1
|
Gajić Bojić M, Aranđelović J, Škrbić R, Savić MM. Peripheral GABA A receptors - Physiological relevance and therapeutic implications. Pharmacol Ther 2025; 266:108759. [PMID: 39615599 DOI: 10.1016/j.pharmthera.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
The role of γ- aminobutyric acid (GABA) and GABAA receptors is not only essential for neurotransmission in the central nervous system (CNS), but they are also involved in communication in various peripheral tissues such as the pancreas, liver, kidney, gastrointestinal tract, trachea, immune cells and blood vessels. GABAA receptors located outside the CNS ("peripheral GABAA receptors") enable both neuronal and non-neuronal GABA-ergic signaling in various physiological processes and are generally thought to have similar properties to the extrasynaptic receptors in the CNS. By activating these peripheral receptors, GABA and various GABAA receptor modulators, including drugs such as benzodiazepines and general anesthetics, may contribute to or otherwise affect the maintenance of general body homeostasis. However, the existing data in the literature on the role of non-neuronal GABA-ergic signaling in insulin secretion, glucose metabolism, renal function, intestinal motility, airway tone, immune response and blood pressure regulation are far from complete. In fact, they mainly focus on the identification of components for the local synthesis and utilization of GABA and on the expression repertoire of GABAA receptor subunits rather than on subunit composition, activation effects and (sub)cellular localization. A deeper understanding of how modulation of peripheral GABAA receptors can have significant therapeutic effects on a range of pathological conditions such as multiple sclerosis, diabetes, irritable bowel syndrome, asthma or hypertension could contribute to the development of more specific pharmacological strategies that would provide an alternative or complement to existing therapies. Selective GABAA receptor modulators with improved peripheral efficacy and reduced central side effects would therefore be highly desirable first-in-class drug candidates. This review updates recent advances unraveling the molecular components and cellular determinants of the GABA signaling machinery in peripheral organs, tissues and cells of both, humans and experimental animals.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19:e0294926. [PMID: 38166023 PMCID: PMC10760924 DOI: 10.1371/journal.pone.0294926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024] Open
Abstract
Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Rac1 deficiency impairs postnatal development of the renal papilla. Sci Rep 2022; 12:20310. [PMID: 36434091 PMCID: PMC9700760 DOI: 10.1038/s41598-022-24462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Development of the renal medulla continues after birth to form mature renal papilla and obtain urine-concentrating ability. Here, we found that a small GTPase, Rac1, plays a critical role in the postnatal development of renal papilla. Mice with distal tubule-specific deletion of Rac1 reached adulthood but showed polydipsia and polyuria with an impaired ability to concentrate urine. The elongation of renal papilla that occurs in the first weeks after birth was impaired in the Rac1-deficient infants, resulting in shortening and damage of the renal papilla. Moreover, the osmoprotective signaling mediated by nuclear factor of activated T cells 5, which is a key molecule of osmotic response to osmotic stress in renal medulla, was significantly impaired in the kidneys of the Rac1-deficient infants. These results demonstrate that Rac1 plays an important role in the development of renal papilla in the postnatal period, and suggested a potential link between Rac1 and osmotic response.
Collapse
|
4
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
5
|
Pukale DD, Farrag M, Gudneppanavar R, Baumann HJ, Konopka M, Shriver LP, Leipzig ND. Osmoregulatory Role of Betaine and Betaine/γ-Aminobutyric Acid Transporter 1 in Post-Traumatic Syringomyelia. ACS Chem Neurosci 2021; 12:3567-3578. [PMID: 34550670 DOI: 10.1021/acschemneuro.1c00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Syringomyelia (SM) is primarily characterized by the formation of a fluid-filled cyst that forms in the parenchyma of the spinal cord following injury or other pathology. Recent omics studies in animal models have identified dysregulation of solute carriers, channels, transporters, and small molecules associated with osmolyte regulation during syrinx formation/expansion in the spinal cord. However, their connections to syringomyelia etiology are poorly understood. In this study, the biological functions of the potent osmolyte betaine and its associated solute carrier betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) were studied in SM. First, a rat post-traumatic SM model was used to demonstrate that the BGT1 was primarily expressed in astrocytes in the vicinity of syrinxes. In an in vitro system, we found that astrocytes uptake betaine through BGT1 to regulate cell size under hypertonic conditions. Treatment with BGT1 inhibitors, especially NNC 05-2090, demonstrated midhigh micromolar range potency in vitro that reversed the osmoprotective effects of betaine. Finally, the specificity of these BGT1 inhibitors in the CNS was demonstrated in vivo, suggesting feasibility for targeting betaine transport in SM. In summary, these data provide an enhanced understanding of the role of betaine and its associated solute carrier BGT1 in cell osmoregulation and implicates the active role of betaine and BGT1 in syringomyelia progression.
Collapse
Affiliation(s)
- Dipak D. Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Mahmoud Farrag
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| | | | - Hannah J. Baumann
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Michael Konopka
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Leah P. Shriver
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
- Integrated Biosciences Program, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Maeoka Y, Okamoto T, Wu Y, Saito A, Asada R, Matsuhisa K, Terao M, Takada S, Masaki T, Imaizumi K, Kaneko M. Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5. Biochem Biophys Res Commun 2019; 514:436-442. [PMID: 31053298 DOI: 10.1016/j.bbrc.2019.04.168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Nuclear factor of activated T-cells 5 (NFAT5) directly binds to the promoter of the RING finger protein 183 (RNF183) gene and induces its transcription under hypertonic conditions in mouse inner-medullary collecting duct (mIMCD-3) cells. However, there is no specific anti-RNF183 antibody for immunostaining; therefore, it is unclear whether NFAT5 regulates RNF183 expression in vivo and where RNF183 is localized in the kidney. This study investigated NFAT5-regulated in vivo RNF183 expression and localization using CRISPR/Cas9-mediated RNF183-green fluorescent protein (RNF183-GFP) knock-in mice. GFP with linker sequences was introduced upstream of an RNF183 open reading frame in exon 3 by homologous recombination through a donor plasmid. Immunofluorescence staining using GFP antibody revealed that GFP signals gradually increase from the outer medulla down to the inner medulla and colocalize with aquaporin-2. Furosemide treatment dramatically decreased RNF183 expression in the renal medulla, consistent with the decrease in NFAT5 protein and target gene mRNA expression. Furosemide treatment of mIMCD-3 cells did not affect mRNA expression and RNF183 promoter activities. These results indicated that RNF183 is predominantly expressed in the renal medullary collecting ducts, and that decreased renal medullary tonicity by furosemide treatment decreases RNF183 expression by NFAT5 downregulation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takumi Okamoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yan Wu
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MO, USA
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
7
|
Unichenko P, Kirischuk S, Luhmann HJ. GABA transporters control GABAergic neurotransmission in the mouse subplate. Neuroscience 2015; 304:217-27. [PMID: 26232716 DOI: 10.1016/j.neuroscience.2015.07.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10μM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed to affect eGPSC kinetics. However, in contrast to NNC-711 SNAP-5114 increased eGPSC amplitudes and decreased PPR. In the presence of SNAP-5114 CGP55845 did not influence GABAergic transmission, indicating that GABABRs are not activated any longer. We conclude that in the subplate GAT-2/3 operates in reverse mode. GABA released via GAT-2/3 activates presynaptic GABABRs on GABAergic synapses and tonically inhibits GABAergic inputs on SPns.
Collapse
Affiliation(s)
- P Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - S Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - H J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
9
|
Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC. The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 2012; 302:F316-28. [DOI: 10.1152/ajprenal.00464.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Na+- and Cl−-dependent GABA-betaine transporter (BGT1) has received attention mostly as a protector against osmolarity changes in the kidney and as a potential controller of the neurotransmitter GABA in the brain. Nevertheless, the cellular distribution of BGT1, and its physiological importance, is not fully understood. Here we have quantified mRNA levels using TaqMan real-time PCR, produced a number of BGT1 antibodies, and used these to study BGT1 distribution in mice. BGT1 (protein and mRNA) is predominantly expressed in the liver (sinusoidal hepatocyte plasma membranes) and not in the endothelium. BGT1 is also present in the renal medulla, where it localizes to the basolateral membranes of collecting ducts (particularly at the papilla tip) and the thick ascending limbs of Henle. There is some BGT1 in the leptomeninges, but brain parenchyma, brain blood vessels, ependymal cells, the renal cortex, and the intestine are virtually BGT1 deficient in 1- to 3-mo-old mice. Labeling specificity was assured by processing tissue from BGT1-deficient littermates in parallel as negative controls. Addition of 2.5% sodium chloride to the drinking water for 48 h induced a two- to threefold upregulation of BGT1, tonicity-responsive enhancer binding protein, and sodium- myo-inositol cotransporter 1 (slc5a3) in the renal medulla, but not in the brain and barely in the liver. BGT1-deficient and wild-type mice appeared to tolerate the salt treatment equally well, possibly because betaine is one of several osmolytes. In conclusion, this study suggests that BGT1 plays its main role in the liver, thereby complementing other betaine-transporting carrier proteins (e.g., slc6a20) that are predominantly expressed in the small intestine or kidney rather than the liver.
Collapse
Affiliation(s)
- Y. Zhou
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S. Holmseth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - R. Hua
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. C. Lehre
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. M. Olofsson
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I. Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de studios Avanzados del Instituto Politécnico Nacional, México City, Mexico; and
| | - S. A. Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - N. C. Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Lehre A, Rowley N, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson A, Poblete-Naredo I, Rusakov D, Madsen K, Clausen R, Schousboe A, White H, Danbolt N. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 2011; 95:70-81. [PMID: 21459558 PMCID: PMC3376448 DOI: 10.1016/j.eplepsyres.2011.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/02/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. Once released, it is removed from the extracellular space by cellular uptake catalyzed by GABA transporter proteins. Four GABA transporters (GAT1, GAT2, GAT3 and BGT1) have been identified. Inhibition of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test, and the i.v. pentylenetetrazol threshold test. We confirm that BGT1 mRNA is present in the brain, but find that the levels are several hundred times lower than those of GAT1 mRNA; possibly explaining the apparent lack of phenotype. In conclusion, the present results do not support a role for BGT1 in the control of seizure susceptibility and cannot provide a mechanistic understanding of the synergism that has been previously reported with tiagabine and EF1502.
Collapse
Affiliation(s)
- A.C. Lehre
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - N.M. Rowley
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - Y. Zhou
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - S. Holmseth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - C. Guo
- HHMI, Janelia Farm Research Campus, Ashburn, VA, USA
| | - T. Holen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - R. Hua
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - P. Laake
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A.M. Olofsson
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - I. Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F., Mexico
| | - D.A. Rusakov
- UCL Institute of Neurology, University College London, UK
| | - K.K. Madsen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - R.P. Clausen
- Department of medicinal chemistry, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - A. Schousboe
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical sciences, University of Copenhagen, Denmark
| | - H.S. White
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, USA
| | - N.C. Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| |
Collapse
|
11
|
Pei KL, Gailer J. Probing the interaction of arsenobetaine with blood plasma constituents in vitro: an SEC-ICP-AES study. Metallomics 2009; 1:403-8. [DOI: 10.1039/b903681d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Kempson SA, Edwards JM, Osborn A, Sturek M. Acute inhibition of the betaine transporter by ATP and adenosine in renal MDCK cells. Am J Physiol Renal Physiol 2008; 295:F108-17. [PMID: 18448594 DOI: 10.1152/ajprenal.00108.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP interacts with purinergic P2 receptors to regulate a range of physiological responses, including downregulation of transport activity in the nephron. ATP is released from cells by mechanical stimuli such as cell volume changes, and autocrine signaling by extracellular ATP could occur in renal medullary cells during diuresis. This was tested in Madin-Darby canine kidney (MDCK) cells, a model used frequently to study P1 and P2 receptor activity. ATP was released within 1 min after transfer from 500 to 300 mosmol/kgH2O medium. A 30-min incubation with ATP produced dose-dependent inhibition (0.01-0.10 mM) of the renal betaine/GABA transporter (BGT1) with little effect on other osmolyte transporters. Inhibition was reproduced by specific agonists for P2X (alpha,beta-methylene-ATP) and P2Y (UTP) receptors. Adenosine, the final product of ATP hydrolysis, also inhibited BGT1 but not taurine transport. Inhibition by ATP and adenosine was blocked by pertussis toxin and A73122, suggesting involvement of inhibitory G protein and PLC in postreceptor signaling. Both ATP and adenosine (0.1 mM) produced rapid increases in intracellular Ca2+, due to the mobilization of intracellular Ca2+ stores and Ca2+ influx. Blocking these Ca2+ increases with BAPTA-AM also blocked the action of ATP and adenosine on BGT1 transport. Finally, immunohistochemical studies indicated that inhibition of BGT1 transport may be due to endocytic accumulation of BGT1 proteins from the plasma membrane. We conclude that ATP and adenosine, through stimulation of PLC and intracellular Ca2+, may be rapidly acting regulators of BGT1 transport especially in response to a fall in extracellular osmolarity.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Intergrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
13
|
Zhang XM, Wang XT, Cai H, Leung SW, Guggino SE. Characterization of endogenous betaine gamma-amino-n-butyric acid cotransporter glycoform and its hyperosmotic regulation in MDCK cells. Pflugers Arch 2006; 454:143-53. [PMID: 17186307 DOI: 10.1007/s00424-006-0179-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/19/2006] [Accepted: 09/29/2006] [Indexed: 12/25/2022]
Abstract
Increase in mRNA expression and transport activity of the betaine gamma-amino-n-butyric acid cotransporter (BGAT) in response to hyperosmolality has been previously shown in MDCK cells. However, the hyperosmolality-induced response of endogenous BGAT protein expression was not investigated in detail. We show two forms of endogenous BGAT immunoreactivity that are expressed in MDCK II cells. Both are sensitive to Peptide N-Glycosidase F (PNGase F), suggesting that they are N-glycosylated proteins. One band, about 75 kDa, is resistant to Endo H, while the other 55 kDa band is sensitive to it, suggesting that they are fully N-glycosylated mature form in the post-Golgi compartment and core-glycosylated immature form in the endoplasmic reticulum (ER), respectively. When treated with hyperosmolality, they are significantly increased. But the rate of BGAT processing, as assessed by the ratio of mature to immature form, is not increased, suggesting that hyperosmolality does not facilitate the export of BGAT from the ER to the secretory pathway. Surface biotinylation and confocal microscopy show that hyperosmolality significantly increases the amount of the mature form of BGAT on the basolateral membrane with a very small fraction on the apical membrane. We conclude that BGAT is an N-glycosylated protein with two glycoforms and endogenous BGAT synthesis rather than processing is involved in the adaptation to the hyperosmotic stress.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
14
|
Olsen M, Sarup A, Larsson OM, Schousboe A. Effect of Hyperosmotic Conditions on the Expression of the Betaine-GABA-Transporter (BGT-1) in Cultured Mouse Astrocytes. Neurochem Res 2005; 30:855-65. [PMID: 16187220 DOI: 10.1007/s11064-005-6879-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 11/30/2022]
Abstract
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl(-)-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353+/-2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2-4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.
Collapse
Affiliation(s)
- Mads Olsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | | | | | | |
Collapse
|
15
|
Kempson SA, Montrose MH. Osmotic regulation of renal betaine transport: transcription and beyond. Pflugers Arch 2005; 449:227-34. [PMID: 15452713 DOI: 10.1007/s00424-004-1338-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cells in the kidney inner medulla are routinely exposed to high extracellular osmolarity during normal operation of the urinary concentrating mechanism. One adaptation critical for survival in this environment is the intracellular accumulation of organic osmolytes to balance the osmotic stress. Betaine is an important osmolyte that is accumulated via the betaine/gamma-aminobutyric acid transporter (BGT1) in the basolateral plasma membrane of medullary epithelial cells. In response to hypertonic stress, there is transcriptional activation of the BGT1 gene, followed by trafficking and membrane insertion of BGT1 protein. Transcriptional activation, triggered by changes in ionic strength and water content, is an early response that is a key regulatory step and has been studied in detail. Recent studies suggest there are additional post-transcriptional regulatory steps in the pathway leading to upregulation of BGT1 transport, and that additional proteins are required for membrane insertion. Reversal of this adaptive process, upon removal of hypertonic stress, involves a rapid efflux of betaine through specific release pathways, a reduction in betaine influx, and a slower downregulation of BGT1 protein abundance. There is much more to be learned about many of these steps in BGT1 regulation.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Sciences Bldg., Room 309, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | |
Collapse
|
16
|
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2004; 148:1-80. [PMID: 12687402 DOI: 10.1007/s10254-003-0009-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems-channels and carriers alike-have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kempson SA, Parikh V, Xi L, Chu S, Montrose MH. Subcellular redistribution of the renal betaine transporter during hypertonic stress. Am J Physiol Cell Physiol 2003; 285:C1091-100. [PMID: 12839828 DOI: 10.1152/ajpcell.00021.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The betaine transporter (BGT1) protects cells in the hypertonic renal inner medulla by mediating uptake and accumulation of the osmolyte betaine. Transcriptional regulation plays an essential role in upregulation of BGT1 transport when renal cells are exposed to hypertonic medium for 24 h. Posttranscriptional regulation of the BGT1 protein is largely unexplored. We have investigated the distribution of BGT1 protein in live cells after transfection with BGT1 tagged with enhanced green fluorescent protein (EGFP). Fusion of EGFP to the NH2 terminus of BGT1 produced a fusion protein (EGFP-BGT) with transport properties identical to normal BGT1, as determined by ion dependence, inhibitor sensitivity, and apparent Km for GABA. Confocal microscopy of EGFP-BGT fluorescence in transfected Madin-Darby canine kidney (MDCK) cells showed that hypertonic stress for 24 h induced a shift in subcellular distribution from cytoplasm to plasma membrane. This was confirmed by colocalization with anti-BGT1 antibody staining. In fibroblasts, transfected EGFP-BGT caused increased transport in response to hypertonic stress. The activation of transport was not accompanied by increased expression of EGFP-BGT, as determined by Western blotting. Membrane insertion of EGFP-BGT protein in MDCK cells began within 2-3 h after onset of hypertonic stress and was blocked by cycloheximide. We conclude that posttranscriptional regulation of BGT1 is essential for adaptation to hypertonic stress and that insertion of BGT1 protein to the plasma membrane may require accessory proteins.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Medicine, Indiana University School of Medicine, Medical Sciences 451, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|
18
|
Woo SK, Kwon HM. Adaptation of kidney medulla to hypertonicity: role of the transcription factor TonEBP. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:189-202. [PMID: 11952228 DOI: 10.1016/s0074-7696(02)15009-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The osmolality of the mammalian kidney medulla is very high. The high osmolality provides the driving force for water reabsorption and urinary concentration, key functions of the kidney for maintaining proper body fluid volume and blood pressure. Salt and urea are the major solutes in the renal medullary interstitium. Unfortunately, high salt (hypertonicity) causes DNA damage and cell death. In response, the renal medullary cells adapt to the hypertonicity by accumulating compatible osmolytes. A regulatory protein, tonicity-responsive enhancer binding protein (TonEBP), plays a central role in the accumulation of these compatible osmolytes by stimulating genes whose products either actively transport or synthesize the appropriate osmolytes. TonEBP is active under isotonic conditions. It responds to both an increase and a decrease in ambient tonicity, in opposite directions, which involves changes in its abundance and nucleocytoplasmic distribution. In the kidney medulla, however, nucleocytoplasmic distribution is the major site of control, under normal conditions of diuresis and antidiuresis.
Collapse
Affiliation(s)
- Seung Kyoon Woo
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
19
|
Woo SK, Lee SD, Na KY, Park WK, Kwon HM. TonEBP/NFAT5 stimulates transcription of HSP70 in response to hypertonicity. Mol Cell Biol 2002; 22:5753-60. [PMID: 12138186 PMCID: PMC133967 DOI: 10.1128/mcb.22.16.5753-5760.2002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While hyperosmolality of the kidney medulla is essential for urinary concentration, it imposes a great deal of stress. Cells in the renal medulla adapt to the stress of hypertonicity (hyperosmotic salt) by accumulating organic osmolytes. Tonicity-responsive enhancer (TonE) binding protein (TonEBP) (or NFAT5) stimulates transcription of transporters and a synthetic enzyme for the cellular accumulation of organic osmolytes. We found that dominant-negative TonEBP reduced expression of HSP70 as well as the transporters and enzyme. Near the major histocompatibility complex class III locus, there are three HSP70 genes named HSP70-1, HSP70-2, and HSC70t. While HSP70-1 and HSP70-2 were heat inducible, only HSP70-2 was induced by hypertonicity. In the 5' flanking region of the HSP70-2 gene, there are three sites for TonEBP binding. In cells transfected with a reporter plasmid containing this region, expression of luciferase was markedly stimulated in response to hypertonicity. Coexpression of the dominant-negative TonEBP reduced the luciferase expression. Mutating all three sites in the reporter plasmid led to a complete loss of induction by hypertonicity. Thus, TonEBP rather than heat shock factor stimulates transcription of the HSP70-2 gene in response to hypertonicity. We conclude that TonEBP is a master regulator of the renal medulla for cellular protection against high osmolality via organic osmolytes and molecular chaperones.
Collapse
Affiliation(s)
- Seung Kyoon Woo
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
20
|
Grunewald RW, Oppermann M, Schettler V, Fiedler GM, Jehle PM, Schuettert JB. Polarized function of thick ascending limbs of Henle cells in osmoregulation. Kidney Int 2001; 60:2290-8. [PMID: 11737602 DOI: 10.1046/j.1523-1755.2001.00070.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Organic osmolytes are necessary for osmoregulation in mammalian kidney. Since renal epithelial cells in many cases possess specific mechanisms both for uptake and osmotically regulated release, we investigated their localization in polarized cells. METHODS An immortalized epithelial cell line derived from the thick ascending limb of Henle's loop (TALH) was used to examine the transport characteristics of the apical and basolateral plasma membranes for osmotic regulation of organic osmolytes. Cells were cultured on filters in a two-compartment chamber. RESULTS In culture under hypertonic conditions the TALH cells accumulated in the following balance: sorbitoverline> betaine = myo-inositoverline> glycerophosphoryl choline (GPC). When extracellular osmolarity was decreased, then sorbitol was released on the apical side, whereas betaine and myo-inositol efflux occurred on the basolateral side. GPC release showed no preference of either side. Taurine did not seem to be necessary for osmoregulation under these conditions. Osmotically regulated myo-inositol and betaine uptake was located on the apical side, and choline uptake took place on both sides equally. CONCLUSION These results show that in renal epithelial cells, both osmotically induced release and the uptake of organic osmolytes are divided between the apical and the basolateral sides. This might be important for volume regulation.
Collapse
Affiliation(s)
- R W Grunewald
- Department of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Akizuki N, Uchida S, Sasaki S, Marumo F. Impaired solute accumulation in inner medulla of Clcnk1-/- mice kidney. Am J Physiol Renal Physiol 2001; 280:F79-87. [PMID: 11133517 DOI: 10.1152/ajprenal.2001.280.1.f79] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLC-K1 chloride channel is a kidney-specific CLC chloride channel expressed in the thin ascending limb of Henle's loop (tAL). Recently, we determined that Clcnk1-/- mice show nephrogenic diabetes insipidus (NDI). To investigate the pathogenesis of impaired urinary concentrating ability, we analyzed renal functions of Clcnk1-/- mice in more detail. The osmolar clearance-to-creatinine clearance ratio was not significantly different between Clcnk1+/- and Clcnk1+/+ mice. Fractional excretion of sodium, chloride, and urea was also not significantly affected in Clcnk1-/- mice. These results indicate that the polyuria observed in Clcnk1-/- mice was water diuresis and not osmotic diuresis. The papillary osmolarity in Clcnk1-/- mice was significantly lower than that in Clcnk1+/+ mice under a hydrated condition, and it did not increase even after water deprivation. Sodium and chloride contents in the inner medulla in Clcnk1-/- mice were at about one-half the levels observed in Clcnk1+/+ mice. Furthermore, the accumulation of urea was also impaired in Clcnk1-/- mice, suggesting that the overall countercurrent system was impaired by a defect of its single component, chloride transport in the tAL. The aldose reductase mRNA abundance in Clcnk1-/- mice was decreased, further evincing that inner medullary tonicity is decreased in Clcnk1-/- mice. We concluded that NDI in Clcnk1-/- mice resulted from an impairment in the generation of inner medullary hypertonicity by a dysfunction of the countercurrent systems.
Collapse
Affiliation(s)
- N Akizuki
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Carnitine, gamma-trimethyl-beta-hydroxybutyrobetaine, is a small molecule widely present in all cells from prokaryotic to eukaryotic ones. It is the sole source of carbon and nitrogen in some bacteria; it serves as osmoprotectant in others. It is a carrier of acyl moieties, and exclusively of long-chain fatty acids for mitochondrial beta-oxidation in mammals. The conspicuously similar composition of the intracellular milieu among widely different species in relation to organic osmolyte systems involves the methylamine family to which carnitine belongs. This prompted us to examine the osmolytic properties of carnitine in an attempt to clarify the metabolic functions carnitine has acquired during evolution. An understanding of the metabolic functions of this organic compatible solute impinge on research involving this compound.
Collapse
Affiliation(s)
- G Peluso
- I.B.P.E. CNR, via Toiano 6, Arco Felice, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hoffert JD, Leitch V, Agre P, King LS. Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway. J Biol Chem 2000; 275:9070-7. [PMID: 10722758 DOI: 10.1074/jbc.275.12.9070] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aquaporin-5 (AQP5) is a water channel protein expressed in lung, salivary gland, and lacrimal gland epithelia. Each of these sites may experience fluctuations in surface liquid osmolarity; however, osmotic regulation of AQP5 expression has not been reported. This study demonstrates that AQP5 is induced by hypertonic stress and that induction requires activation of extracellular signal-regulated kinase (ERK). Incubation of mouse lung epithelial cells (MLE-15) in hypertonic medium produced a dose-dependent increase in AQP5 expression; AQP5 protein peaked by 24 h and returned to baseline levels within hours of returning cells to isotonic medium. AQP5 induction was observed only with relatively impermeable solutes, suggesting an osmotic pressure gradient is required for induction. ERK was selectively activated in MLE-15 cells by hypertonic stress, and inhibition of ERK activation with two distinct mitogen-activated extracellular regulated kinase kinase (MEK) inhibitors, U0126 and PD98059, blocked AQP5 induction. AQP5 induction was also observed in the lung, salivary, and lacrimal glands of hyperosmolar rats, suggesting potential physiologic relevance for osmotic regulation of AQP5 expression. This report provides the first example of hypertonic induction of an extrarenal aquaporin, as well as the first association between mitogen-activated protein kinase signaling and aquaporin expression.
Collapse
Affiliation(s)
- J D Hoffert
- Department of Biological Chemistry, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
24
|
Pummer S, Dantzler WH, Lien YH, Moeckel GW, Völker K, Silbernagl S. Reabsorption of betaine in Henle's loops of rat kidney in vivo. Am J Physiol Renal Physiol 2000; 278:F434-9. [PMID: 10710548 DOI: 10.1152/ajprenal.2000.278.3.f434] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed 1) to localize and 2) to characterize betaine reabsorption from the tubular lumen in rat kidney in vivo, and 3) to test whether reabsorption is modulated by the diuretic state. [(14)C]betaine (+ [(3)H]inulin) was microperfused through the proximal convoluted tubule (PCT) and microinfused into late proximal (LP) and early distal (ED) tubules, long loops of Henle (LLH), and vasa recta of the rat in vivo et situ, and the fractional recovery of the (14)C label was determined end proximally (PCT) and in the final urine, respectively. [(14)C]betaine was not reabsorbed during ED microinfusion, whereas fractional reabsorption during LP microinfusion was 82% at 0.06 mM betaine and decreased gradually to 4.8% at 60 mM. L-Proline had lower Michaelis-Menten constant (K(m)) and sarcosine a higher K(m) than betaine. Chronic, but not acute, diuresis inhibited betaine reabsorption in Henle's loops. Fractional [(14)C]betaine reabsorption in PCT was much smaller than that during LP microinfusion. [(14)C]betaine (7.28 mM) microinfused 1) into LLH was reabsorbed to 30% and 2) into vasa recta appeared in the ipsilateral urine to a much higher extent than contralaterally. In both cases, no saturation was detected at 70 mM. We conclude that betaine is reabsorbed by mediated transport from descending limbs of short Henle's loops by a proline-preferring carrier in a diuresis-modulated manner. In the deep medulla, bidirectional blood/urine betaine transport exists.
Collapse
Affiliation(s)
- S Pummer
- Physiologisches Institut der Universität Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Takenaka M, Imai E, Nagasawa Y, Matsuoka Y, Moriyama T, Kaneko T, Hori M, Kawamoto S, Okubo K. Gene expression profiles of the collecting duct in the mouse renal inner medulla. Kidney Int 2000; 57:19-24. [PMID: 10620183 DOI: 10.1046/j.1523-1755.2000.00834.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Gene expression profiles of the collecting duct in the mouse renal inner medulla. BACKGROUND Gene expression profiles, constructed from 1000 to 2000 cloned cDNA sequences, depict their relative abundance of expression in a tissue. Establishing such a profile for mouse inner renal medullary collecting ducts (IMCDs), we compared expression patterns with those in other tissues including proximal tubule. METHODS A nonbiased 3'-end cDNA library was prepared from microdissected mouse IMCDs. Single-pass sequencing of 2000 randomly selected cDNA clones collected short sequences (approximate length, 250 bp) following poly (A), called gene signatures (GS). Identical sequences were considered a single GS. GS occurrence was quantitated to yield a list of expressed genes indicating their abundance. RESULTS Among 2000 clones, 1613 types of transcripts were found in IMCDs; 155 were identical or homologous to reported genes. The gene most expressed in IMCDs was alphaB-crystallin, a small stress (heat-shock) protein that is also a major structural protein in the ocular lens. According to Northern analysis, renal expression of this mRNA was induced by dehydration, presumably via tissue hypertonicity. However, expression did not change with acute NaCl loading. Also, a new member of the glutathione-S-transferase family was identified by comparing the IMCD expression profile with those of other tissues. CONCLUSION With our database of genes expressed in mouse IMCDs, we are devising an IMCD-specific microarray to study gene-expression responses to various physiologic alterations.
Collapse
Affiliation(s)
- M Takenaka
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, School of Health and Sport Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miyakawa H, Rim JS, Handler JS, Kwon HM. Identification of the second tonicity-responsive enhancer for the betaine transporter (BGT1) gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:359-64. [PMID: 10524210 DOI: 10.1016/s0167-4781(99)00122-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When certain cells are exposed to a hypertonic solution, transcription of the BGT1 gene is markedly increased. The ensuing rise in betaine transport leads to cellular accumulation of betaine that protects the cells from the stress of hypertonicity. We have previously identified a tonicity-responsive enhancer (TonE1) in the 5' flanking region of the BGT1 gene. It was recognized, however, that full activation of transcription requires additional sequence upstream from the TonE1. Now we report that there is another TonE (named TonE2) 72 base pairs upstream from the TonE1. TonE1 and TonE2 act synergistically to stimulate transcription of BGT1 in response to hypertonicity.
Collapse
Affiliation(s)
- H Miyakawa
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Burger-Kentischer A, Müller E, März J, Fraek ML, Thurau K, Beck FX. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Kidney Int 1999; 55:1417-25. [PMID: 10201006 DOI: 10.1046/j.1523-1755.1999.00382.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Medullary cells of the concentrating kidney are exposed to high extracellular solute concentrations. It is well established that epithelial cells in this kidney region adapt osmotically to hypertonic stress by accumulating organic osmolytes. Little is known, however, of the adaptive mechanisms of a further medullary cell type, the papillary interstitial cell [renal papillary fibroblast (RPF)]. We therefore compared the responses of primary cultures of RPFs and papillary collecting duct (PCD) cells exposed to hypertonic medium. METHODS In RPFs and PCD cells, organic osmolytes were determined by high-performance liquid chromatography; mRNA expression for organic osmolyte transporters [Na+/Cl(-)-dependent betaine transporter (BGT), Na(+)-dependent myo-inositol transporter (SMIT)], and the sorbitol synthetic and degrading enzymes [aldose reductase (AR) and sorbitol dehydrogenase (SDH), respectively] was determined by Northern blot analysis. RESULTS Exposure to hypertonic medium (600 mOsm/kg by NaCl addition) caused intracellular contents of glycerophosphorylcholine, betaine, myo-inositol, and sorbitol, but not free amino acids, to increase significantly in both RPFs and PCD cells. The rise in intracellular contents of these organic osmolytes was accompanied by enhanced expression of mRNAs coding for BGT, SMIT, and AR in both RPFs and PCD cells. SDH mRNA abundance, however, was unchanged. Nonradioactive in situ hybridization studies on sections from formalin-fixed and paraffin-embedded, normally concentrating kidneys showed strong expression of BGT, SMIT, and AR mRNAs in interstitial and collecting duct cells of the papilla, whereas expression of SDH mRNA was much weaker in both cell types. CONCLUSIONS These results suggest that both RPFs and PCD cells use similar strategies to adapt osmotically to the high interstitial NaCl concentrations characteristic for the inner medulla and papilla of the concentrating kidney.
Collapse
|
28
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 588] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM. Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F753-61. [PMID: 9575900 DOI: 10.1152/ajprenal.1998.274.4.f753] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously identified a tonicity-responsive enhancer (TonE) in the promoter region of the canine BGT1 gene. TonE mediates hypertonicity-induced stimulation of transcription. Here, we characterize TonE and TonE binding proteins (TonEBPs) to provide a biochemical basis for cloning of the TonEBPs. Mutational analysis applied to both hypertonicity-induced stimulation of transcription and TonEBP binding reveals that TonE is 11 base pairs in length, with the consensus sequence of (C/T)GGAAnnn(C/T)n(C/T). Activity of the TonEBPs increases in response to hypertonicity with a time course similar to that of transcription of the BGT1 gene. Studies with inhibitors indicate that translation, but not transcription, is required for activation of the TonEBPs. Phosphorylation is required for the stimulation of transcription but not for activation of DNA binding by the TonEBPs. In vivo methylation by dimethyl sulfate reveals that the TonE site of the BGT1 gene is protected with a time course like that of activity of the TonEBPs and activation of transcription. Ultraviolet cross-linking indicates that the TonEBPs share a DNA binding subunit of 200 kDa.
Collapse
Affiliation(s)
- H Miyakawa
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Obermüller N, Kränzlin B, Verma R, Gretz N, Kriz W, Witzgall R. Renal osmotic stress-induced cotransporter: expression in the newborn, adult and post-ischemic rat kidney. Kidney Int 1997; 52:1584-92. [PMID: 9407504 DOI: 10.1038/ki.1997.489] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The renal osmotic stress-induced cotransporter (ROSIT), a new putative member of a family of organic solute transporters, is highly expressed in the kidney. Our in situ hybridization data now reveal that large amounts of ROSIT mRNA can be found in the S3 segment of the proximal tubule. In the developing kidney, ROSIT mRNA is expressed after the S-shaped body stage. Because the S3 segment is the major site of damage in the post-ischemic kidney, we evaluated alterations in ROSIT mRNA expression after ischemic acute tubular necrosis. Renal osmotic stress-induced cotransporter mRNA levels were already decreased eight hours post-ischemia. At seven days post-ischemia, ROSIT mRNA reappeared in a mosaic pattern in the regenerating S3 segment, being fully expressed three weeks after the insult except for focal areas. The exact localization of this putative osmolyte transporter in the kidney, together with that of other known osmolyte transporter will contribute to a better understanding of the mechanism of medullary osmolyte accumulation and its vectorial transport.
Collapse
Affiliation(s)
- N Obermüller
- Medical Research Center, Klinikum Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Yamauchi A, Sugiura T, Kitamura H, Akagi A, Horio M, Tohyama M, Shimada S, Imai E. Effects of partial nephrectomy on the expression of osmolyte transporters. Kidney Int 1997; 51:1847-54. [PMID: 9186874 DOI: 10.1038/ki.1997.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Na+/myo-inositol cotransporter (SMIT) and Na+/Cl-/betaine-gamma-amino-n-butyric acid transporter (BGT-1) are the major osmolyte transporters that are regulated by extracellular osmolarity. We have recently shown localization and rapid regulation of the mRNAs for these transporters in rat kidney. In the present study, we examined the expression of SMIT and BGT-1 in partial nephrectomized rats in order to assess the change in local osmolarity following reduction of renal mass. Four weeks after 5/6 nephrectomy (NX), the rats were compared to sham-operated control animals (CONT). Northern analysis using RNA of whole kidney indicated that there were little differences in the levels of SMIT and BGT-1 mRNAs between the two groups. In situ hybridization revealed that signals for both transporter mRNAs were markedly reduced in the inner medulla of the remnant kidney. In contrast, these signals in the outer medulla increased following nephrectomy. SMIT signals in the cortex increased as well. Grain density, determined by counting grain number per cell, revealed that the signals in the inner medullary collecting ducts were markedly reduced whereas those in the thick ascending limbs of Henle (TAL) as well as macula densa cells were significantly increased. The signals in the TAL and macula densa were reduced by furosemide administration. The increased expression in NX rats may reflect the increased NaCl transport and high local osmolarity in this segment.
Collapse
Affiliation(s)
- A Yamauchi
- First Department of Medicine, Osaka University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rim JS, Tanawattanacharoen S, Takenaka M, Handler JS, Kwon HM. The canine sodium/myo-inositol cotransporter gene: structural organization and characterization of the promoter. Arch Biochem Biophys 1997; 341:193-9. [PMID: 9143369 DOI: 10.1006/abbi.1997.9950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sodium/myo-inositol cotransporter (SMIT) is a plasma membrane protein catalyzing transfer of myo-inositol into cells against a considerable concentration gradient using the electrochemical potential of sodium across the cell membrane. Transcription of the SMIT gene is markedly stimulated when cells are exposed to a hypertonic environment resulting in increased abundance of SMIT mRNA and increased SMIT activity. The increased accumulation of myo-inositol protects cells from the deleterious effects of hypertonicity. In an effort toward understanding transcriptional regulation, we cloned canine genomic DNA fragments containing the SMIT gene. The gene is 37 kb in size consisting of 2 exons and a large intron of 25 kb. The entire open reading frame is in the second exon. The promoter of the gene is highly active due to a GC-rich sequence. Ribonuclease protection assay using a riboprobe complementary to the 5' end of the gene confirmed that the promoter of the gene is stimulated by hypertonicity. The promoters and regulatory sequences of the SMIT gene and the betaine transporter gene, another gene regulated by hypertonicity, appear to be different.
Collapse
Affiliation(s)
- J S Rim
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|