1
|
Hamilton KL, Devor DC. Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 2012; 302:F1069-81. [PMID: 22338089 DOI: 10.1152/ajprenal.00646.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K(+) channels play critical roles in normal physiology. Over 90 different genes for K(+) channels have been identified in the human genome. Epithelial K(+) channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K(+) channels is to recycle K(+) across the basolateral membrane for proper function of the Na(+)-K(+)-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K(+) channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a "K(+) channel gene family" approach in presenting the representative basolateral K(+) channels of the nephron. The basolateral K(+) channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families.
Collapse
Affiliation(s)
- Kirk L Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|
2
|
Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 2009; 458:157-68. [PMID: 18839206 PMCID: PMC2730119 DOI: 10.1007/s00424-008-0593-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/20/2008] [Indexed: 12/13/2022]
Abstract
This review provides an overview of the molecular mechanisms of K transport in the mammalian connecting tubule (CNT) and cortical collecting duct (CCD), both nephron segments responsible for the regulation of renal K secretion. Aldosterone and dietary K intake are two of the most important factors regulating K secretion in the CNT and CCD. Recently, angiotensin II (AngII) has also been shown to play a role in the regulation of K secretion. In addition, genetic and molecular biological approaches have further identified new mechanisms by which aldosterone and dietary K intake regulate K transport. Thus, the interaction between serum-glucocorticoid-induced kinase 1 (SGK1) and with-no-lysine kinase 4 (WNK4) plays a significant role in mediating the effect of aldosterone on ROMK (Kir1.1), an important apical K channel modulating K secretion. Recent evidence suggests that WNK1, mitogen-activated protein kinases such as P38, ERK, and Src family protein tyrosine kinase are involved in mediating the effect of low K intake on apical K secretory channels.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA.
| | | |
Collapse
|
3
|
Theilig F, Goranova I, Hirsch JR, Wieske M, Ünsal S, Bachmann S, Veh RW, Derst C. Cellular Localization of THIK-1 (K 2P13.1) and THIK-2 (K 2P12.1) K + Channels in the Mammalian Kidney. Cell Physiol Biochem 2008; 21:63-74. [DOI: 10.1159/000113748] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2007] [Indexed: 11/19/2022] Open
|
4
|
Sindić A, Velic A, Başoglu C, Hirsch JR, Edemir B, Kuhn M, Schlatter E. Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C. Kidney Int 2006; 68:1008-17. [PMID: 16105031 DOI: 10.1111/j.1523-1755.2005.00518.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Electrolyte and water homeostasis mostly depend on differentially regulated intestinal and renal transport. Guanylin and uroguanylin were proposed as first hormones linking intestinal with renal electrolyte and water transport, which is disturbed in pathophysiology. Guanylate cyclase C is the intestinal receptor for these peptides, but in guanylate cyclase C-deficient mice renal effects are retained. Unlike for the intestine the sites of renal actions and cellular mechanisms of guanylin peptides are still unclear. METHODS After first data on proximal tubular effects in this study their effects are examined in detail in mouse cortical collecting duct (CCD). Effects of guanylin peptides on principal cells of isolated mouse CCD were studied by slow whole-cell patch-clamp analysis, reverse transcription-polymerase chain reaction (RT-PCR), and microfluorimetric measurements of intracellular Ca2+. RESULTS Guanylin peptides depolarized or hyperpolarized principal cells. Whereas 8-Br-cyclic guanosine monophosphate (8-Br-cGMP) hyperpolarized, 8-Br-cyclic adenosine monophosphate (8-Br-cAMP) depolarized principal cells. All effects of guanylin peptides were inhibited by Ba2+. Hyperpolarizations were blocked by clotrimazole or protein kinase G (PKG) inhibition, suggesting an involvement of basolateral Ca2+- and cGMP-dependent K+ channels. Effects remained in CCD isolated from guanylate cyclase C-deficient mice. Depolarizations were inhibited by arachidonic acid or inhibition of phospholipase A2 (PLA2), but not by protein kinase A (PKA) inhibition. Conclusion. These results suggest the existence of two signaling pathways for guanylin peptides in principal cells of mouse CCD. One pathway is cGMP- and PKG-dependent but not mediated by guanylate cyclase C, the second involves PLA2 and arachidonic acid. The first pathway most likely leads to an activation of the basolateral K+-conductance while the latter probably results in decreased activity of ROMK channels in the luminal membrane.
Collapse
Affiliation(s)
- Aleksandra Sindić
- Universitätsklinikum Münster, Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Gray DA, Frindt G, Zhang YY, Palmer LG. Basolateral K+ conductance in principal cells of rat CCD. Am J Physiol Renal Physiol 2004; 288:F493-504. [PMID: 15547117 DOI: 10.1152/ajprenal.00301.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell K+ current was measured by forming seals on the luminal membrane of principal cells in split-open rat cortical collecting ducts. The mean inward, Ba2+-sensitive conductance, with 40 mM extracellular K+, was 76 +/- 12 and 141 +/- 22 nS/cell for animals on control and high-K+ diets, respectively. The apical contribution to this was estimated to be 3 and 16 nS/cell on control and high-K+ diets, respectively. To isolate the basolateral component of whole cell current, we blocked ROMK channels with either tertiapin-Q or intracellular acidification to pH 6.6. The current was weakly inward rectifying when bath K+ was > or =40 mM but became more strongly rectified when bath K+ was lowered into the physiological range. Including 1 mM spermine in the pipette moderately increased rectification, but most of the outward current remained. The K+ current did not require intracellular Ca2+ and was not inhibited by 3 mM ATP in the pipette. The negative log of the acidic dissociation constant (pKa) was approximately 6.5. Block by extracellular Ba2+ was voltage dependent with apparent Ki at -40 and -80 mV of approximately 160 and approximately 80 microM, respectively. The conductance was TEA insensitive. Substitution of Rb+ or NH4+ for K+ led to permeability ratios of 0.65 +/- 0.07 and 0.15 +/- 0.02 and inward conductance ratios of 0.17 +/- 0.03 and 0.57 +/- 0.09, respectively. Analysis of Ba2+-induced noise, with 40 mM extracellular K+, yielded single-channel currents of 0.39 +/- 0.04 and -0.28 +/- 0.04 pA at voltages of 0 and -40 mV, respectively, and a single-channel conductance of 17 +/- 1 pS.
Collapse
Affiliation(s)
- Daniel A Gray
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.
| | | | | | | |
Collapse
|
6
|
Levy DI, Velazquez H, Goldstein SAN, Bockenhauer D. Segment-specific expression of 2P domain potassium channel genes in human nephron. Kidney Int 2004; 65:918-26. [PMID: 14871411 DOI: 10.1111/j.1523-1755.2004.00458.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The 2P domain potassium (K2P) channels are a recently discovered ion channel superfamily. Structurally, K2P channels are distinguished by the presence of two pore forming loops within one channel subunit. Functionally, they are characterized by their ability to pass potassium across the physiologic voltage range. Thus, K2P channels are also called open rectifier, background, or leak potassium channels. Patch clamp studies of renal tubules have described several open rectifier potassium channels that have as yet eluded molecular identification. We sought to determine the segment-specific expression of transcripts for the 14 known K2P channel genes in human nephron to identify potential correlates of native leak channels. METHODS Human kidney samples were obtained from surgical cases and specific nephron segments were dissected. RNA was extracted and used as template for the generation of cDNA libraries. Real-time polymerase chain reaction (PCR) (TaqMan) was used to analyze gene expression. RESULTS We found significant (P < 0.05) expression of K2P10 in glomerulus, K2P5 in proximal tubule and K2P1 in cortical thick ascending limb of Henle's loop (cTAL) and in distal nephron segments. In addition, we repeatedly detected message for several other K2P channels with less abundance, including K2P3 and K2P6 in glomerulus, K2P10 in proximal tubule, K2P5 in thick ascending limb of Henle's loop, and K2P3, K2P5, and K2P13 in distal nephron segments. CONCLUSION K2P channels are expressed in specific segments of human kidney. These results provide a step toward assigning K2P channels to previously described native renal leaks.
Collapse
Affiliation(s)
- Daniel I Levy
- Department of Pediatrics, Yale University, School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
7
|
Wegmann M, Nüsing RM. Prostaglandin E2 stimulates sodium reabsorption in MDCK C7 cells, a renal collecting duct principal cell model. Prostaglandins Leukot Essent Fatty Acids 2003; 69:315-22. [PMID: 14580365 DOI: 10.1016/j.plefa.2003.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the direct epithelial effects of the major product of arachidonic acid metabolism in the kidney, prostaglandin E(2) (PGE(2)), on ion transport and signal transduction in the hormone-sensitive Madin-Darby canine kidney (MDCK) C7 subclone as a model of renal collecting duct principal cells. MDCK C7 cells were grown on microporous permeable filter supports and mounted in Ussing-type chambers. Reverse transcriptase (RT)-PCR and sequencing were used to determine E-prostanoid (EP) receptor expression. Basolateral and, about 14-fold less potent, apical addition of PGE(2) increased short-circuit current (I(sc)) in a concentration-dependent manner. This ion transport was biphasic with a rapid peak not detectable under chloride-free conditions. The remaining, stably elevated current was unaffected by furosemide, hydrochlorothiazide, ethylisopropanol amiloride, and 5-nitro-2-(3-phenyl-propyl-amino)benzoic acid (NPPB). In contrast, apical amiloride (10 microM) significantly decreased I(sc), indicating sodium reabsorption. The effect of PGE(2) was attenuated in the presence of vasopressin. Agonists acting by cAMP elevation like dibutyryl-cAMP and theophylline also induced an amiloride-sensitive ion transport with similar kinetics as PGE(2). Moreover, PGE(2) rapidly increased intracellular cAMP levels. RT-PCR demonstrated mRNA expression of the epithelial sodium channel (ENaC), and of the EP2 receptor in MDCK C7 cells. Accordingly, EP2 receptor agonist butaprost mimicked PGE(2) epithelial action. In conclusion, PGE(2) induces amiloride-sensitive sodium reabsorption in MDCK C7 monolayers. This ion transport is most likely mediated by EP2 receptor activation leading to increased intracellular cAMP levels. Therefore, PGE(2) might also contribute to Na(+) reabsorption in the mammalian collecting duct.
Collapse
Affiliation(s)
- M Wegmann
- Department of Pediatrics, Philipp's University, Deutschhausstrasse 12, Marburg 35037, Germany
| | | |
Collapse
|
8
|
Suzuki Y, Yasuoka Y, Shimohama T, Nishikitani M, Nakamura N, Hirose S, Kawahara K. Expression of the K+ channel Kir7.1 in the developing rat kidney: role in K+ excretion. Kidney Int 2003; 63:969-75. [PMID: 12631077 DOI: 10.1046/j.1523-1755.2003.00806.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Coordinated expression of ROMK (luminal K+ channel in the thick ascending limb and the collecting duct) and Na+,K+-ATPase has been demonstrated to be involved in the postnatal development of renal K+ excretion; however, the developmental expression of the basolateral K+ channel Kir7.1 is unknown. The purpose of this study was to elucidate the possible involvement of Kir7.1 in the maturation of renal K+ excretion. METHODS Developmental changes in the renal K+ excretion under the condition of K+ overload was investigated by collecting urine from neonatal rats infused with K+ (KCl solution). RNase protection analysis was used to elucidate the expression of Kir7.1 and Na+,K+-ATPase mRNA in pre- and postnatal rats, and the expression of Kir7.1 and ROMK mRNA at 7, 14, and 21 days. Western blotting of Kir7.1, and immunohistochemistry of Kir7.1 and ROMK were used to determine their protein expression. RESULTS The ratio of urinary K+ excretion to K+ load increased between 7 and 14 days after birth. In addition, half excretion time of K+ load gradually decreased through the experimental period of 7 and 21 days. Na+,K+-ATPase mRNA levels showed a peak of up-regulation at birth that remained elevated. ROMK1 mRNA levels significantly increased between 7 and 14 days. On the other hand, Kir7.1 mRNA and protein levels significantly increased between 14 and 21 days. Kir7.1 protein in the thick ascending limb was first recognized at 7 days, whereas its expression in the distal convoluted tubule and the cortical collecting duct was found in 21-day-old neonates. CONCLUSION Our results suggest that Kir7.1 is involved in the development of renal K+ excretion between 14 and 21 days after birth under the condition of K+ overload.
Collapse
Affiliation(s)
- Yoshiro Suzuki
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ganguly A. Aldosterone. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Ookata K, Tojo A, Suzuki Y, Nakamura N, Kimura K, Wilcox CS, Hirose S. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J Am Soc Nephrol 2000; 11:1987-1994. [PMID: 11053473 DOI: 10.1681/asn.v11111987] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inward rectifier potassium channels (Kir) play an important role in the K(+) secretion from the kidney. Recently, a new subfamily of Kir, Kir7.1, has been cloned and shown to be present in the kidney as well as in the brain, choroid plexus, thyroid, and intestine. Its cellular and subcellular localization was examined along the renal tubule. Western blot from the kidney cortex showed a single band for Kir7.1 at 52 kD, which was also observed in microdissected segments from the thick ascending limb of Henle, distal convoluted tubule (DCT), connecting tubule, and cortical and medullary collecting ducts. Kir7.1 immunoreactivity was detected predominantly in the DCT, connecting tubule, and cortical collecting duct, with lesser expression in the thick ascending limb of Henle and in the medullary collecting duct. Kir7.1 was detected by electron microscopic immunocytochemistry on the basolateral membrane of the DCT and the principal cells of cortical collecting duct, but neither type A nor type B intercalated cells were stained. The message levels and immunoreactivity were decreased under low-K diet and reversed by low-K diet supplemented with 4% KCl. By the double-labeling immunogold method, both Kir7.1 and Na(+), K(+)-ATPase were independently located on the basolateral membrane. In conclusion, the novel Kir7.1 potassium channel is located predominantly in the basolateral membrane of the distal nephron and collecting duct where it could function together with Na(+), K(+)-ATPase and contribute to cell ion homeostasis and tubular K(+) secretion.
Collapse
Affiliation(s)
- Kayoko Ookata
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihiro Tojo
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | - Yoshiro Suzuki
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Kenjiro Kimura
- Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
11
|
Sgard F, Faure C, Drieu la Rochelle C, Graham D, O'Connor SE, Janiak P, Besnard F. Regulation of ATP-sensitive potassium channel mRNA expression in rat kidney following ischemic injury. Biochem Biophys Res Commun 2000; 269:618-22. [PMID: 10708603 DOI: 10.1006/bbrc.2000.2342] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are involved in the regulation of potassium homeostasis in kidneys. In the event of renal ischemia, they are thought to contribute to the important intracellular potassium loss observed in proximal tubules and thus to hypoxic injury. We have analyzed the transcriptional regulation of K(ATP) genes in rat kidney following transient renal ischemia. We observed that mRNA expression level was down-regulated for Kir1.1 and Kir4.1 potassium channels between 24 and 120 h after ischemia. In contrast, a strong increase in mRNA expression was observed for Kir6.1 shortly (2-6 h) after ischemia. Thus, renal ischemia followed by reperfusion provokes differential regulation of K(ATP) channel gene expression.
Collapse
Affiliation(s)
- F Sgard
- Department of Molecular and Functional Genomics, Sanofi-Synthélabo, 10 Rue des Carrières, Rueil Malmaison, 92500, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Hirsch JR, Weber G, Kleta I, Schlatter E. A novel cGMP-regulated K+ channel in immortalized human kidney epitheliall cells (IHKE-1). J Physiol 1999; 519 Pt 3:645-55. [PMID: 10457080 PMCID: PMC2269539 DOI: 10.1111/j.1469-7793.1999.0645n.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. K+ channels from the apical membrane of immortalized human kidney epithelial (IHKE-1) cells were investigated in the cell-attached membrane configuration as well as in excised membranes using the patch clamp technique. 2. In cell-attached membrane patches the open probability (Po) of the K+ channel was 0.42 +/- 0.06 (mean +/- s.e.m. , n = 22) and its conductance was 94 +/- 5 pS with 145 mM K+ in the pipette (n = 25). In excised membrane patches the Po of the channel was 0.55 +/- 0.03 (n = 86) and its conductance was 65 +/- 2 pS (n = 68) with 145 mM K+ on one side of the membrane and 3.6 mM K+ on the other. The I-V curve of the K+ channel was not rectifying. 3. The channel was inhibited by several blockers of K+ channels such as 1 mM Ba2+ (cell-attached membrane: 78 +/- 8 %, n = 9; excised: 80 +/- 4 %, n = 26), 10 mM TEA+ (excised inside-out: 48 +/- 5 %, n = 34; excised outside-out: 100 +/- 0 %, n = 26), 0.1 mM verapamil (excised: 73 +/- 9 %, n = 12), and 10 nM charybdotoxin (excised outside-out: 67 +/- 9 %, n = 9). 4. The K+ channel was activated by depolarization and rising cytosolic Ca2+. Half-maximal activity occurred at a cytosolic Ca2+ concentration of 200 nM. In the cell-attached membrane configuration the K+ channel was inhibited in a concentration-dependent manner by atrial natriuretic peptide (ANP). Powas blocked equally well by 10 nM ANP (52 +/- 7 %, n = 10), brain natriuretic peptide (BNP; 37 +/- 11 %, n = 6) and C-type natriuretic peptide (CNP; 44 +/- 13 %, n = 8). 8-Bromoguanosine 3',5' cyclic monophosphate (8-Br-cGMP, 0.1 mM) also inhibited Poof this K+ channel, by 70 +/- 10 % (n = 5). 5. In excised membrane patches cGMP inhibited Po of this K+ channel in a concentration-dependent manner. The first significant effects were measured at a concentration of 1 microM (22 +/- 7 %, n = 6), and greatest effects were obtained at 0.1 mM (34 +/- 5 %, n = 15). cAMP (0.1 mM, n = 5) as well as GTP (0.1 mM, n = 5) had no significant effects on Po of this K+ channel. ATP (0.1 mM) had a weak inhibitory effect (17 +/- 5 %, n = 14). Addition of Mg-ATP to cGMP did not increase the inhibitory effect (30 +/- 4 %, n = 14). KT5823 (1 microM), a specific inhibitor of cGMP-dependent protein kinases, did not significantly alter the cGMP-induced reduction in Po of the K+ channel in three excised membrane patches. 6. The results present the first electrophysiological characterization of a mammalian K+ channel that is directly regulated by cGMP.
Collapse
Affiliation(s)
- J R Hirsch
- Westfalische Wilhelms-Universität Münster, Medizinische Poliklinik, Experimentelle Nephrologie, Domagkstrasse 3a, D-48149 Münster, Germany.
| | | | | | | |
Collapse
|
13
|
Noulin JF, Brochiero E, Lapointe JY, Laprade R. Two types of K(+) channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F290-7. [PMID: 10444584 DOI: 10.1152/ajprenal.1999.277.2.f290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell-attached configuration of the patch-clamp technique was used to investigate the effects of taurine on the basolateral potassium channels of rabbit proximal convoluted tubule. In the absence of taurine, the previously reported ATP-blockable channel, K(ATP), was observed in 51% of patches. It is characterized by an inwardly rectifying current-voltage curve with an inward slope conductance of 49 +/- 5 pS (n = 15) and an outward slope conductance of 13 +/- 6 pS (n = 15). The K(ATP) channel open probability (P(o)) is low, 0.15 +/- 0.06 (n = 15) at a -V(p) = -100 mV (V(p) is the pipette potential), and increases slightly with depolarization. The gating kinetics are characterized by one open time constant (tau(o) = 5.0 +/- 1.9 ms, n = 6) and two closed time constants (tau(C1) = 5. 2 +/- 1.5 ms, tau(C2) = 140 +/- 40 ms; n = 6). In 34% of patches, a second type of potassium channel, sK, with distinct properties was recorded. Its current-voltage curve is characterized by a sigmoidal shape, with an inward slope conductance of 12 +/- 2 pS (n = 4). Its P(o) is voltage independent and averages 0.67 +/- 0.03 (n = 4) at -V(p) = -80 mV. Both its open time and closed time distributions are described by a single time constant (tau(o) = 96 +/- 19 ms, tau(C) = 10.5 +/- 3.6 ms; n = 4). Extracellular perfusion of 40 mM taurine fails to affect sK channels, whereas K(ATP) channel P(o) decreases by 75% (from 0.17 +/- 0.06 to 0.04 +/- 0.02, n = 7, P < 0.05). In conclusion, the absolute basolateral potassium conductance of rabbit proximal tubules is the resulting combination of, at least, two types of potassium channels of roughly equal importance: a high-conductance low-open probability K(ATP) channel and a low-conductance high-open probability sK channel. The previously described decrease in the basolateral absolute potassium conductance by taurine is, however, mediated by a single type of K channel: the ATP-blockable K channel.
Collapse
Affiliation(s)
- J F Noulin
- Groupe de Recherche en Transport Membranaire, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
14
|
Tojo A, Bredt DS, Wilcox CS. Distribution of postsynaptic density proteins in rat kidney: relationship to neuronal nitric oxide synthase. Kidney Int 1999; 55:1384-94. [PMID: 10201003 DOI: 10.1046/j.1523-1755.1999.00392.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neuronal nitric oxide synthase (nNOS) is expressed in skeletal muscle beneath the sarcolemma associated with dystrophin complex. In brain, nNOS is anchored to synaptic membranes by specific postsynaptic density proteins (PSD)-95 and PSD-93. We have investigated the cellular and subcellular localization of these PSD proteins in the kidney and their relationship to nNOS and the cell membrane. METHODS Kidneys from male Sprague-Dawley rats were processed for light and electron microscopic immunohistochemistry with polyclonal antibodies against PSD and nNOS proteins. RESULTS Western blot analysis of rat kidney revealed a specific band for PSD-93 at the molecular weight of 103 kDa. Immunostaining for PSD-93 was located in the thick ascending limb of the loop of Henle, macula densa cells, distal convoluted tubules, cortical collecting ducts, outer and inner medullary collecting duct, glomerular epithelium, and Bowman's capsule. A pre-embedding electron microscopic immunoperoxidase procedure localized PSD-93 to the basolateral membrane of these tubular cells. Using different sized immunogold particles, a portion of nNOS in the macula densa colocalized with PSD-93 adjacent to cytoplasmic vesicles and the basolateral membrane. In contrast, PSD-95 protein was detected only weakly in the cortex by Western blot. Immunostaining for PSD-95 was located only faintly in the apical membrane of the thick ascending limb, macula densa, distal convoluted tubule and cortical collecting duct cells. CONCLUSION PSD-93 is the predominant PSD expressed in the rat kidney. It is located primarily in the basolateral membranes of distal nephron and colocalizes with a pool of nNOS in cytoplasmic vesicles and basolateral membranes of macula densa cells.
Collapse
Affiliation(s)
- A Tojo
- Division of Nephrology and Endocrinology, University of Tokyo, Japan
| | | | | |
Collapse
|
15
|
Hirsch JR, Meyer M, Mägert HJ, Forssmann WG, Mollerup S, Herter P, Weber G, Cermak R, Ankorina-Stark I, Schlatter E, Kruhøffer M. cGMP-dependent and -independent inhibition of a K+ conductance by natriuretic peptides: molecular and functional studies in human proximal tubule cells. J Am Soc Nephrol 1999; 10:472-80. [PMID: 10073597 DOI: 10.1681/asn.v103472] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In immortalized human kidney epithelial (IHKE-1) cells derived from proximal tubules, two natriuretic peptide receptors (NPR) were identified. In addition to NPR-A, which is bound by atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and urodilatin (URO), a novel form of NPR-B that might be bound by C-type natriuretic peptide (CNP) was identified using PCR. This novel splice variant of NPR-B (NPR-Bi) was also found in human kidney. Whereas ANP, BNP, and URO increased intracellular cGMP levels in IHKE-1 cells in a concentration-dependent manner, CNP had no effect on cGMP levels. To determine the physiologic responses to these agonists in IHKE-1 cells, the membrane voltage (Vm) was monitored using the slow whole-cell patch-clamp technique. ANP (10 nM), BNP (10 nM), and URO (16 nM) depolarized these cells by 3 to 4 mV (n = 47, 7, and 16, respectively), an effect that could be mimicked by 0.1 mM 8-Br-cGMP (n = 15). The effects of ANP and 8-Br-cGMP were not additive (n = 4). CNP (10 nM) also depolarized these cells, by 3+/-1 mV (n = 28), despite the absence of an increase in cellular cGMP levels, indicating a cGMP-independent mechanism. In the presence of CNP, 8-Br-cGMP further depolarized Vm significantly, by 1.6+/-0.3 mV (n = 5). The depolarizations by ANP were completely abolished in the presence of Ba2+ (1 mM, n = 4) and thus can be related to inhibition of a K+ conductance in the luminal membrane of IHKE-1 cells. The depolarizations attributable to CNP were completely blocked when genistein (10 microM, n = 6), an inhibitor of tyrosine kinases, was present. These findings indicate that natriuretic peptides regulate electrogenic transport processes via cGMP-dependent and -independent pathways that influence the Vm of IHKE-1 cells.
Collapse
MESH Headings
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/pharmacology
- Base Sequence
- Biological Transport
- Calcium/metabolism
- Cells, Cultured
- Cyclic AMP/analysis
- Cyclic AMP/biosynthesis
- Cyclic GMP/analysis
- Cyclic GMP/biosynthesis
- Electric Conductivity
- Genistein/pharmacology
- Growth Inhibitors/pharmacology
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Natriuretic Peptide, Brain/metabolism
- Natriuretic Peptide, Brain/pharmacology
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Potassium/metabolism
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Radioimmunoassay
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium/metabolism
Collapse
Affiliation(s)
- J R Hirsch
- Westfälische Wilhelms-Universität Münster, Medizinische Poliklinik, Experimentelle Nephrologie, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 1998; 273:30863-9. [PMID: 9812978 DOI: 10.1074/jbc.273.47.30863] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A complementary DNA encoding a novel K+ channel, called TASK-2, was isolated from human kidney and its gene was mapped to chromosome 6p21. TASK-2 has a low sequence similarity to other two pore domain K+ channels, such as TWIK-1, TREK-1, TASK-1, and TRAAK (18-22% of amino acid identity), but a similar topology consisting of four potential membrane-spanning domains. In transfected cells, TASK-2 produces noninactivating, outwardly rectifying K+ currents with activation potential thresholds that closely follow the K+ equilibrium potential. As for the related TASK-1 and TRAAK channels, the outward rectification is lost at high external K+ concentration. The conductance of TASK-2 was estimated to be 14.5 picosiemens in physiological conditions and 59.9 picosiemens in symmetrical conditions with 155 mM K+. TASK-2 currents are blocked by quinine (IC50 = 22 microM) and quinidine (65% of inhibition at 100 microM) but not by the other classical K+ channel blockers tetraethylammonium, 4-aminopyridine, and Cs+. They are only slightly sensitive to Ba2+, with less than 17% of inhibition at 1 mM. As TASK-1, TASK-2 is highly sensitive to external pH in the physiological range. 10% of the maximum current was recorded at pH 6. 5 and 90% at pH 8.8. Unlike all other cloned channels with two pore-forming domains, TASK-2 is essentially absent in the brain. In human and mouse, TASK-2 is mainly expressed in the kidney, where in situ hybridization shows that it is localized in cortical distal tubules and collecting ducts. This localization, as well as its functional properties, suggest that TASK-2 could play an important role in renal K+ transport.
Collapse
Affiliation(s)
- R Reyes
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Huber SM, Horster MF. Expression of a hypotonic swelling-activated Cl conductance during ontogeny of collecting duct epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F25-32. [PMID: 9689001 DOI: 10.1152/ajprenal.1998.275.1.f25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developmental expression of ion channels possibly participating in regulatory volume decrease was studied in rat embryonic (day E17) and perinatal (days P1-6) ureteric bud and in postnatal (P9-14) cortical collecting duct cells in primary monolayer culture. In isotonic bath solution, whole cell conductance (in nS/10 pF) was highest in E17 (4.0 +/- 0.5, n = 31) compared with P1-6 (2.0 +/- 0.1, n = 16) and P9-14 (1.3 +/- 0.2, n = 12) due to a decreasing contribution of a DIDS-sensitive Cl conductance, from E17 (2.8 +/- 0. 7, n = 12) to P1-6 (0.53 +/- 0.07, n = 9) and P9-14 (0.05 +/- 0.1, n = 7). Cl conductance in E17 exhibited a permselectivity of I approximately Cl approximately Br >> gluconate, and it activated time dependently. Hypotonic bath solution induced a large increase of whole cell conductance in P1-6 and in P9-14 but not in E17 (by 20. 0 +/- 3.7, 21.5 +/- 5.5, and 4.9 +/- 1.7; n = 11, 12, and 25, respectively) due to the activation of a time-dependently inactivating Cl conductance with a permselectivity of I >/= Br > Cl >> gluconate. In conclusion, the expression of Cl channels, as studied in vitro, appears to shift from an apparently constitutively active embryonic to a hypotonic swelling-activated type during late embryonic development of the collecting duct.
Collapse
Affiliation(s)
- S M Huber
- Physiologisches Institut, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | |
Collapse
|
18
|
Huber S, Schröppel B, Kretzler M, Schlöndorff D, Horster M. Single cell RT-PCR analysis of ClC-2 mRNA expression in ureteric bud tip. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F951-7. [PMID: 9612334 DOI: 10.1152/ajprenal.1998.274.5.f951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic epithelia at the tip of the ureteric bud (UB) face the interspace between epithelial and mesenchymal cells and are fundamentally involved in reciprocal signaling during early nephrogenesis. To characterize their membrane conductive proteins, patch-clamp and single cell RT-PCR techniques were applied to embryonic rat UBs [embryonic day 17 (day E17)] microdissected from the outer cortex. Cells at the UB tip had a high whole cell conductance (14 +/- 2 nS/10 pF, n = 8). The main fractional conductance resembled that of Ca-activated Cl channels in nonepithelial cells, with its time-dependent activation at depolarizing and inactivation at hyperpolarizing voltages. A second Cl-selective current fraction, by contrast, activated slowly during strong hyperpolarization, suggestive of a ClC-2-mediated conductance. To determine the origin of this current, cytoplasm was harvested into the patch pipette, RNA was reverse transcribed, and cDNA encoding the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) housekeeper gene or the ClC-2 Cl channel was amplified by polymerase chain reaction (PCR). GAPDH and ClC-2 PCR products were identified in 23 and 8 (out of a total of 57) single cell cDNA samples, respectively. ClC-2 PCR products with two different lengths were obtained, which might be due to two alternatively spliced ClC-2 mRNA isoforms. This first and combined approach by patch-clamp and single cell RT-PCR techniques to embryonic epithelia indicates that 1) cells at the UB tip express a phenotype remarkably different from that of postembryonic collecting duct principal cells and that 2) ClC-2 is likely to have a key role in early nephrogenesis.
Collapse
Affiliation(s)
- S Huber
- Physiologisches Institut, Universität München, Germany
| | | | | | | | | |
Collapse
|
19
|
Le Maout S, Brejon M, Olsen O, Merot J, Welling PA. Basolateral membrane targeting of a renal-epithelial inwardly rectifying potassium channel from the cortical collecting duct, CCD-IRK3, in MDCK cells. Proc Natl Acad Sci U S A 1997; 94:13329-34. [PMID: 9371845 PMCID: PMC24308 DOI: 10.1073/pnas.94.24.13329] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We recently cloned an inward-rectifying K channel (Kir) cDNA, CCD-IRK3 (mKir 2.3), from a cortical collecting duct (CCD) cell line. Although this recombinant channel shares many functional properties with the "small-conductance" basolateral membrane Kir channel in the CCD, its precise subcellular localization has been difficult to elucidate by conventional immunocytochemistry. To circumvent this problem, we studied the targeting of several different epitope-tagged CCD-IRK3 in a polarized renal epithelial cell line. Either the 11-amino acid span of the vesicular stomatitis virus (VSV) G glycoprotein (P5D4 epitope) or a 6-amino acid epitope of the bovine papilloma virus capsid protein (AU1) was genetically engineered on the extreme N terminus of CCD-IRK3. As determined by patch-clamp and two-microelectrode voltage-clamp analyses in Xenopus oocytes, neither tag affected channel function; no differences in cation selectivity, barium block, single channel conductance, or open probability could be distinguished between the wild-type and the tagged constructs. MDCK cells were transfected with tagged CCD-IRK3, and several stable clonal cell lines were generated by neomycin-resistance selection. Immunoprecipitation studies with anti-P5D4 or anti-AU1 antibodies readily detected the predicted-size 50-kDa protein in the transfected cells lines but not in wild-type or vector-only (PcB6) transfected MDCK cells. As visualized by indirect immunofluorescence and confocal microscopy, both the tagged CCD-IRK3 forms were exclusively detected on the basolateral membrane. To assure that the VSV G tag was not responsible for the targeting, the P5D4 epitope modified by a site-directed mutagenesis (Y2F) to remove a potential basolateral targeting signal contained in this tag. VSV(Y2F) was also detected exclusively on the basolateral membrane, confirming bona fide IRK3 basolateral expression. These observations, with our functional studies, suggest that CCD-IRK3 may encode the small-conductance CCD basolateral K channel.
Collapse
Affiliation(s)
- S Le Maout
- Department de Biologie Cellulaire et Moleculaire, Centre d'Etudes Saclay, France
| | | | | | | | | |
Collapse
|
20
|
Welling PA. Primary structure and functional expression of a cortical collecting duct Kir channel. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:F825-36. [PMID: 9374848 DOI: 10.1152/ajprenal.1997.273.5.f825] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maintenance of a negative membrane potential in the cortical collecting duct (CCD) principal cell depends on a small-conductance, inward-rectifying basolateral membrane K+ (Kir) channel. In the present study, a candidate cDNA encoding this K+ channel, CCD-IRK3, was isolated from a mouse collecting duct cell line, M1. CCD-IRK3 shares a high degree of homology with a human brain inward-rectifier K+ channel (Kir 2.3). By Northern analysis, CCD-IRK3 transcript (2.9 kb) was readily detected in M1 CCD cells but not in Madin-Darby canine kidney, LLC-PK1, Chinese hamster ovary, or monkey kidney fibroblast cell lines. CCD-IRK3-specific reverse transcription-polymerase chain reaction confirmed bonafide expression in the kidney. Functional expression studies in Xenopus oocytes revealed that CCD-IRK3 operates as strongly inward-rectifying K+ channel. The cation selectivity profile of CCD-IRK3 [ionic permeability values (PK/Pi), Tl > or = Rb > or = K+ >> NH4 > Na; inward-slope conductance (GK/Gi), Tl > or = K+ >> NH4 > Na > Rb] is similar to the macroscopic CCD basolateral membrane K+ conductance (GK/Gi, K+ >> NH4 > Rb; PK/Pi, Rb approximately equal to K+ >> NH4). CCD-IRK3 also exhibits the pharmacological features of the native channel. Patch-clamp analysis reveals that CCD-IRK3 functions as a high open probability, voltage-independent, small-conductance channel (14.5 pS), consistent with the native channel. Based on these independent lines of evidence, CCD-IRK3 is a possible candidate for the small-conductance basolateral Kir channel in the CCD.
Collapse
Affiliation(s)
- P A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA
| |
Collapse
|
21
|
Hirsch JR, Cermak R, Forssmann WG, Kleta R, Kruhøffer M, Kuhn M, Schafer JA, Sun D, Schlatter E. Effects of sodium nitroprusside in the rat cortical collecting duct are independent of the NO pathway. Kidney Int 1997; 51:473-6. [PMID: 9027724 DOI: 10.1038/ki.1997.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently we described K+ channels in the basolateral membrane of principal cells of rat cortical collecting duct (CCD) which are regulated by a cGMP-dependent protein kinase (Pflugers Arch 429:338-344, 1995). We examined the effects of the NO-liberator sodium nitroprusside (SNP) on single channel activity and membrane voltage (Vm) in principal cells of rat CCD, and on transepithelial voltage, lumen-to-bath Na+ fluxes, and osmotic water permeability in isolated perfused rat CCD tubules. While in patch clamp experiments SNP (10 microM) hyperpolarized principal cells from -54 +/- 10 mV to -71 +/- 5 mV (N = 5) and increased the activity of the described K+ channels from 0.05 +/- 0.03 to 0.45 +/- 0.14 (N = 5) in cell-attached and from 0.04 +/- 0.02 to 0.25 +/- 0.05 (N = 4) in excised patch clamp experiments, it had no effect on basal or AVP-dependent transepithelial voltage, Na+ fluxes, or the osmotic water permeability. In addition, neither 50 microM SIN-1, another liberator of NO, nor 1 mM L-NAME, an inhibitor of the NO-synthase, changed Vm significantly. Furthermore, in cGMP-assays SNP failed to increase intracellular cGMP in CCD segments. Thus, we conclude that in the rat CCD transport is not regulated via the NO-pathway and that SNP acts as an cGMP independent activator of K+ channels in the basolateral membrane of these cells.
Collapse
Affiliation(s)
- J R Hirsch
- Westfälische Wilhelms-Universität Münster, Med. Poliklinik, Experimentelle Nephrologie, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The activity of potassium (K+) channels is intimately linked to several important transport functions in renal tubules. We review recent progress concerning the properties, site along the nephron, and physiological regulation of native K+ channels, and compare their characteristics with those of recently cloned K+ channels. We do not fully cover work on K+ channels in amphibian tubules, cell cultures, and single tubule cells and do not review K+ channels in mesangial cells.
Collapse
Affiliation(s)
- W Wang
- Department of Pharmacology, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
23
|
Quast U. ATP-sensitive K+ channels in the kidney. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1996; 354:213-25. [PMID: 8878050 DOI: 10.1007/bf00171051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ATP-sensitive K+ channels (KATP channels) form a link between the metabolic state of the cell and the permeability of the cell membrane for K+ which, in turn, is a major determinant of cell membrane potential. KATP channels are found in many different cell types. Their regulation by ATP and other nucleotides and their modulation by other cellular factors such as pH and kinase activity varies widely and is fine-tuned for the function that these channels have to fulfill. In most excitable tissues they are closed and open when cell metabolism is impaired; thereby the cell is clamped in the resting state which saves ATP and helps to preserve the structural integrity of the cell. There are, however, notable exceptions from this rule; in pancreatic beta-cells, certain neurons and some vascular beds, these channels are open during the normal functioning of the cell. In the renal tubular system, KATP channels are found in the proximal tubule, the thick ascending limb of Henle's loop and the cortical collecting duct. Under physiological conditions, these channels have a high open probability and play an important role in the reabsorption of electrolytes and solutes as well as in K+ homeostasis. The physiological role of their nucleotide sensitivity is not entirely clear; one consequence is the coupling of channel activity to the activity of the Na-K-ATPase (pump-leak coupling), resulting in coordinated vectorial transport. In ischemia, however, the reduced ATP/ADP ratio would increase the open probability of the KATP channels independently from pump activity; this is particularly dangerous in the proximal tubule, where 60 to 70% of the glomerular ultrafiltrate is reabsorbed. The pharmacology of KATP channels is well developed including the sulphonylureas as standard blockers and the structurally heterogeneous family of channel openers. Blockers and openers, exemplified by glibenclamide and levcromakalim, show a wide spectrum of affinities towards the different types of KATP channels. Recent cloning efforts have solved the mystery about the structure of the channel: the KATP channels in the pancreatic beta-cell and in the principal cell of the renal cortical collecting duct are heteromultimers, composed of an inwardly rectifying K+ channel and sulphonylurea binding subunit(s) with unknown stoichiometry. The proteins making up the KATP channel in these two cell types are different (though homologous), explaining the physiological and pharmacological differences between these channel subtypes.
Collapse
Affiliation(s)
- U Quast
- Pharmakologisches Institut, Universität, Medizinische Fakultät, Tübingen, Germany
| |
Collapse
|