Martin Olivier
- Department of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada. .,The Research Institute of the McGill University Health Centre and Infectious Diseases and Immunity in Global Health Program, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Wang W, Yin Y, Xu L, Su J, Huang F, Wang Y, Boor PPC, Chen K, Wang W, Cao W, Zhou X, Liu P, van der Laan LJW, Kwekkeboom J, Peppelenbosch MP, Pan Q. Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections. Sci Signal 2017; 10:10/476/eaah4248. [PMID: 28442624 DOI: 10.1126/scisignal.aah4248] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interferon (IFN)-stimulated genes (ISGs) are antiviral effectors that are induced by IFNs through the formation of a tripartite transcription factor ISGF3, which is composed of IRF9 and phosphorylated forms of STAT1 and STAT2. However, we found that IFN-independent ISG expression was detectable in immortalized cell lines, primary intestinal and liver organoids, and liver tissues. The constitutive expression of ISGs was mediated by the unphosphorylated ISGF3 (U-ISGF3) complex, consisting of IRF9 together with unphosphorylated STAT1 and STAT2. Under homeostatic conditions, STAT1, STAT2, and IRF9 were found in the nucleus. Analysis of a chromatin immunoprecipitation sequencing data set revealed that STAT1 specifically bound to the promoters of ISGs even in the absence of IFNs. Knockdown of STAT1, STAT2, or IRF9 by RNA interference led to the decreased expression of various ISGs in Huh7.5 human liver cells, which was confirmed in mouse embryonic fibroblasts (MEFs) from STAT1-/-, STAT2-/-, or IRF9-/- mice. Furthermore, decreased ISG expression was accompanied by increased replication of hepatitis C virus and hepatitis E virus. Conversely, simultaneous overexpression of all ISGF3 components, but not any single factor, induced the expression of ISGs and inhibited viral replication; however, no phosphorylated STAT1 and STAT2 were detected. A phosphorylation-deficient STAT1 mutant was comparable to the wild-type protein in mediating the IFN-independent expression of ISGs and antiviral activity, suggesting that ISGF3 works in a phosphorylation-independent manner. These data suggest that the U-ISGF3 complex is both necessary and sufficient for constitutive ISG expression and antiviral immunity under homeostatic conditions.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yijin Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Kan Chen
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wenhui Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Xinying Zhou
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Pengyu Liu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
18
|
Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function. J Immunol Res 2017; 2017:8701042. [PMID: 28393080 PMCID: PMC5368384 DOI: 10.1155/2017/8701042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/14/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphotyrosine phosphatases (PTPs) constitute a complex family of enzymes that control the balance of intracellular phosphorylation levels to allow cell responses while avoiding the development of diseases. Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory sites has not been assessed. Here, a systematic analysis of the expression profile of PTPs has been carried out during Th1-polarising conditions and upon PKC activation and intracellular raise of Ca2+ in effector cells. Changes in gene expression levels suggest a previously nonnoted regulatory role of several PTPs in Th1 polarisation and effector function. A substantial change in the spatial compartmentalisation of ERK during T cell responses is proposed based on changes in the dose of cytoplasmic and nuclear MAPK phosphatases. Our study also suggests a regulatory role of autoimmune-related PTPs in controlling T helper polarisation in humans. We expect that those PTPs that regulate T helper polarisation will constitute potential targets for intervening CD4 T cell immune responses in order to generate new therapies for the treatment of autoimmune diseases.
Collapse
|
19
|
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, Gniadecki R, Mongan NP, Sasseville D, Wasik MA, Iversen L, Bonefeld CM, Geisler C, Woetmann A, Odum N. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget 2016; 6:20555-69. [PMID: 26244872 PMCID: PMC4653025 DOI: 10.18632/oncotarget.4111] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA.
Collapse
Affiliation(s)
- Nina A Sibbesen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Lars Jønson
- Departmen of Molecular Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| | - Nigel P Mongan
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Gurung P, Kanneganti TD. Autoinflammatory Skin Disorders: The Inflammasomme in Focus. Trends Mol Med 2016; 22:545-564. [PMID: 27267764 PMCID: PMC4925313 DOI: 10.1016/j.molmed.2016.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022]
Abstract
Autoinflammatory skin disorders are a group of heterogeneous diseases that include diseases such as cryopyrin-associated periodic syndrome (CAPS) and familial Mediterranean fever (FMF). Therapeutic strategies targeting IL-1 cytokines have proved helpful in ameliorating some of these diseases. While inflammasomes are the major regulators of IL-1 cytokines, inflammasome-independent complexes can also process IL-1 cytokines. Herein, we focus on recent advances in our understanding of how IL-1 cytokines, stemming from inflammasome-dependent and -independent pathways are involved in the regulation of skin conditions. Importantly, we discuss several mouse models of skin inflammation generated to help elucidate the basic cellular and molecular effects and modulation of IL-1 in the skin. Such models offer perspectives on how these signaling pathways could be targeted to improve therapeutic approaches in the treatment of these rare and debilitating inflammatory skin disorders.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
21
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
22
|
Ahmed CMI, Larkin J, Johnson HM. SOCS1 Mimetics and Antagonists: A Complementary Approach to Positive and Negative Regulation of Immune Function. Front Immunol 2015; 6:183. [PMID: 25954276 PMCID: PMC4404822 DOI: 10.3389/fimmu.2015.00183] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/02/2015] [Indexed: 01/31/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) are inducible intracellular proteins that play essential regulatory roles in both immune and non-immune function. Of the eight known members, SOCS1 and SOCS3 in conjunction with regulatory T cells play key roles in regulation of the immune system. Molecular tools such as gene transfections and siRNA have played a major role in our functional understanding of the SOCS proteins where a key functional domain of 12-amino acid residues called the kinase inhibitory region (KIR) has been identified on SOCS1 and SOCS3. KIR plays a key role in inhibition of the JAK2 tyrosine kinase, which in turn plays a key role in cytokine signaling. A peptide corresponding to KIR (SOCS1-KIR) bound to the activation loop of JAK2 and inhibited tyrosine phosphorylation of STAT1α transcription factor by JAK2. Cell internalized SOCS1-KIR is a potent therapeutic in the experimental allergic encephalomyelitis (EAE) mouse model of multiple sclerosis and showed promise in a psoriasis model and a model of diabetes-associated cardiovascular disease. By contrast, a peptide, pJAK2(1001-1013), that corresponds to the activation loop of JAK2 is a SOCS1 antagonist. The antagonist enhanced innate and adaptive immune response against a broad range of viruses including herpes simplex virus, vaccinia virus, and an EMC picornavirus. SOCS mimetics and antagonists are thus potential therapeutics for negative and positive regulation of the immune system.
Collapse
Affiliation(s)
- Chulbul M I Ahmed
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| |
Collapse
|
23
|
|
24
|
Liang Y, Xu WD, Peng H, Pan HF, Ye DQ. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 2014; 44:1265-75. [PMID: 24595859 DOI: 10.1002/eji.201344369] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 02/25/2014] [Indexed: 11/08/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are mainly induced by various cytokines and have been described as classical inhibitors of cytokine signaling. SOCS signaling is involved in the regulation of immune cells, and recent findings suggest that SOCS proteins, especially SOCS1 and SOCS3, are often dysregulated in a wide variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, psoriasis, and multiple sclerosis. Recent studies suggest that SOCS signaling could be therapeutically targeted in various autoimmune diseases. In this review, we discuss recent studies on the role of SOCS proteins in the development and pathogenesis of autoimmune diseases, as well as their clinical implications.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Liang Y, Zhu Y, Xia Y, Peng H, Yang XK, Liu YY, Xu WD, Pan HF, Ye DQ. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin Ther Targets 2014; 18:571-80. [PMID: 24654603 DOI: 10.1517/14728222.2014.892925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Tyrosine kinase 2 (Tyk2) is a Janus kinase family member that is crucial for signaling transduction in response to a wide variety of cytokines, including type I IFNs, IL-6, IL-10, IL-12 and IL-23. An appropriate expression of Tyk2-mediated signaling might be essential for maintaining normal immune responses. AREAS COVERED This review summarizes that Tyk2 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, B cells, as well as T helper cells. In addition, Tyk2-mediated signaling promoted the production of autoimmune-associated components, which is implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis. Aberrant expression of Tyk2 was observed in many autoimmune conditions. EXPERT OPINION Until recently, no patent filings had claimed selective inhibitors of Tyk2. Both CP-690,500 and CMP6 failed to be used in clinical treatment due to the difficulties of finding suitable selective leads or due to detrimental toxicities. Although the result of Cmpd1 is promising, it remains to be seen how specific the Tyk2 inhibitor is and how they are working. Currently, structure-based drug design (SBDD) technology has provided us with a quite useful window for SBDD of Tyk2 inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China +86 551 65167726 ; +86 551 65161171 ;
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Degroote RL, Hauck SM, Amann B, Hirmer S, Ueffing M, Deeg CA. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis. PLoS One 2014; 9:e91684. [PMID: 24614191 PMCID: PMC3951111 DOI: 10.1371/journal.pone.0091684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate - polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.
Collapse
Affiliation(s)
- Roxane L. Degroote
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Marius Ueffing
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
27
|
Andersen MH. Keeping each other in check: a reciprocal relationship between cytokines and miRNA. Cell Cycle 2014; 12:2171. [PMID: 23803727 PMCID: PMC3755064 DOI: 10.4161/cc.25549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
28
|
Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, Zhang Q, Bonefeld CM, Wasik MA, Geisler C, Zhou Y, Woetmann A, Sasseville D, Krejsgaard T, Odum N. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle 2014; 13:1306-12. [PMID: 24621498 DOI: 10.4161/cc.28256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Skin lesions from mycosis fungoides (MF) patients display an increased expression of interleukin-15 (IL-15), IL-17F, and other cytokines implicated in inflammation and malignant cell proliferation in cutaneous T-cell lymphoma (CTCL). In the leukemic variant of CTCL, Sézary syndrome (SS), IL-2 and IL-15 trigger activation of the Jak-3/STAT3 pathway and transcription of IL17A gene, whereas it is unknown what causes IL-15 expression, Jak3/STAT3 activation, and production of IL-17F in MF. Here, we studied the expression and regulation of IL-15 and its relation to IL-17F in MF cell lines and skin lesions from 60 MF patients. We show that: (1) the spontaneous IL-15 mRNA expression is resistant to Jak3 and STAT3 inhibitors at concentrations that profoundly inhibit STAT3 activation and IL-17F mRNA expression; (2) anti-IL-15 antibody blocks STAT3 activation induced by exogenous IL-15 in non-malignant MF T cells, whereas the spontaneous STAT3 activation and IL-17F expression in malignant T cells is not inhibited; (3) patients display heterogeneous IL-15/IL-17F mRNA expression patterns in skin lesions; and (4) IL-15 expression (in contrast to IL-17F) is not associated with progressive disease. Taken together, these findings indicate that IL-15 and IL-17F are differentially regulated and expressed in MF. We propose that IL-15 and IL-17F are markers for different inflammatory environments and play distinct roles in the development and progression of MF.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Simon M Fredholm
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - David L Petersen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Nina A Sibbesen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology; Copenhagen University Hospital; Bispebjerg, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Charlotte M Bonefeld
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Carsten Geisler
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Youwen Zhou
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver, British Columbia, Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Niels Odum
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
29
|
Lukens JR, Kanneganti TD. SHP-1 and IL-1α conspire to provoke neutrophilic dermatoses. ACTA ACUST UNITED AC 2014; 2:e27742. [PMID: 25054090 PMCID: PMC4091500 DOI: 10.4161/rdis.27742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Neutrophilic dermatoses are a spectrum of autoinflammatory skin disorders that are characterized by extensive infiltration of neutrophils into the epidermis and dermis. The underlining biological pathways that are responsible for this heterogeneous group of cutaneous diseases have remained elusive. However, recent work from our laboratory and other groups has shown that missense mutations in Ptpn6, which encodes for the non-receptor protein tyrosine phosphatase Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1), results in a skin disease with many of the major histopathological and clinical features that encompass neutrophilic dermatoses in humans. In particular, we found that loss-of-function mutation in Ptpn6 results in unremitting footpad swelling, suppurative inflammation, and neutrophilia. Dysregulated wound healing responses were discovered to contribute to chronic inflammatory skin disease in SHP-1 defective mice and genetic abrogation of interleukin-1 receptor (IL-1R) protected mice from cutaneous inflammation, suggesting that IL-1-mediated events potentiate disease. Surprisingly, inflammasome activation and IL-1β-mediated events were dispensable for Ptpn6spin-mediated footpad disease. Instead, RIP1-mediated regulation of IL-1α was identified to be the major driver of inflammation and tissue damage.
Collapse
|
30
|
Meijer AH, van der Vaart M, Spaink HP. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cell Microbiol 2013; 16:39-49. [DOI: 10.1111/cmi.12236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Annemarie H. Meijer
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Michiel van der Vaart
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| | - Herman P. Spaink
- Institute of Biology; Leiden University; Einsteinweg 55, 2333 CC Leiden The Netherlands
| |
Collapse
|
31
|
Persson JL. miRNA in mycosis fungoides and skin inflammation. APMIS 2013; 121:1017-9. [DOI: 10.1111/apm.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jenny Liao Persson
- Division of Experimental Cancer Research; Department of Laboratory Medicine; Lund University; Clinical Research Center; Malmö Sweden
| |
Collapse
|
32
|
Kanwal Z, Zakrzewska A, den Hertog J, Spaink HP, Schaaf MJM, Meijer AH. Deficiency in hematopoietic phosphatase ptpn6/Shp1 hyperactivates the innate immune system and impairs control of bacterial infections in zebrafish embryos. THE JOURNAL OF IMMUNOLOGY 2013; 190:1631-45. [PMID: 23335748 DOI: 10.4049/jimmunol.1200551] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deficiency in Src homology region 2 domain-containing phosphatase 1/protein tyrosine phosphatase nonreceptor type 6 (SHP1/PTPN6) is linked with chronic inflammatory diseases and hematological malignancies in humans. In this study, we exploited the embryonic and larval stages of zebrafish (Danio rerio) as an animal model to study ptpn6 function in the sole context of innate immunity. We show that ptpn6 knockdown induces a spontaneous inflammation-associated phenotype at the late larval stage. Surprisingly, glucocorticoid treatment did not suppress inflammation under ptpn6 knockdown conditions but further enhanced leukocyte infiltration and proinflammatory gene expression. Experiments in a germ-free environment showed that the late larval phenotype was microbe independent. When ptpn6 knockdown embryos were challenged with Salmonella typhimurium or Mycobacterium marinum at earlier stages of development, the innate immune system was hyperactivated to a contraproductive level that impaired the control of these pathogenic bacteria. Transcriptome analysis demonstrated that Kyoto Encyclopedia of Genes and Genomes pathways related to pathogen recognition and cytokine signaling were significantly enriched under these conditions, suggesting that ptpn6 functions as a negative regulator that imposes a tight control over the level of innate immune response activation during infection. In contrast to the hyperinduction of proinflammatory cytokine genes under ptpn6 knockdown conditions, anti-inflammatory il10 expression was not hyperinduced. These results support that ptpn6 has a crucial regulatory function in preventing host-detrimental effects of inflammation and is essential for a successful defense mechanism against invading microbes.
Collapse
Affiliation(s)
- Zakia Kanwal
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are the most frequent primary skin lymphomas. Nevertheless, diagnosis of early disease has proven difficult because of a clinical and histologic resemblance to benign inflammatory skin diseases. To address whether microRNA (miRNA) profiling can discriminate CTCL from benign inflammation, we studied miRNA expression levels in 198 patients with CTCL, peripheral T-cell lymphoma (PTL), and benign skin diseases (psoriasis and dermatitis). Using microarrays, we show that the most induced (miR-326, miR-663b, and miR-711) and repressed (miR-203 and miR-205) miRNAs distinguish CTCL from benign skin diseases with > 90% accuracy in a training set of 90 samples and a test set of 58 blinded samples. These miRNAs also distinguish malignant and benign lesions in an independent set of 50 patients with PTL and skin inflammation and in experimental human xenograft mouse models of psoriasis and CTCL. Quantitative (q)RT-PCR analysis of 103 patients with CTCL and benign skin disorders validates differential expression of 4 of the 5 miRNAs and confirms previous reports on miR-155 in CTCL. A qRT-PCR-based classifier consisting of miR-155, miR-203, and miR-205 distinguishes CTCL from benign disorders with high specificity and sensitivity, and with a classification accuracy of 95%, indicating that miRNAs have a high diagnostic potential in CTCL.
Collapse
|
35
|
IFN-α primes T- and NK-cells for IL-15-mediated signaling and cytotoxicity. Mol Immunol 2011; 48:2087-93. [PMID: 21813181 DOI: 10.1016/j.molimm.2011.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 01/10/2023]
Abstract
Recently it has become clear that interferon (IFN)-α, a type I interferon produced rapidly in response to infection, not only plays a key role in innate immunity, but also promotes adaptive immune responses by influencing the production or function of other cytokines. During infections IFN-α fosters the production of IL-15, which plays a pivotal role in the development, survival and function of NK cells and recruitment and activation of T cells. Since these two cytokines exert overlapping functions during infections, this investigation was undertaken to study the priming effect of IFN-α on the effect of IL-15 on human T and NK cells. We show that IFN-α induces an increased expression of IL-15Rα in human activated peripheral T cells, and in CD8(+) and CD4(+) T-cell lines. Functionally, the IFN-α-enhanced IL-15Rα expression resulted in an enhanced IL-15-mediated phosphorylation of STAT5 and STAT3 followed by a further increase in IL-15Rα expression. Moreover, IFN-α significantly increased the IL-15-induced cytotoxic activity of freshly isolated T and NK cells. Taken together, our data show that IFN-α boosts signaling and functional effects of IL-15, at least in part by fostering the increased IL-15R expression, thus add new facet to the emerging role of IFN-α as an important primer of adaptive immune responses.
Collapse
|
36
|
Park D, Jeong HO, Kim BC, Ha YM, Young Chung H. Computational approach to identify enzymes that are potential therapeutic candidates for psoriasis. Enzyme Res 2011; 2011:826784. [PMID: 21822480 PMCID: PMC3121017 DOI: 10.4061/2011/826784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022] Open
Abstract
Psoriasis is well known as a chronic inflammatory dermatosis. The disease affects persons of all ages and is a burden worldwide. Psoriasis is associated with various diseases such as arthritis. The disease is characterized by well-demarcated lesions on the skin of the elbows and knees. Various genetic and environmental factors are related to the pathogenesis of psoriasis. In order to identify enzymes that are potential therapeutic targets for psoriasis, we utilized a computational approach, combining microarray analysis and protein interaction prediction. We found 6,437 genes (3,264 upregulated and 3,173 downregulated) that have significant differences in expression between regions with and without lesions in psoriasis patients. We identified potential candidates through protein-protein interaction predictions made using various protein interaction resources. By analyzing the hub protein of the networks with metrics such as degree and centrality, we detected 32 potential therapeutic candidates. After filtering these candidates through the ENZYME nomenclature database, we selected 5 enzymes: DNA helicase (RUVBL2), proteasome endopeptidase complex (PSMA2), nonspecific protein-tyrosine kinase (ZAP70), I-kappa-B kinase (IKBKE), and receptor protein-tyrosine kinase (EGFR). We adopted a computational approach to detect potential therapeutic targets; this approach may become an effective strategy for the discovery of new drug targets for psoriasis.
Collapse
Affiliation(s)
- Daeui Park
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Kumjeong-Gu, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|