1
|
Gu R, Shen J, Zhang J, Mao J, Ye Q. Revolutionizing Autoimmune Kidney Disease Treatment with Chimeric Antigen Receptor-T Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0712. [PMID: 40405911 PMCID: PMC12095914 DOI: 10.34133/research.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/26/2025]
Abstract
Autoimmune kidney diseases (AIKDs) depict a range of disorders involving immune-mediated damage to the kidneys, where conventional biologic therapies involving monoclonal antibodies often prove insufficient because of persistent autoreactive B cell reservoirs in lymphoid organs and inflammatory tissues. The appearance of chimeric antigen receptor (CAR)-T cell therapies targeting B cells has shown transformative potential, with recent clinical trials showing the remarkable efficacy of anti-CD19 CAR-T cells in achieving profound B cell depletion, reducing immune complex deposition, and ameliorating renal inflammation in AIKDs. While these results highlight the potential of CAR-T cell therapy in facilitating immune reset and overcoming treatment resistance, further clinical investigations are imperative to establish its long-term safety and sustained therapeutic benefits. This review synthesizes current evidence on CAR-T cell applications in AIKDs, discusses critical considerations for clinical translation, identifies existing limitations and challenges, and proposes strategic directions for therapeutic optimization and advancement.
Collapse
Affiliation(s)
- Rui Gu
- Department of Nephrology, Children’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Jiayi Shen
- Department of Nephrology, Children’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Jiayu Zhang
- Department of Nephrology, Children’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Laboratory Medicine, Children’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
2
|
Chen Q, Zhang X, Yang H, Luo G, Zhou X, Xu Z, Xu A. CD8 + CD103 + iTregs protect against ischemia-reperfusion-induced acute kidney Injury by inhibiting pyroptosis. Apoptosis 2024; 29:1709-1722. [PMID: 39068624 DOI: 10.1007/s10495-024-02001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The occurrence of acute kidney injury (AKI) is elevated, one of the main causes is ischemia-reperfusion (I/R). However, no specific therapy is currently available to treat I/R-induced AKI (I/R-AKI). Treg cells have been demonstrated to perform an anti-inflammatory role in a range of autoimmune and inflammatory illnesses. However, there is limited available information about the possible functions of CD8 + CD103 + iTregs in I/R-AKI. We utilized renal tubular epithelial cells (RTECs) subjected to hypoxia-reoxygenation (H/R) and I/R-AKI mouse model to investigate whether CD8 + CD103 + iTregs could attenuate AKI and the underlying mechanism. In vitro, co-cultured with CD8 + CD103 + iTregs alleviated H/R-induced cell injury. After treatment of CD8 + CD103 + iTregs rather than control cells, a significant improvement of I/R-AKI was observed in vivo, including decreased serum creatinine (sCr) and blood urea nitrogen (BUN) levels, reduced renal pathological injury, lowered tubular apoptosis and inhibition of the transition from AKI to chronic kidney disease (CKD). Mechanically, CD8 + CD103 + iTregs alleviated H/R-induced cell injury and I/R-AKI partly by suppressing RTECs pyroptosis via inhibiting the NLRP3/Caspase-1 axis. Our study provides a novel perspective on the possibility of CD8 + CD103 + iTregs for the treatment of I/R-AKI.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao Zhang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510120, China
| | - Hui Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Guangxuan Luo
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Xin Zhou
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhenjian Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Anping Xu
- Department of Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Nephrology, PengPai Memorial Hospital, Shanwei, 516400, China.
| |
Collapse
|
3
|
Enk LUB, Hellmig M, Riecken K, Kilian C, Datlinger P, Jauch-Speer SL, Neben T, Sultana Z, Sivayoganathan V, Borchers A, Paust HJ, Zhao Y, Asada N, Liu S, Agalioti T, Pelczar P, Wiech T, Bock C, Huber TB, Huber S, Bonn S, Gagliani N, Fehse B, Panzer U, Krebs CF. Targeting T cell plasticity in kidney and gut inflammation by pooled single-cell CRISPR screening. Sci Immunol 2024; 9:eadd6774. [PMID: 38875317 DOI: 10.1126/sciimmunol.add6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.
Collapse
Affiliation(s)
- Leon U B Enk
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellmig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kilian
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Saskia L Jauch-Speer
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Neben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zeba Sultana
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Borchers
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Division of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Odler B, Tieu J, Artinger K, Chen-Xu M, Arnaud L, Kitching RA, Terrier B, Thiel J, Cid MC, Rosenkranz AR, Kronbichler A, Jayne DRW. The plethora of immunomodulatory drugs: opportunities for immune-mediated kidney diseases. Nephrol Dial Transplant 2023; 38:ii19-ii28. [PMID: 37816674 DOI: 10.1093/ndt/gfad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/12/2023] Open
Abstract
In recent decades, insights into the molecular pathways involved in disease have revolutionized the treatment of autoimmune diseases. A plethora of targeted therapies have been identified and are at varying stages of clinical development in renal autoimmunity. Some of these agents, such as rituximab or avacopan, have been approved for the treatment of immune-mediated kidney disease, but kidney disease lags behind more common autoimmune disorders in new drug development. Evidence is accumulating as to the importance of adaptive immunity, including abnormalities in T-cell activation and signaling, and aberrant B-cell function. Furthermore, innate immunity, particularly the complement and myeloid systems, as well as pathologic responses in tissue repair and fibrosis, play a key role in disease. Collectively, these mechanistic studies in innate and adaptive immunity have provided new insights into mechanisms of glomerular injury in immune-mediated kidney diseases. In addition, inflammatory pathways common to several autoimmune conditions exist, suggesting that the repurposing of some existing drugs for the treatment of immune-mediated kidney diseases is a logical strategy. This new understanding challenges the clinical investigator to translate new knowledge into novel therapies leading to better disease outcomes. This review highlights promising immunomodulatory therapies tested for immune-mediated kidney diseases as a primary indication, details current clinical trials and discusses pathways that could be targeted in the future.
Collapse
Affiliation(s)
- Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johanna Tieu
- Faculty of Health and Medical Sciences, University of Adelaide; Adelaide, Australia
- Rheumatology Unit, The Queen Elizabeth Hospital, Adelaide, Australia
- Rheumatology Unit, Lyell McEwin Hospital, Adelaide, Australia
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Chen-Xu
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laurent Arnaud
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
| | - Richard A Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
- Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Jens Thiel
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - David R W Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Mooslechner AA, Schuller M, Artinger K, Kirsch AH, Schabhüttl C, Eller P, Rosenkranz AR, Eller K. Low-Dose rIL-15 Protects from Nephrotoxic Serum Nephritis via CD8 + T Cells. Cells 2022; 11:cells11223656. [PMID: 36429085 PMCID: PMC9688325 DOI: 10.3390/cells11223656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid progressive glomerulonephritis (GN) often leads to end-stage kidney disease, driving the need for renal replacement therapy and posing a global health burden. Low-dose cytokine-based immunotherapies provide a new strategy to treat GN. IL-15 is a strong candidate for the therapy of immune-mediated kidney disease since it has proven to be tubular-protective before. Therefore, we set out to test the potential of low-dose rIL-15 treatment in a mouse model of nephrotoxic serum nephritis (NTS), mimicking immune complex-driven GN in humans. A single low-dose treatment with rIL-15 ameliorated NTS, reflected by reduced albuminuria, less tissue scarring, fewer myeloid cells in the kidney, and improved tubular epithelial cell survival. In addition, CD8+ T cells, a primary target of IL-15, showed altered gene expression and function corresponding with less cytotoxicity mediated by rIL-15. With the use of transgenic knock-out mice, antibody depletion, and adoptive cell transfer studies, we here show that the beneficial effects of rIL-15 treatment in NTS depended on CD8+ T cells, suggesting a pivotal role for them in the underlying mechanism. Our findings add to existing evidence of the association of IL-15 with kidney health and imply a potential for low-dose rIL-15 immunotherapies in GN.
Collapse
Affiliation(s)
- Agnes A. Mooslechner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Max Schuller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander H. Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Corinna Schabhüttl
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander R. Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
7
|
Al Mushafi A, Ooi JD, Odobasic D. Crescentic Glomerulonephritis: Pathogenesis and Therapeutic Potential of Human Amniotic Stem Cells. Front Physiol 2021; 12:724186. [PMID: 34721059 PMCID: PMC8554237 DOI: 10.3389/fphys.2021.724186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) leads to significant morbidity and mortality worldwide. Glomerulonephritis (GN) is the second leading cause of CKD resulting in end stage renal failure. The most severe and rapidly progressive type of GN is characterized by glomerular crescent formation. The current therapies for crescentic GN, which consist of broad immunosuppressive drugs, are partially effective, non-specific, toxic and cause many serious side effects including infections, cancer, and cardiovascular problems. Therefore, new and safer therapies are needed. Human amniotic epithelial cells (hAECs) are a type of stem cell which are isolated from the placenta after birth. They represent an attractive and novel therapeutic option for the treatment of various inflammatory conditions owing to their unique and selective immunosuppressive ability, as well as their excellent safety profile and clinical applicability. In this review, we will discuss the immunopathogenesis of crescentic GN, issues with currently available treatments and how hAECs offer potential to become a new and harmless treatment option for this condition.
Collapse
Affiliation(s)
- Ahmed Al Mushafi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Joshua D Ooi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Dragana Odobasic
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Sakai R, Ito M, Komai K, Iizuka-Koga M, Matsuo K, Nakayama T, Yoshie O, Amano K, Nishimasu H, Nureki O, Kubo M, Yoshimura A. Kidney GATA3 + regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol Immunol 2021; 18:1249-1261. [PMID: 32917984 PMCID: PMC8093306 DOI: 10.1038/s41423-020-00547-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
FoxP3+ regulatory T cells (Tregs) play crucial roles in peripheral immune tolerance. In addition, Tregs that reside or accumulate in nonlymphoid tissues, called tissue Tregs, exhibit tissue-specific functions and contribute to the maintenance of tissue homeostasis and repair. In an experimental mouse model of crescentic glomerulonephritis induced by an anti-glomerular basement membrane antibody, Tregs started to accumulate in the kidney on day 10 of disease onset and remained at high levels (~30-35% of CD4+ T cells) during the late stage (days 21-90), which correlated with stable disease control. Treg depletion on day 21 resulted in the relapse of renal dysfunction and an increase in Th1 cells, suggesting that Tregs are essential for disease control during the convalescence stage. The Tregs that accumulated in the kidney showed tissue Treg phenotypes, including high expression of GATA3, ST2 (the IL33 receptor subunit), amphiregulin (Areg), and PPARγ. Although T-bet+ Tregs and RORγt+ Tregs were observed in the kidney, GATA3+ Tregs were predominant during the convalescence stage, and a PPARγ agonist enhanced the accumulation of GATA3+ Tregs in the kidney. To understand the function of specific genes in kidney Tregs, we developed a novel T cell transfer system to T cell-deficient mice. This experiment demonstrates that ST2, Areg, and CCR4 in Tregs play important roles in the accumulation of GATA3+ Tregs in the kidney and in the amelioration of renal injury. Our data suggest that GATA3 is important for the recruitment of Tregs into the kidney, which is necessary for convalescence after renal tissue destruction.
Collapse
Affiliation(s)
- Ryota Sakai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan.
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Osamu Yoshie
- The Health and Kampo Institute, Sendai, Miyagi, 981-3205, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan
| | - Hiroshi Nishimasu
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
9
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Abstract
Renal inflammation, induced by autoantigen recognition or toxic drugs, leads to renal tissue injury and decline in kidney function. Recent studies have demonstrated the crucial role for regulatory T cells in suppressing pathogenic adaptive but also innate immune responses in the inflamed kidney. However, there is also evidence for other immune cell populations with immunosuppressive function in renal inflammation. This review summarizes mechanisms of immune cell regulation in immune-mediated glomerulonephritis and acute and chronic nephrotoxicity.
Collapse
|
11
|
Herrnstadt GR, Steinmetz OM. The role of Treg subtypes in glomerulonephritis. Cell Tissue Res 2020; 385:293-304. [PMID: 33315130 PMCID: PMC8523467 DOI: 10.1007/s00441-020-03359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
While Th1 and Th17 T effector cells are pathogenic drivers of glomerulonephritis (GN), regulatory T cells (Tregs) potently protect from renal tissue injury. Recently, it has become evident that different Treg subtypes exist. Among these are lineage specific Treg1 and Treg17 cells, which are specialized to down regulate either Th1 or Th17 T effector cell responses. Interestingly, programming of specialized Tregs and the corresponding T helper effector cells depend on the same lineage specific master transcription factors Tbet (Th1/Treg1) and STAT3 (Th17/Treg17). Furthermore, early control of T effector cell priming in secondary lymphoid organs by specialized Tregs was described. One central mechanism of T effector cell control by the corresponding Treg subtype seems to be expression of the same chemokine receptor repertoire, which facilitates their co-localization. More recently, another intriguing Treg subset was identified, which expresses Foxp3 together with the Th17 characteristic transcription factor RORγt. While these Foxp3+RORγt+ Tregs were shown to be highly immunosuppressive, studies in GN also identified pro-inflammatory potential via secretion of IL-17. Many questions regarding this unusual Treg subset remain, including their origin, stability, and mechanisms of action. Further characterization of the renal Treg landscape during GN will help to identify novel immunosuppressive mechanisms and develop successful Treg-directed therapies. In this review, we summarize the currently available data about specialized Treg subsets and discuss their role in GN.
Collapse
Affiliation(s)
- G R Herrnstadt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52., 20246, Hamburg, Germany
| | - O M Steinmetz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52., 20246, Hamburg, Germany.
| |
Collapse
|
12
|
Sakai R, Ito M, Yoshimoto K, Chikuma S, Kurasawa T, Kondo T, Suzuki K, Takeuchi T, Amano K, Yoshimura A. Tocilizumab monotherapy uncovered the role of the CCL22/17-CCR4 + Treg axis during remission of crescentic glomerulonephritis. Clin Transl Immunology 2020; 9:e1203. [PMID: 33163184 PMCID: PMC7596393 DOI: 10.1002/cti2.1203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Tocilizumab (TCZ) is a humanised anti‐interleukin (IL)‐6 receptor (IL‐6R) monoclonal antibody that is a promising agent to treat various autoimmune diseases. However, the mechanism of TCZ efficacy is unclear. This study aims to elucidate the relationship between Tregs and IL‐6R blockade in autoimmunity‐mediated renal disease based on a TCZ‐treated cohort of patients with anti‐neutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV) and in an experimental model of crescentic glomerulonephritis (cGN). Methods We examined multiple serum levels of cytokines and chemokines and peripheral blood mononuclear cells in patients with AAV who received TCZ monotherapy and achieved drug‐free remission. Moreover, we investigated the mechanistic role of IL‐6R blockade in accelerated cGN model to analyse the local sites of inflammation. Results Serum chemokines CCL22 and CCL17, in addition to the CCR4+Foxp3+ Treg population, increased in patients who demonstrated drug‐free remission after the cessation of TCZ. In the cGN model, IL‐6R blockade ameliorated the disease, elevated CCL22/17 in CD206+CD11b+CD11c+ kidney M2‐like type macrophages, and increased the migration of Tregs into the kidney and regional lymph nodes. The local administration of CCL22 in the kidney facilitated Treg accumulation and reduced glomerular crescent formation. Conclusions This study revealed a new mechanism whereby effector Tregs migrate into the inflammatory kidney via the CCL22/17–CCR4 axis that is facilitated by M2‐like type macrophages that are induced by IL‐6R blockade.
Collapse
Affiliation(s)
- Ryota Sakai
- Department of Microbiology and Immunology Keio University School of Medicine Tokyo Japan.,Department of Rheumatology and Clinical Immunology Saitama Medical Center Saitama Medical University Kawagoe Japan
| | - Minako Ito
- Department of Microbiology and Immunology Keio University School of Medicine Tokyo Japan
| | - Keiko Yoshimoto
- Division of Rheumatology Department of Internal Medicine Keio University School of Medicine Tokyo Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology Keio University School of Medicine Tokyo Japan
| | - Takahiko Kurasawa
- Department of Rheumatology and Clinical Immunology Saitama Medical Center Saitama Medical University Kawagoe Japan
| | - Tsuneo Kondo
- Department of Rheumatology and Clinical Immunology Saitama Medical Center Saitama Medical University Kawagoe Japan
| | - Katsuya Suzuki
- Division of Rheumatology Department of Internal Medicine Keio University School of Medicine Tokyo Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology Department of Internal Medicine Keio University School of Medicine Tokyo Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology Saitama Medical Center Saitama Medical University Kawagoe Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology Keio University School of Medicine Tokyo Japan
| |
Collapse
|
13
|
Wang F, Yin J, Lin Y, Zhang F, Liu X, Zhang G, Kong Y, Lu Z, Wu R, Wang N, Xing T, Qian Y. IL-17C has a pathogenic role in kidney ischemia/reperfusion injury. Kidney Int 2020; 97:1219-1229. [DOI: 10.1016/j.kint.2020.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
|
14
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
15
|
Odobasic D, Ruth AJ, Oudin V, Kitching AR, Holdsworth SR. OX40 ligand is inhibitory during the effector phase of crescentic glomerulonephritis. Nephrol Dial Transplant 2019; 34:429-441. [PMID: 29939347 DOI: 10.1093/ndt/gfy177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The functional relevance of OX40 ligand (OX40L) in the effector phase of crescentic glomerulonephritis (GN) is unknown. These studies defined the role of endogenous OX40L during the effector stage of murine crescentic GN. METHODS GN was induced by immunization with sheep globulin/adjuvant on Day 0 and injection of sheep anti-mouse glomerular basement membrane immunoglobulin (Ig) on Day 10. Rat IgG or neutralizing anti-OX40L antibody was administered on Days 10-18 and immune responses and renal injury assessed on Day 20. RESULTS Compared with naïve animals, OX40L was upregulated in the lymph nodes (LNs) and on leucocytes and resident non-immune cells in the kidneys of mice with GN. Inhibition of OX40L in GN augmented renal injury, as indicated by increased crescent formation, proteinuria and glomerular leucocyte accumulation. In line with increased injury, anti-OX40L treatment increased proliferation and decreased apoptosis of CD4 T cells in the LNs, without affecting LN CD4 cytokine production and CD8 T-cell responses. Blockade of OX40L decreased LN regulatory T-cell (Treg) proliferation, transforming growth factor β production and foxp3 expression. OX40L inhibition did not affect B cell expansion or circulating antibody levels. In the kidney, neutralization of OX40L augmented interferon γ (IFNγ) expression by CD4 and CD8 T cells and shifted macrophage polarization towards the pro-inflammatory M1 phenotype. CONCLUSIONS OX40L is protective during the effector phase of murine crescentic GN by reducing the expansion of CD4 T cells and enhancing Treg responses in the LNs, and by locally inhibiting T-cell IFNγ production and pro-inflammatory macrophage phenotype in the kidney.
Collapse
Affiliation(s)
- Dragana Odobasic
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Amanda J Ruth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Virginie Oudin
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Shi Y, Jia XY, Gu QH, Wang M, Cui Z, Zhao MH. A Modified Peptide Derived from Goodpasture Autoantigen Arrested and Attenuated Kidney Injuries in a Rat Model of Anti-GBM Glomerulonephritis. J Am Soc Nephrol 2019; 31:40-53. [PMID: 31666297 DOI: 10.1681/asn.2019010067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In Goodpasture disease, the noncollagenous domain 1 of the α3 chain (α3NC1) of type IV collagen is the main target antigen of antibodies against glomerular basement membrane (GBM). We previously identified a nephritogenic epitope, P14 (α3127-148), that could induce crescentic nephritis in WKY rats, and defined its core motif. Designing a modified peptide, replacing critical pathogenic residues with nonpathogenic ones (on the basis of homologous regions in α1NC1 chain of type IV collagen, known to be nonpathogenic), might provide a therapeutic option for anti-GBM GN. METHODS We synthesized a modified peptide, replacing a single amino acid, and injected it into α3-P14-immunized rats from day 0 (the early-treatment group) or a later-treatment group (from days 17 to 21). A scrambled peptide administrated with the same protocol served as a control. RESULTS The modified peptide, but not the scrambled peptide, attenuated anti-GBM GN in both treatment groups, and halted further crescent formation even after disease onset. Kidneys from the modified peptide-treated rats exhibited reductions in IgG deposits, complement activation, and infiltration by T cells and macrophages. Treatment also resulted in an anti-inflammatory cytokine profile versus a proinflammatory profile for animals not receiving the modified peptide; it also reduced α3-P14-specific T cell activation, modulated T cell differentiation by decreasing Th17 cells and enhancing the ratio of Treg/Th17 cells, and inhibited binding of α3-P14 to antibodies and MHC II molecules. CONCLUSIONS A modified peptide involving alteration of a critical motif in a nephritogenic T cell epitope alleviated anti-GBM GN in a rat model. Our findings may provide insights into an immunotherapeutic approach for autoimmune kidney disorders such as Goodpasture disease.
Collapse
Affiliation(s)
- Yue Shi
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Qiu-Hua Gu
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Miao Wang
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; .,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; and.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
17
|
Zhang W, Zhangyuan G, Wang F, Zhang H, Yu D, Wang J, Jin K, Yu W, Liu Y, Sun B. High preoperative serum globulin in hepatocellular carcinoma is a risk factor for poor survival. J Cancer 2019; 10:3494-3500. [PMID: 31293654 PMCID: PMC6603401 DOI: 10.7150/jca.29499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Serum globulin (GLB), albumin (ALB) and albumin/globulin ratio (AGR) have been reported as prognosis related factors for certain malignancies; however, the prognostic value of globulin (GLB) in hepatocellular carcinoma (HCC) has rarely been studied. This study was performed to evaluate whether GLB analysis could be applied for the prediction of the prognosis of patients received liver resection. Methods: A training cohort study involving 210 HCC patients undergoing curative liver resection between January 2007 and December 2012, and a validation cohort involving 100 HCC patients contemporaneously undergoing curative liver resection in another set were recruited. The survival curves were graphed and log-rank test was performed to analyze the differences between the curves. The cutoff value was selected by X-title program. Results: Univariate and multivariate analysis indicated that high serum GLB level is a risk factor for poor cancer-specific survival (CSS) (P < 0.05). Conversely, high ALB level is a prediction for favor CSS (P = 0.010). Conclusions: We identified the preoperative high GLB level as a prognostic risk factor for patients after treatment of liver cancer resection. This easily obtained variable may act as an available clinical biomarker to predict the prognosis of such patients.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Guangyan Zhangyuan
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Decai Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
| | - Jincheng Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Kangpeng Jin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210029, Jiangsu Province, P.R.China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R.China
| |
Collapse
|
18
|
Klinge S, Yan K, Reimers D, Brede KM, Schmid J, Paust HJ, Krebs CF, Panzer U, Hopfer H, Mittrücker HW. Role of regulatory T cells in experimental autoimmune glomerulonephritis. Am J Physiol Renal Physiol 2019; 316:F572-F581. [PMID: 30648909 DOI: 10.1152/ajprenal.00558.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anti-glomerular basement membrane (anti-GBM) disease is characterized by antibodies and T cells directed against the Goodpasture antigen, the noncollagenous domain of the α3-chain of type IV collagen [α3(IV)NC1] of the GBM. Consequences are the deposition of autoantibodies along the GBM and the development of crescentic glomerulonephritis (GN) with rapid loss of renal function. Forkhead box protein P3 (Foxp3)+ regulatory T (Treg) cells are crucial for the maintenance of peripheral tolerance to self-antigens and the prevention of immunopathology. Here, we use the mouse model of experimental autoimmune GN to characterize the role of Treg cells in anti-GBM disease. Immunization of DBA/1 mice with α3(IV)NC1 induced the formation of α3(IV)NC1-specific T cells and antibodies and, after 8-10 wk, the development of crescentic GN. Immunization resulted in increased frequencies of peripheral Treg cells and renal accumulation of these cells in the stage of acute GN. Depletion of Treg cells during immunization led to enhanced generation of α3(IV)NC1-specific antibodies and T cells and to aggravated GN. In contrast, depletion or expansion of the Treg cell population in mice with established autoimmunity had only minor consequences for renal inflammation and did not alter the severity of GN. In conclusion, our results indicate that in anti-GBM disease, Treg cells restrict the induction of autoimmunity against α3(IV)NC1. However, Treg cells are inefficient in preventing crescentic GN after autoimmunity has been established.
Collapse
Affiliation(s)
- Stefanie Klinge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Karsten Yan
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Daniel Reimers
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Karen-Maria Brede
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Joanna Schmid
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Hans-Joachim Paust
- Section of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christian F Krebs
- Section of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Ulf Panzer
- Section of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Hopfer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
19
|
Alikhan MA, Huynh M, Kitching AR, Ooi JD. Regulatory T cells in renal disease. Clin Transl Immunology 2018; 7:e1004. [PMID: 29484182 PMCID: PMC5822411 DOI: 10.1002/cti2.1004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The kidney is vulnerable to injury, both acute and chronic from a variety of immune and metabolic insults, all of which at least to some degree involve inflammation. Regulatory T cells modulate systemic autoimmune and allogenic responses in glomerulonephritis and transplantation. Intrarenal regulatory T cells (Tregs), including those recruited to the kidney, have suppressive effects on both adaptive and innate immune cells, and probably also intrinsic kidney cells. Evidence from autoimmune glomerulonephritis implicates antigen-specific Tregs in HLA-mediated dominant protection, while in several human renal diseases Tregs are abnormal in number or phenotype. Experimentally, Tregs can protect the kidney from injury in a variety of renal diseases. Mechanisms of Treg recruitment to the kidney include via the chemokine receptors CCR6 and CXCR3 and potentially, at least in innate injury TLR9. The effects of Tregs may be context dependent, with evidence for roles for immunoregulatory roles both for endogenous Tbet-expressing Tregs and STAT-3-expressing Tregs in experimental glomerulonephritis. Most experimental work and some of the ongoing human trials in renal transplantation have focussed on unfractionated thymically derived Tregs (tTregs). However, induced Tregs (iTregs), type 1 regulatory T (Tr1) cells and in particular antigen-specific Tregs also have therapeutic potential not only in renal transplantation, but also in other kidney diseases.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - Megan Huynh
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia.,Department of Nephrology Monash Health Clayton VIC Australia.,Department of Paediatric Nephrology Monash Health Clayton VIC Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| |
Collapse
|
20
|
Krebs CF, Panzer U. Plasticity and heterogeneity of Th17 in immune-mediated kidney diseases. J Autoimmun 2017; 87:61-68. [PMID: 29275837 DOI: 10.1016/j.jaut.2017.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Anti-neutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis, anti-glomerular basement membrane (GBM) glomerulonephritis and lupus nephritis are the most common causes of rapid progressive glomerulonephritis (RPGN) in the Western world. These aggressive forms of autoimmune kidney diseases significantly contribute to end-stage renal disease and are associated with high morbidity and mortality. Moreover, patients show significant heterogeneity with respect to clinical outcome and response to therapy. T cell infiltration is a morphological hallmark of RPGN and it is a critical driver of kidney injury. Different CD4+ T cell subsets that are endowed with distinct regulatory and effector functions are involved in this detrimental inflammatory process. In particular, the identification and functional characterization of IL-17-expressing CD4+ Th17 cells have substantially advanced our understanding of organ-specific autoimmunity. In experimental models of crescentic and proliferative GN, including ANCA-associated GN, anti-GBM-GN and lupus nephritis, the Th17/IL-17 axis significantly contributes to renal tissue damage. In patients with ANCA-associated GN or lupus nephritis, IL-17 serum levels correlated with disease activity. Moreover, Th17 cells are present in the kidneys of these patients and represents a topic of intense ongoing clinical and basic research. Importantly, recent studies have challenged the view of CD4+ T cells subsets as terminally differentiated homogenous cells, showing that T cells, in particular Th17 cells, are much more flexible and heterogeneous than previously thought. However, analysis of Th17 cell fate in mouse models of autoimmune kidney disease revealed a high degree of stability within these cells, an observation that is in contrast to Th17 cells in other models of autoimmune diseases including experimental autoimmune encephalomyelitis. Interestingly, anti-CD3 treatment interferes with stable Th17 cells and induces a potential regulatory phenotype in Th17 cells, highlighting the therapeutic potential of targeting pathogenic Th17 cells in autoimmunity. In this review, we discuss the current knowledge of Th17 cell plasticity and heterogeneity in autoimmune kidney diseases with a special focus on the underlying mechanisms of this process and debate if Th17 cell plasticity is beneficial or harmful to renal inflammation.
Collapse
Affiliation(s)
- Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
21
|
Wang YM, Zhang GY, Wang Y, Hu M, Zhou JJ, Sawyer A, Cao Q, Wang Y, Zheng G, Lee VWS, Harris DCH, Alexander SI. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice. Clin Exp Immunol 2017; 188:195-207. [PMID: 28152566 PMCID: PMC5383436 DOI: 10.1111/cei.12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 02/02/2023] Open
Abstract
Regulatory T cells (Tregs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting Tregs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim-/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim-/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after Treg depletion in Bim-/- mice. This study demonstrates that transient depletion of Tregs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice.
Collapse
Affiliation(s)
- Y. M. Wang
- Centre for Kidney ResearchThe Children's Hospital at WestmeadWestmeadNSWAustralia
| | - G. Y. Zhang
- Centre for Kidney ResearchThe Children's Hospital at WestmeadWestmeadNSWAustralia
| | - Y. Wang
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - M. Hu
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - J. J. Zhou
- Centre for Kidney ResearchThe Children's Hospital at WestmeadWestmeadNSWAustralia
| | - A. Sawyer
- Centre for Kidney ResearchThe Children's Hospital at WestmeadWestmeadNSWAustralia
| | - Q. Cao
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - Y. Wang
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - G. Zheng
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - V. W. S. Lee
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - D. C. H. Harris
- Centre for Transplantation and Renal ResearchUniversity of Sydney at Westmead Millennium InstituteWestmeadNSWAustralia
| | - S. I. Alexander
- Centre for Kidney ResearchThe Children's Hospital at WestmeadWestmeadNSWAustralia
| |
Collapse
|
22
|
Ghali JR, Wang YM, Holdsworth SR, Kitching AR. Regulatory T cells in immune-mediated renal disease. Nephrology (Carlton) 2016. [PMID: 26206106 DOI: 10.1111/nep.12574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are CD4+ T cells that can suppress immune responses by effector T cells, B cells and innate immune cells. This review discusses the role that Tregs play in murine models of immune-mediated renal diseases and acute kidney injury and in human autoimmune kidney disease (such as systemic lupus erythematosus, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated vasculitis). Current research suggests that Tregs may be reduced in number and/or have impaired regulatory function in these diseases. Tregs possess several mechanisms by which they can limit renal and systemic inflammatory immune responses. Potential therapeutic applications involving Tregs include in vivo induction of Tregs or inducing Tregs from naïve CD4+ T cells or expanding natural Tregs ex vivo, to use as a cellular therapy. At present, the optimal method of generating a phenotypically stable pool of Tregs with long-lasting suppressive effects is not established, but human studies in renal transplantation are underway exploring the therapeutic potential of Tregs as a cellular therapy, and if successful may have a role as a novel therapy in immune-mediated renal diseases.
Collapse
Affiliation(s)
- Joanna R Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria.,Department of Paediatric Nephrology, Monash Medical Centre, Melbourne, Victoria
| |
Collapse
|
23
|
CD4 + T Cell Fate in Glomerulonephritis: A Tale of Th1, Th17, and Novel Treg Subtypes. Mediators Inflamm 2016; 2016:5393894. [PMID: 27974866 PMCID: PMC5126430 DOI: 10.1155/2016/5393894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple studies have identified CD4+ T cells as central players of glomerulonephritis (GN). Cells of the Th1 and Th17 responses cause renal tissue damage, while Tregs mediate protection. Recently, a high degree of plasticity among these T cell lineages was proposed. During inflammation, Th17 cells were shown to have the potential of transdifferentiation into Th1, Th2, or alternatively anti-inflammatory Tr1 cells. Currently available data from studies in GN, however, do not indicate relevant Th17 to Th1 or Th2 conversion, leaving the Th17 cell fate enigmatic. Tregs, on the other hand, were speculated to transdifferentiate into Th17 cells. Again, data from GN do not support this concept. Rather, it seems that previously unrecognized subspecialized effector Treg lineages exist. These include Th1 specific Treg1 as well as Th17 directed Treg17 cells. Furthermore, a bifunctional Treg subpopulation was recently identified in GN, which secrets IL-17 and coexpresses Foxp3 together with the Th17 characteristic transcription factor RORγt. Similarities between these different and highly specialized effector Treg subpopulations with the corresponding T helper effector cell lineages might have resulted in previous misinterpretation as Treg transdifferentiation. In summary, Th17 cells have a relatively stable phenotype during GN, while, in the case of Tregs, currently available data suggest lineage heterogeneity rather than plasticity.
Collapse
|
24
|
Transfusion of CD206 + M2 Macrophages Ameliorates Antibody-Mediated Glomerulonephritis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3176-3188. [PMID: 27855848 DOI: 10.1016/j.ajpath.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 01/04/2023]
Abstract
Macrophages are multifunctional immune cells that may either drive or modulate disease pathogenesis, depending on the activated phenotype. In this study, we investigated the protective effects of CD206+ M2 macrophages against nephrotoxic serum nephritis in mice. We found that these immunosuppressive macrophages, derived from bone marrow and stimulated with IL-4/IL-13 [CD206+ M2 bone marrow-derived macrophages (M2BMMs)], protected against renal injury, decreased proteinuria, and diminished the infiltration of CD68+ macrophages, neutrophils, and T cells into glomerular tissue. Comparable therapeutic results were obtained with CD206+ M2 cells derived from induced pluripotent stem cells. Notably, CD206+ M2BMMs, which retained an M2 signature, could elicit a switch of M1 to M2 phenotype in co-cultured macrophages. Moreover, these cells were found to induce the production of regulatory T cells in the spleen and renal draining lymph node. Accordingly, mRNA expression of the T helper 1 cytokines tumor necrosis factor-α, interferon-β, interferon-γ, and IL-12 was significantly reduced in kidneys from mice treated with CD206+ M2BMMs. Taken together, the data suggest that CD206+ M2 may have therapeutic potential against antibody-mediated glomerular injury and presents its therapeutic value for the treatment of crescentic nephritis in humans.
Collapse
|
25
|
Ghali JR, Alikhan MA, Holdsworth SR, Kitching AR. Induced regulatory T cells are phenotypically unstable and do not protect mice from rapidly progressive glomerulonephritis. Immunology 2016; 150:100-114. [PMID: 27606831 DOI: 10.1111/imm.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are a suppressive CD4+ T-cell subset. We generated induced Treg (iTreg) cells and explored their therapeutic potential in a murine model of rapidly progressive glomerulonephritis. Polyclonal naive CD4+ T cells were cultured in vitro with interleukin-2 (IL-2), transforming growth factor-β1, all-trans-retinoic acid and monoclonal antibodies against interferon-γ and IL-4, generating Foxp3+ iTreg cells. To enhance their suppressive phenotype, iTreg cultures were modified with the addition of a monoclonal antibody against IL-12p40 or by using RORγt-/- CD4+ T cells. Induced Treg cells were transferred into models of delayed-type hypersensitivity and experimental glomerulonephritis. The iTreg cells exhibited comparable surface receptor expression and in vitro suppressive ability to natural Treg cells, but did not regulate antigen-specific delayed-type hypersensitivity or systemic inflammatory immune responses, losing Foxp3 expression in vivo. In glomerulonephritis, transferred iTreg cells did not prevent renal injury or modulate systemic T helper type 1 immune responses. Induced Treg cells cultured with anti-IL-12p40 had an enhanced suppressive phenotype in vitro and regulated dermal delayed-type hypersensitivity in vivo, but were not protective against renal injury, losing Foxp3 expression, especially in the transferred cells recruited to the kidney. Use of RORγt-/- CD4+ T cells or iTreg cells generated from sensitized CD4+ Foxp3- cells did not regulate renal or systemic inflammatory responses in vivo. In conclusion, iTreg cells suppress T-cell proliferation in vitro, but do not regulate experimental glomerulonephritis, being unstable in this inflammatory milieu in vivo.
Collapse
Affiliation(s)
- Joanna R Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Abstract
Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others. In addition to those cells intrinsic to the glomerulus, leukocytes patrol the glomerulus in health and mediate injury in disease. Distinct leukocyte types and subsets are present, with some being involved in different ways in an individual glomerular disease. Cells of the innate and adaptive immune systems are important, directing systemic immune and inflammatory responses, locally mediating injury, and potentially dampening inflammation and facilitating repair. The advent of new genetic and molecular techniques, and new disease models means that we better understand both the basic biology of the glomerulus and the pathogenesis of glomerular disease. This understanding should lead to better diagnostic techniques, biomarkers, and predictors of prognosis, disease severity, and relapse. With this knowledge comes the promise of better therapies in the future, directed toward halting pathways of injury and fibrosis, or interrupting the underlying pathophysiology of the individual diseases that lead to significant and progressive glomerular disease.
Collapse
Affiliation(s)
- A. Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, and
- Department of Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Holly L. Hutton
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, and
| |
Collapse
|
27
|
Hu M, Wang YM, Wang Y, Zhang GY, Zheng G, Yi S, O'Connell PJ, Harris DCH, Alexander SI. Regulatory T cells in kidney disease and transplantation. Kidney Int 2016; 90:502-514. [PMID: 27263492 DOI: 10.1016/j.kint.2016.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/06/2016] [Accepted: 03/17/2016] [Indexed: 01/03/2023]
Abstract
Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
28
|
Gotot J, Piotrowski E, Otte MS, Tittel AP, Linlin G, Yao C, Ziegelbauer K, Panzer U, Garbi N, Kurts C, Thaiss F. Inhibitor of NFκB Kinase Subunit 2 Blockade Hinders the Initiation but Aggravates the Progression of Crescentic GN. J Am Soc Nephrol 2016; 27:1917-24. [PMID: 26574045 PMCID: PMC4926984 DOI: 10.1681/asn.2015060699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
The NFκB transcription factor family facilitates the activation of dendritic cells (DCs) and CD4(+) T helper (Th) cells, which are important for protective adaptive immunity. Inappropriate activation of these immune cells may cause inflammatory disease, and NFκB inhibitors are promising anti-inflammatory drug candidates. Here, we investigated whether inhibiting the NFκB-inducing kinase IKK2 can attenuate crescentic GN, a severe DC- and Th cell-dependent kidney inflammatory disease. Prophylactic pharmacologic IKK2 inhibition reduced DC and Th cell activation and ameliorated nephrotoxic serum-induced GN in mice. However, therapeutic IKK2 inhibition during ongoing disease aggravated the nephritogenic immune response and disease symptoms. This effect resulted from the renal loss of regulatory T cells, which have been shown to protect against crescentic GN and which require IKK2. In conclusion, although IKK2 inhibition can suppress the induction of nephritogenic immune responses in vivo, it may aggravate such responses in clinically relevant situations, because it also impairs regulatory T cells and thereby, unleashes preexisting nephritogenic responses. Our findings argue against using IKK2 inhibitors in chronic GN and perhaps, other immune-mediated diseases.
Collapse
Affiliation(s)
- Janine Gotot
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Eveline Piotrowski
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Martin S Otte
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne Germany; and
| | - André P Tittel
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Guo Linlin
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Chen Yao
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Karl Ziegelbauer
- Global Drug Discovery, TRG Oncology/GT, Bayer Pharma AG, Berlin, Germany
| | - Ulf Panzer
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany;
| | - Friedrich Thaiss
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany;
| |
Collapse
|
29
|
Dickinson BL. Unraveling the immunopathogenesis of glomerular disease. Clin Immunol 2016; 169:89-97. [PMID: 27373970 DOI: 10.1016/j.clim.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023]
Abstract
Immune-mediated damage to glomerular structures is largely responsible for the pathology associated with the majority of glomerular diseases. Therefore, a detailed understanding of the basic immune mechanisms responsible for glomerular damage is needed to inform the design of novel intervention strategies. Glomerular injury of immune origin is complex and involves both inflammatory and non-inflammatory processes driven by elements of the innate and adaptive immune system. This review summarizes the basic immune mechanisms that cause glomerular injury leading to the nephritic and nephrotic syndromes. A major focus of the review is to highlight the mechanisms by which antibodies cause glomerular injury through their interactions with glomerular cells, complement proteins, phagocytes bearing complement and Fcγ receptors, and dendritic cells expressing the neonatal receptor for IgG, FcRn.
Collapse
Affiliation(s)
- Bonny L Dickinson
- Department of Biomedical Science, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, United States.
| |
Collapse
|
30
|
Pretransplant Recipient Circulating CD4+CD127lo/- Tumor Necrosis Factor Receptor 2+ Regulatory T Cells: A Surrogate of Regulatory T Cell-Suppressive Function and Predictor of Delayed and Slow Graft Function After Kidney Transplantation. Transplantation 2016; 100:314-24. [PMID: 26425877 DOI: 10.1097/tp.0000000000000942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delayed graft function (DGF) and slow graft function (SGF) are ischemia-reperfusion-associated acute kidney injuries (AKI) that decrease long-term graft survival after kidney transplantation. Regulatory T (Treg) cells are protective in murine AKI, and their suppressive function predictive of AKI in kidney transplantation. The conventional Treg cell function coculture assay is however time-consuming and labor intensive. We sought a simpler alternative to measure Treg cell function and predict AKI. METHODS In this prospective observational cohort study, pretransplant recipient circulating CD4+CD25+CD127lo/- and CD4+CD127lo/- tumor necrosis factor receptor 2 (TNFR2)+ Treg cells were measured by flow cytometry in 76 deceased donor kidney transplant recipients (DGF, n = 18; SGF, n = 34; immediate graft function [IGF], n = 24). In a subset of 37 recipients, pretransplant circulating Treg cell-suppressive function was also quantified by measuring the suppression of autologous effector T-cell proliferation by Treg cell in coculture. RESULTS The TNFR2+ expression on CD4+CD127lo/- T cells correlated with Treg cell-suppressive function (r = 0.63, P < 0.01). In receiver operating characteristic curves, percentage and absolute number of CD4+CD127lo/-TNFR2+ Treg cell predicted DGF from non-DGF (IGF + SGF) with area under the curves of 0.75 and 0.77, respectively, and also AKI (DGF + SGF) from IGF with area under the curves of 0.76 and 0.72, respectively (P < 0.01). Prediction of AKI (DGF + SGF) from IGF remained significant in multivariate logistic regression accounting for cold ischemic time, donor age, previous transplant, and pretransplant dialysis modality. CONCLUSIONS Pretransplant recipient circulating CD4+CD127lo/-TNFR2+ Treg cell is potentially a simpler alternative to Treg cell function as a pretransplant recipient immune marker for AKI (DGF + SGF), independent from donor and organ procurement characteristics.
Collapse
|
31
|
Hu SY, Jia XY, Li JN, Zheng X, Ao J, Liu G, Cui Z, Zhao MH. T cell infiltration is associated with kidney injury in patients with anti-glomerular basement membrane disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1282-1289. [PMID: 27080546 DOI: 10.1007/s11427-016-5030-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Cell-mediated autoimmunity, particularly that involving autoreactive T cells, participates in mediating anti-glomerular basement membrane (GBM) disease. However, direct kidney injury mediated by renal infiltrated T cells has not been clearly elucidated in humans. The T cell profile (CD3, CD4, CD8, IL-17, and foxp3) and macrophage (CD68) were examined by immunohistochemistry on renal biopsy tissues from 13 patients with anti-GBM disease. The correlation between cell infiltration and clinical data was also analyzed. We found that the distribution of T cell infiltration was predominant in the peri-glomerular and interstitial areas. CD3+ T cell infiltratrion around the glomeruli with cellular crescent formations was significantly higher than that around the glomeruli with mild mesangial proliferation. CD8+ T cells significantly accumulated around the glomeruli with cellular crescents without IgG deposits compared to those with IgG deposits. The prevalence of infiltrating CD8+ T cells was correlated with the percentage of ruptured Bowman's capsules. In conclusion, cellular immunity may play a crucial role in the inflammatory kidney injury in anti-GBM patients. The periglomerular infiltration of T cells, especially CD8+ T cells, may participate in the pathogenic mechanism of glomerular damage.
Collapse
Affiliation(s)
- Shui-Yi Hu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiao-Yu Jia
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Jian-Nan Li
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Xin Zheng
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Jie Ao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Gang Liu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Zhao Cui
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| |
Collapse
|
32
|
Evers BDG, Engel DR, Böhner AMC, Tittel AP, Krause TA, Heuser C, Garbi N, Kastenmüller W, Mack M, Tiegs G, Panzer U, Boor P, Ludwig-Portugall I, Kurts C. CD103+ Kidney Dendritic Cells Protect against Crescentic GN by Maintaining IL-10-Producing Regulatory T Cells. J Am Soc Nephrol 2016; 27:3368-3382. [PMID: 27036736 DOI: 10.1681/asn.2015080873] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023] Open
Abstract
Kidney dendritic cells (DCs) regulate nephritogenic T cell responses. Most kidney DCs belong to the CD11b+ subset and promote crescentic GN (cGN). The function of the CD103+ subset, which represents <5% of kidney DCs, is poorly understood. We studied the role of CD103+ DCs in cGN using several lines of genetically modified mice that allowed us to reduce the number of these cells. In all lines, we detected a reduction of FoxP3+ intrarenal regulatory T cells (Tregs), which protect against cGN. Mice lacking the transcription factor Batf3 had a more profound reduction of CD103+ DCs and Tregs than did the other lines used, and showed the most profound aggravation of cGN. The conditional reduction of CD103+ DC numbers by 50% in Langerin-DTR mice halved Treg numbers, which did not suffice to significantly aggravate cGN. Mice lacking the cytokine Flt3L had fewer CD103+ DCs and Tregs than Langerin-DTR mice but exhibited milder cGN than did Batf3-/- mice presumably because proinflammatory CD11b+ DCs were somewhat depleted as well. Conversely, Flt3L supplementation increased the number of CD103+ DCs and Tregs, but also of proinflammatory CD11b+ DCs. On antibody-mediated removal of CD11b+ DCs, Flt3L supplementation ameliorated cGN. Mechanistically, CD103+ DCs caused cocultured T cells to differentiate into Tregs and produced the chemokine CCL20, which is known to attract Tregs into the kidney. Our findings show that CD103+ DCs foster intrarenal FoxP3+ Treg accumulation, thereby antagonizing proinflammatory CD11b+ DCs. Thus, increasing CD103+ DC numbers or functionality might be advantageous in cGN.
Collapse
Affiliation(s)
- Beatrix D G Evers
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Daniel R Engel
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany.,Institute for Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Alexander M C Böhner
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - André P Tittel
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Torsten A Krause
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Christoph Heuser
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Wolfgang Kastenmüller
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Matthias Mack
- Department of Internal Medicine II and Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology and
| | - Ulf Panzer
- III Clinic of Nephrology, University Clinic Eppendorf, Hamburg, Germany; and
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany;
| |
Collapse
|
33
|
Silva-Filho JL, Peruchetti DB, Moraes-Santos F, Landgraf SS, Silva LS, Sirtoli GM, Zamith-Miranda D, Takiya CM, Pinheiro AAS, Diaz BL, Caruso-Neves C. Group V Secretory Phospholipase A2 Is Involved in Tubular Integrity and Sodium Handling in the Kidney. PLoS One 2016; 11:e0147785. [PMID: 26820468 PMCID: PMC4731149 DOI: 10.1371/journal.pone.0147785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 01/08/2023] Open
Abstract
Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5−/−) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5−/− mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5−/− mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5−/− mice. The increased FENa+ observed in Pla2g5−/− mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5−/− mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity.
Collapse
Affiliation(s)
- João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Moraes-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sharon Schilling Landgraf
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Leandro Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriela Modenesi Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Zamith-Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
| | - Bruno Lourenço Diaz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
34
|
Ernandez T, Mayadas TN. The Changing Landscape of Renal Inflammation. Trends Mol Med 2016; 22:151-163. [PMID: 26778189 DOI: 10.1016/j.molmed.2015.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Kidney inflammation is a major contributor to progressive renal injury, leading to glomerulonephritis (GN) and chronic kidney disease. We review recent advances in our understanding of leukocyte accumulation in the kidney, emphasizing key chemokines involved in GN. We discuss features of renal inflammation such as the evolving concept of immune cell plasticity. We also describe certain aspects of organ-specific tissue microenvironments in shaping immune cell responses, as well as the current knowledge of how regulatory T lymphocytes impact on other immune effector cell populations to control inflammation. It is clear that present and future research in these areas may contribute to the development of novel targeted therapeutics, with the hope of alleviating the burden of end-stage renal disease (ESRD).
Collapse
Affiliation(s)
- Thomas Ernandez
- Service of Nephrology, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Tanya Norton Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Paust HJ, Riedel JH, Krebs CF, Turner JE, Brix SR, Krohn S, Velden J, Wiech T, Kaffke A, Peters A, Bennstein SB, Kapffer S, Meyer-Schwesinger C, Wegscheid C, Tiegs G, Thaiss F, Mittrücker HW, Steinmetz OM, Stahl RAK, Panzer U. CXCR3+ Regulatory T Cells Control TH1 Responses in Crescentic GN. J Am Soc Nephrol 2015; 27:1933-42. [PMID: 26534920 DOI: 10.1681/asn.2015020203] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Chemokines and chemokine receptors are implicated in regulatory T cell (Treg) trafficking to sites of inflammation and suppression of excessive immune responses in inflammatory and autoimmune diseases; however, the specific requirements for Treg migration into the inflamed organs and the positioning of these cells within the tissue are incompletely understood. Here, we report that Tregs expressing the TH1-associated chemokine receptor CXCR3 are enriched in the kidneys of patients with ANCA-associated crescentic GN and colocalize with CXCR3(+) effector T cells. To investigate the functional role of CXCR3(+) Tregs, we generated mice that lack CXCR3 in Tregs specifically (Foxp3(eGFP-Cre) × Cxcr3(fl/fl)) and induced experimental crescentic GN. Treg-specific deletion of CXCR3 resulted in reduced Treg recruitment to the kidney and an overwhelming TH1 immune response, with an aggravated course of the nephritis that was reversible on anti-IFNγ treatment. Together, these findings show that a subset of Tregs expresses CXCR3 and thereby, acquires trafficking properties of pathogenic CXCR3(+) TH1 cells, allowing Treg localization and control of excessive TH1 responses at sites of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gisa Tiegs
- Institut für Experimentelle Immunologie und Hepatologie, and
| | | | | | | | | | | |
Collapse
|
36
|
Kluger MA, Meyer MC, Nosko A, Goerke B, Luig M, Wegscheid C, Tiegs G, Stahl RAK, Panzer U, Steinmetz OM. RORγt(+)Foxp3(+) Cells are an Independent Bifunctional Regulatory T Cell Lineage and Mediate Crescentic GN. J Am Soc Nephrol 2015; 27:454-65. [PMID: 26054541 DOI: 10.1681/asn.2014090880] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Cells expressing both the regulatory T cell (Treg)-inducing transcription factor Foxp3 and the Th17 transcription factor RORγt have been identified (biTregs). It is unclear whether RORγt(+)Foxp3(+) biTregs belong to the Th17-specific Treg17 cells, represent intermediates during Treg/Th17 transdifferentiation, or constitute a distinct cell lineage. Because the role of biTregs in inflammatory renal disease is also unknown, we studied these cells in the nephrotoxic nephritis (NTN) model of acute crescentic GN. Induction of NTN resulted in rapid renal and systemic expansion of biTregs. Notably, analyses of the biTreg expression profile revealed production of both anti-inflammatory (IL-10, IL-35) and proinflammatory (IL-17) cytokines. Additionally, biTregs expressed a signature of surface molecules and transcription factors distinct from those of Th17 cells and conventional Tregs (cTregs), and biTregs were identified in Treg17-deficient mice. Finally, fate reporter and cell transfer studies confirmed that biTregs are not Treg/Th17 transdifferentiating cells. Therapeutic transfer of biTregs suppressed the development of nephritis to an extent similar to that observed with transferred cTregs, but in vitro studies indicated different mechanisms of immunosuppression for biTregs and cTregs. Intriguingely, as predicted from their cytokine profile, endogenous biTregs displayed additional proinflammatory functions in NTN that were abrogated by cell-specific deletion of RORγt. In summary, we provide evidence that RORγt(+)Foxp3(+) biTregs are a novel and independent bifunctional regulatory T cell lineage distinct from cTregs, Treg17 cells, and Th17 cells. Furthermore, biTregs appear to contribute to crescentic GN and hence may be novel therapeutic targets.
Collapse
Affiliation(s)
- Malte A Kluger
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Matthias C Meyer
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Anna Nosko
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Boeren Goerke
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Michael Luig
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Claudia Wegscheid
- Institute of Experimental Immunology and Hepatology, University Hospital Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Hospital Eppendorf, Hamburg, Germany
| | - Rolf A K Stahl
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Ulf Panzer
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| | - Oliver M Steinmetz
- III. Medical Clinic, University Hospital Eppendorf, Hamburg, Germany; and
| |
Collapse
|
37
|
Kim H, Lee H, Lee G, Jang H, Kim SS, Yoon H, Kang GH, Hwang DS, Kim SK, Chung HS, Bae H. Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor. Kidney Int 2015; 88:550-9. [PMID: 25993317 DOI: 10.1038/ki.2015.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022]
Abstract
Previously, we found that Foxp3-expressing CD4(+) regulatory T (Treg) cells attenuate cisplatin-induced acute kidney injury in mice and that bee venom and its constituent phospholipase A2 (PLA2) are capable of modulating Treg cells. Here we tested whether PLA2 could inhibit cisplatin-induced acute kidney injury. As a result of treatment with PLA2, the population of Treg cells was significantly increased, both in vivo and in vitro. PLA2-injected mice showed reduced levels of serum creatinine, blood urea nitrogen, renal tissue damage, and pro-inflammatory cytokine production upon cisplatin administration. These renoprotective effects were abolished by depletion of Treg cells. Furthermore, PLA2 bound to CD206 mannose receptors on dendritic cells, essential for the PLA2-mediated protective effects on renal dysfunction. Interestingly, PLA2 treatment increased the secretion of IL-10 in the kidney from normal mice. Foxp3(+)IL-10(+) cells and CD11c(+)IL-10(+) cells were increased by PLA2 treatment. The anticancer effects of repeated administrations of a low dose of cisplatin were not affected by PLA2 treatment in a tumor-bearing model. Thus, PLA2 may prevent inflammatory responses in cisplatin-induced acute kidney injury by modulating Treg cells and IL-10 through the CD206 mannose receptor.
Collapse
Affiliation(s)
- Hyunseong Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Hyunil Jang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Sung-Su Kim
- Soram Korean Medicine Hospital, Gangnam-gu, Seoul, Republic of Korea
| | - Heera Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Geun-Hyung Kang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Deok-Sang Hwang
- Department of Obstetrics and Gynecology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Hwan-Suck Chung
- Cancer Preventive Material Development Research Center, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon-gu, Seoul, Republic of Korea
| |
Collapse
|
38
|
Ghali JR, O’Sullivan KM, Eggenhuizen PJ, Holdsworth SR, Kitching AR. FMS-like tyrosine kinase 3 ligand treatment does not ameliorate experimental rapidly progressive glomerulonephritis. PLoS One 2015; 10:e0123118. [PMID: 25849330 PMCID: PMC4388844 DOI: 10.1371/journal.pone.0123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/18/2015] [Indexed: 11/27/2022] Open
Abstract
Fms-like tyrosine kinase 3-ligand (FL) is a growth factor that may expand dendritic cell and regulatory T cell populations. We hypothesised that FL-induced regulatory T cells would protect mice from experimental rapidly progressive glomerulonephritis. To determine if FL was able to enhance regulatory T cell populations, C57BL/6 mice received 10 days of daily intraperitoneal injections of either FL or phosphate buffered saline. To induce accelerated autologous-phase anti-mouse glomerular basement membrane glomerulonephritis, mice were sensitized to sheep globulin 4 days prior to the induction of glomerulonephritis with sheep anti-mouse glomerular basement membrane globulin, and experiments ended 10 days later. FL was administered before, throughout and during the sensitization phase of this glomerulonephritis model. Renal disease and systemic immunity to the nephritogenic antigen were assessed. FL increased regulatory T cell and plasmacytoid dendritic cell proportions within spleen and lymph nodes. FL administration prior to glomerulonephritis did not protect mice from renal injury. When FL was given throughout the model, FL treated mice had reduced survival, with more interstitial neutrophils and glomerular CD11c+ cells than controls. Systemic immune responses showed increased IL-17A production from splenocytes, with more CD11c+ cells, but reduced plasmacytoid dendritic cell proportions in spleen and lymph nodes, despite increased regulatory T cell proportions. Under homeostatic conditions, FL expanded regulatory T cell and plasmacytoid dendritic cell populations, but FL enhanced systemic inflammatory responses and conventional dendritic cell populations when given during experimental glomerulonephritis, suggesting selective attempts to suppress pathogenic immunity by dendritic cell manipulation may be harmful.
Collapse
Affiliation(s)
- Joanna R. Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- * E-mail:
| | - Kim M. O’Sullivan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Development and Function of Effector Regulatory T Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:155-74. [DOI: 10.1016/bs.pmbts.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Pretransplantation Recipient Regulatory T cell Suppressive Function Predicts Delayed and Slow Graft Function after Kidney Transplantation. Transplantation 2014; 98:745-53. [DOI: 10.1097/tp.0000000000000219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Kluger MA, Luig M, Wegscheid C, Goerke B, Paust HJ, Brix SR, Yan I, Mittrücker HW, Hagl B, Renner ED, Tiegs G, Wiech T, Stahl RAK, Panzer U, Steinmetz OM. Stat3 programs Th17-specific regulatory T cells to control GN. J Am Soc Nephrol 2014; 25:1291-302. [PMID: 24511136 DOI: 10.1681/asn.2013080904] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A pathogenic role for Th17 cells in inflammatory renal disease is well established. The mechanisms underlying their counter-regulation are, however, largely unknown. Recently, Th17 lineage-specific regulatory T cells (Treg17) that depend on activation of the transcription factor Stat3 were identified. We studied the function of Treg17 in the nephrotoxic nephritis (NTN) model of crescentic GN. The absence of Treg17 cells in Foxp3(Cre)×Stat3(fl/fl) mice resulted in the aggravation of NTN and skewing of renal and systemic immune responses toward Th17. Detailed analysis of Stat3-deficient Tregs revealed that the survival, activation, proliferation, and suppressive function of these cells remained intact. However, Tregs from Foxp3(Cre)×Stat3(fl/fl) mice lacked surface expression of the chemokine receptor CCR6, which resulted in impaired renal trafficking. Furthermore, aggravation of NTN was reversible in the absence of Th17 responses, as shown in CD4(Cre)×Stat3(fl/fl) mice lacking both Treg17 and Th17 cells, suggesting that Th17 cells are indeed the major target of Treg17 cells. Notably, immunohistochemistry revealed CCR6-bearing Treg17 cells in kidney biopsy specimens of patients with GN. CCR6 expression on human Treg17 cells also appears dependent on STAT3, as shown by analysis of Tregs from patients with dominant-negative STAT3 mutations. Our data indicate the presence and involvement of Stat3/STAT3-dependent Treg17 cells that specifically target Th17 cells in murine and human crescentic GN, and suggest the kidney-specific action of these Treg17 cells is regulated by CCR6-directed migration into areas of Th17 inflammation.
Collapse
Affiliation(s)
| | | | - Claudia Wegscheid
- Institut für Experimentelle Hepatologie und Immunologie, Universitätsklinikum Eppendorf, Hamburg, Germany; and
| | | | | | | | | | | | - Beate Hagl
- University Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Ellen D Renner
- University Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Gisa Tiegs
- Institut für Experimentelle Hepatologie und Immunologie, Universitätsklinikum Eppendorf, Hamburg, Germany; and
| | | | | | | | | |
Collapse
|
42
|
Abstract
The kidneys contain very few lymphocytes under homeostatic conditions. One kidney from a healthy mouse per average contains only 1-5 × 10(3) CD4(+) T cells. In immune-mediated kidney disease, γδ T cells, NKT cells, CD4(+) T cells, CD8(+) T cells, and regulatory T cells (Treg) infiltrate the kidney. Their numbers and subset composition of infiltrating T cells varies between the different forms of nephritis. For example, in glomerulonephritis CD4(+) T cells mediate renal injury, by local cytokine production, effector cell activation and/or by helping B cells to produce nephritogenic antibodies. A better understanding of the pathomechanisms of immune-mediated kidney diseases requires a method to isolate T cells from the kidney for ex vivo analysis. Here we describe an effective and specific isolation protocol for T cells from the murine kidney.
Collapse
Affiliation(s)
- Isis Ludwig-Portugall
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | |
Collapse
|
43
|
The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 2013; 13:738-53. [PMID: 24037418 DOI: 10.1038/nri3523] [Citation(s) in RCA: 511] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kidneys are frequently targeted by pathogenic immune responses against renal autoantigens or by local manifestations of systemic autoimmunity. Recent studies in rodent models and humans have uncovered several underlying mechanisms that can be used to explain the previously enigmatic immunopathology of many kidney diseases. These mechanisms include kidney-specific damage-associated molecular patterns that cause sterile inflammation, the crosstalk between renal dendritic cells and T cells, the development of kidney-targeting autoantibodies and molecular mimicry with microbial pathogens. Conversely, kidney failure affects general immunity, causing intestinal barrier dysfunction, systemic inflammation and immunodeficiency that contribute to the morbidity and mortality of patients with kidney disease. In this Review, we summarize the recent findings regarding the interactions between the kidneys and the immune system.
Collapse
|
44
|
Krebs CF, Kapffer S, Paust HJ, Schmidt T, Bennstein SB, Peters A, Stege G, Brix SR, Meyer-Schwesinger C, Müller RU, Turner JE, Steinmetz OM, Wolf G, Stahl RAK, Panzer U. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J Am Soc Nephrol 2013; 24:1955-65. [PMID: 23949802 DOI: 10.1681/asn.2013020130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
CD4(+) T cells play a pivotal role in the pathogenesis of autoimmune disease, including human and experimental crescentic GN. Micro-RNAs (miRs) have emerged as important regulators of immune cell development, but the impact of miRs on the regulation of the CD4(+) T cell immune response remains to be fully clarified. Here, we report that miR-155 expression is upregulated in the kidneys of patients with ANCA-associated crescentic GN and a murine model of crescentic GN (nephrotoxic nephritis). To elucidate the potential role of miR-155 in T cell-mediated inflammation, nephritis was induced in miR-155(-/-) and wild-type mice. The systemic and renal nephritogenic TH17 immune response decreased markedly in nephritic miR-155(-/-) mice. Consistent with this finding, miR-155-deficient mice developed less severe nephritis, with reduced histologic and functional injury. Adoptive transfer of miR-155(-/-) and wild-type CD4(+) T cells into nephritic recombination activating gene 1-deficient (Rag-1(-/-)) mice showed the T cell-intrinsic importance of miR-155 for the stability of pathogenic TH17 immunity. These findings indicate that miR-155 drives the TH17 immune response and tissue injury in experimental crescentic GN and show that miR-155 is a potential therapeutic target in TH17-mediated diseases.
Collapse
Affiliation(s)
- Christian F Krebs
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction. Kidney Int 2013; 84:317-26. [DOI: 10.1038/ki.2013.98] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
|
46
|
Therapeutic effects of human mesenchymal stem cells in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. PLoS One 2013; 8:e67475. [PMID: 23826305 PMCID: PMC3691173 DOI: 10.1371/journal.pone.0067475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 05/20/2013] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Multipotent mesenchymal stem cells (MSCs) have become a promising therapeutic approach in many clinical conditions. The hypothesis that MSCs can provide a potential therapy for human anti-glomerular basement membrane (GBM) glomerulonephritis (GN) was tested. METHODS Nephrotoxic serum nephritis was induced in Wistar-Kyoto rats on day 0. Groups of animals were given either human MSCs (hMSCs, 3×10(6)) or vehicle by intravenous injection on day 4; all rats were sacrificed at either day 7 or day 13. RESULTS Fluorescently labeled hMSCs were localized in glomeruli and tubulointerstitium 5 h after hMSC administration and persisted until 48 h, but hMSCs were barely detectable after 7 days. hMSC-treated rats had decreased kidney weight, proteinuria, and glomerular tuft area at each time point. The serum creatinine level and degree of glomerular crescent formation were decreased by hMSC treatment on day 13. ED1-positive macrophages, CD8-positive cells, and TUNEL-positive apoptotic cells in glomeruli were reduced by hMSC treatment on day 7, and this trend in apoptotic cells persisted to day 13. Renal cortical mRNA for TNF-α, IL-1β, and IL-17, and the serum IL-17A level were decreased, whereas renal cortical mRNA for IL-4 and Foxp3 and the serum IL-10 level were increased in the MSC-treated group on day 7. Collagen types I and III and TGF-β mRNA were decreased by hMSC treatment on day 13. CONCLUSION The present results demonstrated that anti-inflammatory and immunomodulatory effects were involved in the mechanism of attenuating established experimental anti-GBM GN by hMSCs. These results suggest that hMSCs are a promising therapeutic candidate for the treatment of anti-GBM GN.
Collapse
|
47
|
Ostmann A, Paust HJ, Panzer U, Wegscheid C, Kapffer S, Huber S, Flavell RA, Erhardt A, Tiegs G. Regulatory T cell-derived IL-10 ameliorates crescentic GN. J Am Soc Nephrol 2013; 24:930-42. [PMID: 23641052 DOI: 10.1681/asn.2012070684] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) exert their immunosuppressive activity through several immunoregulatory mechanisms, including the production of anti-inflammatory cytokines such as IL-10. Although several studies suggest a role for Tregs in modulating crescentic GN, the underlying mechanisms are not well understood. Here, using IL-10 reporter mice, we detected IL-10-producing Foxp3(+) T cells in the kidney, blood, and secondary lymphoid tissue in a mouse model of crescentic GN. Specific inactivation of Il10 in Foxp3(+) Tregs eliminated the ability of these cells to suppress renal and systemic production of IFNγ and IL-17; these IL-10-deficient Tregs lost their capacity to attenuate renal tissue injury. These data highlight the suppressive functions of Tregs in crescentic GN and suggest the importance of Treg-derived IL-10 in ameliorating disease severity and in modulating both the Th1 and most notably Th17 immune response.
Collapse
Affiliation(s)
- Annett Ostmann
- Institut für Experimentelle Immunologie und Hepatologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Goldwich A, Steinkasserer A, Gessner A, Amann K. Impairment of podocyte function by diphtheria toxin--a new reversible proteinuria model in mice. J Transl Med 2012; 92:1674-85. [PMID: 23007132 DOI: 10.1038/labinvest.2012.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diphtheria toxin (DTx) receptor (DTR)-mediated conditional cell ablation in transgenic mice is a powerful tool to analyze cell function in vivo. Transgenic mice with cell-specific expression of the human DTR have been developed that allow conditional depletion of these cells in vivo through administration of the toxin. We have performed a careful analysis of mice after DTx injection and found an unexpected side effect. Treatment of wild-type C57BL/6 mice with DTx leads to a marked transient and completely reversible proteinuria, as a consequence of podocyte dysfunction that is morphologically characterized by foot process fusion and detachment from the glomerular basal membrane. In vitro analysis displayed that DTx-treated podocytes show diminished attachment to basal membrane proteins. Five to 9 days after DTx application the mice recover completely. Glomerular proteinuria is a hallmark of glomerular disease due to dysfunction of the filtration barrier. Rodents have been extensively used experimentally to better define the mechanisms of disease induction and progression. However, nongenetic mouse models of proteinuric glomerular damage are limited and display various shortcomings. We suggest DTx-induced transient kidney dysfunction as a new reversible model of experimental podocyte injury, which could be used as an additional approach to complement studies in human.
Collapse
Affiliation(s)
- Andreas Goldwich
- Department of Immunemodulation at the Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | |
Collapse
|
49
|
Riedel JH, Paust HJ, Turner JE, Tittel AP, Krebs C, Disteldorf E, Wegscheid C, Tiegs G, Velden J, Mittrücker HW, Garbi N, Stahl RAK, Steinmetz OM, Kurts C, Panzer U. Immature renal dendritic cells recruit regulatory CXCR6(+) invariant natural killer T cells to attenuate crescentic GN. J Am Soc Nephrol 2012; 23:1987-2000. [PMID: 23138484 DOI: 10.1681/asn.2012040394] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immature renal dendritic cells (DCs) are protective early in murine crescentic GN, but the mechanisms underlying this protection are unknown. Here, depletion of DCs reduced the recruitment of invariant natural killer T (iNKT) cells, which attenuate GN, into the kidney in the early stage of experimental crescentic GN. More than 90% of renal iNKT cells expressed the chemokine receptor CXCR6, and renal DCs produced high amounts of the cognate ligand CXCL16 early after induction of nephritis, suggesting that renal DC-derived CXCL16 might attract protective CXCR6(+) iNKT cells. Consistent with this finding, CXCR6-deficient mice exhibited less iNKT cell recruitment and developed nephritis that was more severe, similar to the aggravated nephritis observed in mice depleted of immature DCs. Finally, adoptive transfer of CXCR6-competent NKT cells ameliorated nephritis. Taken together, these results suggest an immunoprotective mechanism involving immature DCs, CXCL16, CXCR6, and regulatory iNKT cells, which might stimulate the development of new therapeutic strategies for GN.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Universitätsklinikum Hamburg-Eppendorf, III Medizinische Klinik, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol 2012; 303:F569-75. [PMID: 22696604 DOI: 10.1152/ajprenal.00180.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rapamycin (Rapa) is an immunosuppressant used to prevent rejection in recipients of renal transplants. Its clinical use is limited by de novo onset or exacerbation of preexisting proteinuria. In the present study, Rapa administration was started 14 days after induction of murine nephrotoxic serum nephritis (NTS) to study glomerular effects of this mammalian target of rapamycin (mTOR) inhibitor. Glomeruli were laser-microdissected, and real-time PCR was performed to assess effects on glomerular cells and the expression of inflammatory cytokines. Immunohistochemical stainings were performed to confirm mRNA data on the protein level. Compared with nephritic control animals, Rapa-treated mice developed significantly increased albuminuria. This was accompanied by a more prominent glomerular infiltration by CD4(+) T cells and macrophages. Glomerular mRNA expression profiling revealed increased levels of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, and the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1β and their cognate macrophage-associated receptors CCR2 and CCR5 in the Rapa-treated animals. Furthermore, there were elevated glomerular transcription levels of the regulatory T cell phenotype transcription factor Foxp3. No differences in the glomerular expression of the podocyte marker nephrin or the endothelial cell marker CD31 were observed on the mRNA or protein level. In conclusion, our data indicate that Rapa-induced proteinuria in NTS is a result of the activation of the innate immune system rather than a direct toxicity to podocytes or glomerular endothelial cells.
Collapse
Affiliation(s)
- A H Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|