1
|
Liu X, Peng Y, Wu S, Huang X, Gao L, Deng R, Lu J. Identification of serum metabolites associated with aristolochic acid nephropathy severity and insights into the underlying mechanism. Toxicol Lett 2024; 400:24-34. [PMID: 39098565 DOI: 10.1016/j.toxlet.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Aristolochic acid nephropathy (AAN) is a rapidly progressive kidney disease caused by medical or environmental exposure to aristolochic acids (AAs). This study aimed to identify serum metabolites associated with the severity of acute AAN and investigate the underlying mechanisms. Male C57BL/6 mice were treated with vehicle and 3 doses of aristolochic acid I (AAI) (1.25, 2.5, and 5 mg/kg/d) for 5 days by intraperitoneal injection. The results showed that AAI dose-dependently increased blood urea nitrogen (BUN) and serum creatinine (Scr) levels and renal pathological damage. Non-targeted metabolomics revealed that differences in serum metabolite profiles from controls increased with increasing AAI doses. Compared with the control group, 56 differentially expressed metabolites (DEMs) that could be affected by all 3 doses of AAI were obtained. We further identified 13 DEMs whose abundance significantly correlated with Scr and BUN levels and had good predictive values for diagnosing AAI exposure. Among the 13 DEMs, lipids and lipid-like molecules constituted the majority. Western blotting found that AAI suppressed renal fatty acid oxidation (FAO)-related enzymes expression. In conclusion, these findings provided evidence for developing biomarkers for monitoring AAs exposure and AAN diagnosis and indicated activation of FAO as a potential direction for the treatment of AAN.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China.
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| |
Collapse
|
2
|
Wei M, Tian Y, Zang E, Tsambaa B, Liu J, Shi L, Borjigidai A. Species identification of biological ingredients in herbal product, Gurigumu-7, based on DNA barcoding and shotgun metagenomics. FRONTIERS IN PLANT SCIENCE 2024; 15:1358136. [PMID: 38841282 PMCID: PMC11150658 DOI: 10.3389/fpls.2024.1358136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Accurate identification the species composition in mixtures poses a significant challenge, especially in processed mixtures comprising multiple species, such as those found in food and pharmaceuticals. Therefore, we have attempted to utilize shotgun metabarcoding technology to tackle this issue. In this study, the method was initially established using two mock samples of the Mongolian compound preparation Gurigumu-7 (G-7), which was then applied to three pharmaceutical products and 12 hospital-made preparations. A total of 119.72 Gb of raw data sets were obtained through shotgun metagenomic sequencing. By combining ITS2, matK, and rbcL, all the labeled bio-ingredients specified in the G-7 prescription can be detected, although some species may not be detectable in all samples. The prevalent substitution of Akebia quinata can be found in all the pharmaceutical and hospital samples, except for YN02 and YN12. The toxic alternative to Akebia quinata, Aristolochia manshuriensis, was exclusively identified in the YN02 sample. To further confirm this result, we validated it in YN02 using HPLC and real-time PCR with TaqMan probes. The results showed that aristolochic acid A (AAA) was detected in YN02 using HPLC, and the ITS2 sequence of Aristolochia manshuriensis has been validated in YN02 through qPCR and the use of a TaqMan probe. This study confirms that shotgun metabarcoding can effectively identify the biological components in Mongolian medicine compound preparation G-7. It also demonstrates the method's potential to be utilized as a general identification technique for mixtures containing a variety of plants.
Collapse
Affiliation(s)
- Miaojie Wei
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Erhuan Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Battseren Tsambaa
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Jinxin Liu
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Pollock C, Moon JY, Ngoc Ha LP, Gojaseni P, Ching CH, Gomez L, Chan TM, Wu MJ, Yeo SC, Nugroho P, Bhalla AK. Framework of Guidelines for Management of CKD in Asia. Kidney Int Rep 2024; 9:752-790. [PMID: 38765566 PMCID: PMC11101746 DOI: 10.1016/j.ekir.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 05/22/2024] Open
Affiliation(s)
- Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia
| | - Ju-young Moon
- Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Le Pham Ngoc Ha
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | | | - Lynn Gomez
- Asian Hospital and Medical Center, Muntinlupa City, Metro Manila, Philippines
| | - Tak Mao Chan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Ming-Ju Wu
- Taichung Veterans General Hospital, Taichung City, Taiwan
| | | | | | - Anil Kumar Bhalla
- Department of Nephrology-Sir Ganga Ram Hospital Marg, New Delhi, Delhi, India
| |
Collapse
|
4
|
Taguchi K, Sugahara S, Elias BC, Pabla NS, Canaud G, Brooks CR. IL-22 is secreted by proximal tubule cells and regulates DNA damage response and cell death in acute kidney injury. Kidney Int 2024; 105:99-114. [PMID: 38054920 PMCID: PMC11068062 DOI: 10.1016/j.kint.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Radic Savic Z, Coric V, Vidovic S, Vidovic V, Becarevic J, Milovac I, Reljic Z, Mirjanic-Azaric B, Skrbic R, Gajanin R, Matic M, Simic T. GPX3 rs8177412 Polymorphism Modifies Risk of Upper Urothelial Tumors in Patients with Balkan Endemic Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1421. [PMID: 37629712 PMCID: PMC10456338 DOI: 10.3390/medicina59081421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Current data suggest that aristolochic acid (AA) exposure is a putative cause of Balkan endemic nephropathy (BEN), a chronic kidney disease strongly associated with upper tract urothelial carcinoma. The cellular metabolism of AA is associated with the production of reactive oxygen species, resulting in oxidative distress. Purpose: Therefore, the aim of this study was to analyze individual, combined and cumulative effect of antioxidant gene polymorphisms (Nrf2 rs6721961, KEAP1 rs1048290, GSTP1AB rs1695, GSTP1CD rs1138272, GPX3 rs8177412 and MDR1 rs1045642), as well as GSTP1ABCD haplotypes with the risk for BEN development and associated urothelial cell carcinoma in 209 BEN patients and 140 controls from endemic areas. Experimental method: Genotyping was performed using polymerase chain reaction (PCR) and PCR with confronting two-pair primers (PCR-CTTP) methods. Results: We found that female patients carrying both variant GPX3 rs8177412 and MDR1 rs1045642 genotypes in combination exhibited significant risk towards BEN (OR 1 = 3.34, 95% CI = 1.16-9.60, p = 0.025; OR 2 = 3.79, 95% CI = 1.27-11.24, p = 0.016). Moreover, significant association was determined between GPX3rs8174412 polymorphism and risk for urothelial carcinoma. Carriers of variant GPX3*TC + CC genotype were at eight-fold increased risk of BEN-associated urothelial tumors development. There was no individual or combined impact on BEN development and BEN-associated tumors among all examined polymorphisms. The haplotype consisting of variant alleles for both polymorphisms G and T was associated with 1.6-fold increased risk although statistically insignificant (OR = 1.64; 95% CI = 0.75-3.58; p = 0.21). Conclusions: Regarding GPX3 rs8177412 polymorphism, the gene variant that confers lower expression is associated with significant increase in upper urothelial carcinoma risk. Therefore, BEN patients carrying variant GPX3 genotype should be more frequently monitored for possible upper tract urothelial carcinoma development.
Collapse
Affiliation(s)
- Zana Radic Savic
- Department of Medical Biochemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.R.S.); (B.M.-A.)
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (S.V.); (V.V.); (J.B.); (I.M.)
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Center of Excellence for Redox Medicine, Biotech Place, 2W-017, 575 North Patterson Avenue, Winston-Salem, NC 27157, USA
| | - Stojko Vidovic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (S.V.); (V.V.); (J.B.); (I.M.)
- Department of Human Genetics, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Vanja Vidovic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (S.V.); (V.V.); (J.B.); (I.M.)
- Department of Human Genetics, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jelena Becarevic
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (S.V.); (V.V.); (J.B.); (I.M.)
| | - Irina Milovac
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (S.V.); (V.V.); (J.B.); (I.M.)
- Department of Human Genetics, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Zorica Reljic
- Medical Laboratory “PAN LAB”, 36000 Kraljevo, Serbia;
| | - Bosa Mirjanic-Azaric
- Department of Medical Biochemistry, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.R.S.); (B.M.-A.)
| | - Ranko Skrbic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
- Academy of Sciences and Arts of the Republic of Srpska, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Radoslav Gajanin
- Department of Pathological Anatomy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Center of Excellence for Redox Medicine, Biotech Place, 2W-017, 575 North Patterson Avenue, Winston-Salem, NC 27157, USA
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Center of Excellence for Redox Medicine, Biotech Place, 2W-017, 575 North Patterson Avenue, Winston-Salem, NC 27157, USA
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Taguchi K, Sugahara S, Elias BC, Pabla N, Canaud G, Brooks CR. IL-22 promotes acute kidney injury through activation of the DNA damage response and cell death in proximal tubule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544134. [PMID: 37333314 PMCID: PMC10274795 DOI: 10.1101/2023.06.08.544134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI. The factors that trigger the switch from pro-reparative to pro-cell death DDR remain to be resolved. Here we investigate the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identify PTCs as a novel source of urinary IL-22, making PTCs the only epithelial cells known to secret IL-22, to our knowledge. Functionally, IL-22 binding its receptor (IL-22RA1) on PTCs amplifies the DDR. Treating primary PTCs with IL-22 alone induces rapid activation of the DDR in vitro. The combination of IL-22 + cisplatin or AA treatment on primary PTCs induces cell death, while the same dose of cisplatin or AA alone does not. Global deletion of IL-22 protects against cisplatin or AA induced AKI. IL-22 deletion reduces expression of components of the DDR and inhibits PTC cell death. To confirm PTC IL-22 signaling contributes to AKI, we knocked out IL-22RA1 in renal epithelial cells by crossing IL-22RA1floxed mice with Six2-Cre mice. IL-22RA1 KO reduced DDR activation, cell death, and kidney injury. These data demonstrate that IL-22 promotes DDR activation in PTCs, switching pro-recovery DDR responses to a pro-cell death response and worsening AKI. Targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with the processes necessary for repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Bašić D, Ignjatović I, Janković Veličković L, Veljković A. Molecular Characterization of Microrna Interference and Aristolochic Acid Intoxication Found in Upper Tract Urothelial Carcinoma in Patients with Balkan Endemic Nephropathy: A Systematic Review of the Current Literature. Balkan J Med Genet 2023; 25:105-111. [PMID: 37265966 PMCID: PMC10230835 DOI: 10.2478/bjmg-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The term "aristolochic acid nephropathy" (AAN) is used to include any form of toxic interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA) or by the environmental contaminants in food such as in Balkan endemic nephropathy (BEN). Aristolochic acid (AA) intoxication is strongly associated with the development of upper tract urothelial carcinoma (UTUC); however, the underlying molecular mechanism remains to be defined. MicroRNAs (miRNA) regulate several biological processes, including cell proliferation, differentiation, and metabolism, acting as oncogenes or tumor suppressors. A unique miRNA expression profile suggested that miRNAs could function as regulators in UTUC developmental processes. This review aimed to summarize data available in the literature about underlying molecular mechanisms leading to the expression of miRNAs in AA-UTUC patients with BEN. Strong correlation in AA-UTUC has a distinctive gene alteration pattern, AL-DNA adducts, and a unique tumor protein (TP53) mutational spectrum AAG to TAG (A: T→T: A) transversion in codon 139 (Lys → Stop) of exon 5 activates the p53 tumor suppressor protein. Further, p53 protein is responsible not only for the expression of miRNAs but also acts as a target molecule for miRNAs and plays a crucial function in the AA-UTUC pathogenicity through activation of cyclin-dependent kinase (CyclinD1) and cyclin protein kinase 6(CDK6) to support cell cycle arrest. This study, proposed a molecular mechanism that represented a possible unique relationship between AA intoxication, miRNAs expression, and the progression of UTUC in patients with BEN.
Collapse
Affiliation(s)
- D Bašić
- Urology Clinic, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - I Ignjatović
- Urology Clinic, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Lj Janković Veličković
- Center for Pathology, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - A Veljković
- Department of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
8
|
Zhang J, Chan CK, Pavlović NM, Chan W. Effects of Diet on Aristolochic Acid-DNA Adduct Formation: Implications for Balkan Endemic Nephropathy Etiology. Chem Res Toxicol 2023; 36:438-445. [PMID: 36881864 DOI: 10.1021/acs.chemrestox.2c00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicine or AA-contaminated food is associated with the development of aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), both public health risks to which the World Health Organization is calling for global action to remove exposure sources. The AA exposure-induced DNA damage is believed to be related to both the nephrotoxicity and carcinogenicity of AA observed in patients suffering from BEN. While the chemical toxicology of AA is well-studied, we investigated in this study the understated effect of different nutrients, food additives, or health supplements on DNA adduct formation by aristolochic acid I (AA-I). By culturing human embryonic kidney cells in an AAI-containing medium enriched with different nutrients, results showed that cells cultured in fatty acid-, acetic acid-, and amino acid-enriched media produced ALI-dA adducts at significantly higher frequencies than that cultured in the normal medium. ALI-dA adduct formation was most sensitive to amino acids, indicating that amino acid- or protein-rich diets might lead to a higher risk of mutation and even cancer. On the other hand, cells cultured in media supplemented with sodium bicarbonate, GSH, and NAC reduced ALI-dA adduct formation rates, which sheds light on their potential use as risk-mitigating strategies for people at risk of AA exposure. It is anticipated that the results of this study will help to better understand the effect of dietary habits on cancer and BEN development.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
9
|
Mughni MA, Mateen MA, Asifuddin M, Khan KK, Khan A, Khan M, Prajjwal P, Ranjan R. Chronic Kidney Disease of Unknown Etiology in a Tertiary Care Teaching Hospital. Cureus 2023; 15:e35446. [PMID: 36994299 PMCID: PMC10042529 DOI: 10.7759/cureus.35446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/25/2023] [Indexed: 03/31/2023] Open
Abstract
Background Several primary studies have looked at the burden of chronic kidney disease among diabetic patients, but their results have shown significant variance in India. In order to determine the combined prevalence of chronic kidney disease and associated risk factors among patients with diabetes, this study used a combination of methods. Methods Over the course of two years, a cross-sectional observational study was undertaken in the Tertiary Care Teaching Hospital's Department of General Medicine including all chronic kidney disease patients of 18 years of age and above of either gender. People not suffering from the disease were chosen as controls. Kidney Injury Molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin-ELISA (NGAL-ELISA) sample analysis by the kit method was done. The study was carried out in accordance with Schedule Y, ICH GCP principles, and the Helsinki Declaration after receiving approval from the institutional ethics committee. Results In our study, the urinary mean KIM-1 was 49.75±4.35 μg/g Cr in the Chronic Kidney Disease of Unknown etiology (CKDu) group and 1.43±0.15 μg/g Cr in the controls group. The mean NGAL levels of the CKDu Group and the controls group were 8.94±1.31 μg/g and 0.41±0.05 μg/g, respectively. In CKDu and the controls group, the mean eGFR (ml/min/1.73m2) was 69.83±7.91 and 108±3.7, respectively. The mean serum creatinine (mg/dL) was reported 3.79 in the CKDu group and 1.0 in the controls group. Conclusion Despite the urban centers previously being thought of as a non-endemic location, for the first time in the city, 60 CKDu patients are reported in this study. This is the first study to use the urinary biomarkers KIM-1 and NGAL to find suspected cases of CKDu and early kidney damage in local communities in the urban centers.
Collapse
Affiliation(s)
- Mohammed A Mughni
- Internal Medicine, Shadan Institute of Medical Sciences, Teaching Hospital and Research Center, Hyderabad, IND
| | - Mohammed A Mateen
- Internal Medicine, Shadan Institute of Medical Sciences, Teaching Hospital and Research Center, Hyderabad, IND
| | - Mohammed Asifuddin
- Internal Medicine, Deccan College of Medical Sciences and Research Center, Hyderabad, IND
| | - Khaja K Khan
- Internal Medicine, Deccan College of Medical Sciences and Research Center, Hyderabad, IND
| | - Ariyan Khan
- Internal Medicine, Deccan College of Medical Sciences and Research Center, Hyderabad, IND
| | - Maria Khan
- Internal Medicine, Deccan College of Medical Sciences and Research Center, Hyderabad, IND
| | | | - Raunak Ranjan
- Internal Medicine, Bharati Vidyapeeth University Medical College, Pune, IND
| |
Collapse
|
10
|
Chan TC, Shiue YL, Li CF. The biological impacts of CEBPD on urothelial carcinoma development and progression. Front Oncol 2023; 13:1123776. [PMID: 36776299 PMCID: PMC9914172 DOI: 10.3389/fonc.2023.1123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Urothelial carcinoma (UC), which includes urinary bladder urothelial carcinoma (UBUC) and upper tract urothelial carcinoma (UTUC), is one of the most common malignancies worldwide. Accordingly, a comprehensive understanding of the underlying mechanism governing UC development is compulsory. Aberrant CCAAT/enhancer-binding protein delta (CEBPD), a transcription factor, displays an oncogene or tumor suppressor depending on tumor type and microenvironments. However, CEBPD has been reported to possess a clear oncogenic function in UC through multiple regulation pathways. Genomic amplification of CEBPD triggered by MYC-driven genome instability is frequently examined in UC that drives CEBPD overexpression. Upregulated CEBPD transcriptionally suppresses FBXW7 to stabilize MYC protein and further induces hexokinase II (HK2)-related aerobic glycolysis that fuels cell growth. Apart from the MYC-dependent pathway, CEBPD also downregulates the level of hsa-miR-429 to enhance HK2-associated glycolysis and induce angiogenesis driven by vascular endothelial growth factor A (VEGFA). Additionally, aggressive UC is attributed to the tumor metastasis regulated by CEBPD-induced matrix metalloproteinase-2 (MMP2) overexpression. Furthermore, elevated CEBPD induced by cisplatin (CDDP) is identified to have dual functions, namely, CDDP-induced chemotherapy resistance or drive CDDP-induced antitumorigenesis. Given that the role of CEBPD in UC is getting clear but pending a more systemic reappraisal, this review aimed to comprehensively discuss the underlying mechanism of CEBPD in UC tumorigenesis.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan
- Department of Clinical Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
11
|
Rao J, Peng T, Li N, Wang Y, Yan C, Wang K, Qiu F. Nephrotoxicity induced by natural compounds from herbal medicines - a challenge for clinical application. Crit Rev Toxicol 2022; 52:757-778. [PMID: 36815678 DOI: 10.1080/10408444.2023.2168178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herbal medicines (HMs) have long been considered safe and effective without serious toxic and side effects. With the continuous use of HMs, more and more attention has been paid to adverse reactions and toxic events, especially the nephrotoxicity caused by natural compounds in HMs. The composition of HMs is complex and various, especially the mechanism of toxic components has been a difficult and hot topic. This review comprehensively summarizes the kidney toxicity characterization and mechanism of nephrotoxic natural compounds (organic acids, alkaloids, glycosides, terpenoids, phenylpropanoids, flavonoids, anthraquinones, cytotoxic proteins, and minerals) from different sources. Recommendations for the prevention and treatment of HMs-induced kidney injury were provided. In vitro and in vivo models for evaluating nephrotoxicity and the latest biomarkers are also included in this investigation. More broadly, this review may provide theoretical basis for safety evaluation and further comprehensive development and utilization of HMs in the future.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
12
|
Giudici N, Bonne F, Blarer J, Minoli M, Krentel F, Seiler R. Characteristics of upper urinary tract urothelial carcinoma in the context of bladder cancer: a narrative review. Transl Androl Urol 2021; 10:4036-4050. [PMID: 34804846 PMCID: PMC8575564 DOI: 10.21037/tau-20-1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Urothelial carcinomas (UC) arise from the urothelium that covers the proximal urethra, urinary bladder, and the upper urinary tract. In daily routine and clinical trials UC originating from different locations are often treated and investigated in the same manner. However, differences between the two locations seem to be apparent and may question in handling them as a single oncologic entity. In this review we discuss similarities and differences between bladder and upper urinary tract UC and consider their potential impact on treatment strategies. Despite similarities of UC in the bladder (BC) and the upper urinary tract (UTUC), clinicopathologic and molecular differences may question to generally assemble both as a single tumor entity. Treatment standards for UTUC are often adopted from BC. However, a specific investigation in the former may still be meaningful as shown by the example of adjuvant cisplatin based chemotherapy. In conclusion, future investigations should prioritize the understanding of the tumor biology of both BC and UTUC. This may reveal which UTUC can be treated according to treatment standards of BC and in which cases, a separate approach may be more appropriate.
Collapse
Affiliation(s)
- Nicola Giudici
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fieke Bonne
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jennifer Blarer
- Department of Urology, Hospital Center Biel/Bienne, Biel/Bienne, Switzerland
| | - Martina Minoli
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Friedemann Krentel
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Seiler
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Treatment of Lupus Nephritis from Iranian Traditional Medicine and Modern Medicine Points of View: A Comparative Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6645319. [PMID: 34795786 PMCID: PMC8595000 DOI: 10.1155/2021/6645319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/14/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Objective Nephritis or kidney inflammation is characterized as one of the most common renal disorders leading to serious damage to the kidneys. Nephritis, especially lupus nephritis (LN), has remained as the main cause of chronic renal failure which needs serious therapeutic approaches such as dialysis and kidney transplant. Heredity, infection, high blood pressure, inflammatory diseases such as lupus erythematosus and inflammatory bowel disease, and drug-related side effects are known as the main causes of the disease. According to Iranian traditional medicine (ITM), infectious diseases and fever are the main reasons of nephritis, which is called “Varam-e-Kolye” (VK). Results There are various plant-based remedies recommended by ITM for the treatment of nephritis, as discussed herein, comparing with those available in the modern medicine. There is no definite cure for the treatment of nephritis, and immunosuppressive drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, antibiotics, diuretics, analgesics, and finally dialysis and kidney transplantation are usually used. Based on the efficacy of medicinal plants, jujube (Ziziphus jujuba), almond (Prunus amygdalus), pumpkin seeds (Cucurbita pepo), purslane (Portulaca oleracea), and fig (Ficus carica) were found to be effective for the treatment of kidney inflammation in ITM. Conclusion Considering the fact that there is no efficient strategy for the treatment of nephritis, use of herbal medicine, particularly based on the fruits or nuts that have been safely used for several years can be considered as a versatile supplement along with other therapeutic methods.
Collapse
|
14
|
Wang Y, Wang Z, Wu Z, Chen M, Dong D, Yu P, Lu D, Wu B. Involvement of REV-ERBα dysregulation and ferroptosis in aristolochic acid I-induced renal injury. Biochem Pharmacol 2021; 193:114807. [PMID: 34673015 DOI: 10.1016/j.bcp.2021.114807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The molecular events underlying aristolochic acid (AA) nephropathy are poorly understood, and specific therapies for treatment of AA nephropathy are still lacking. Here we aimed to investigate a potential role of REV-ERBα and ferroptosis in renal injury induced by aristolochic acid I (AAI), a typical AA. The regulatory effects of REV-ERBα on AAI-induced renal injury were determined using kidney-specific Rev-erbα knockout mice. Ferroptosis was assessed based on measurements of iron, GSH, and GPX4. Targeted antagonism of REV-ERBα to alleviate AAI-induced renal injury and ferroptosis was assessed using the small molecule antagonist SR8278. mRNAs and proteins were quantified by qPCR and Western blotting, respectively. We first showed that REV-ERBα was upregulated and its target BMAL1 was downregulated in the kidney of mice with AAI nephropathy. Upregulation of REV-ERBα protein was confirmed in aristolactam I (ALI, a nephrotoxic metabolite of AAI)-treated mRTECs. We also observed enhanced ferroptosis (known to be regulated by REV-ERBα) in mice with AAI nephropathy and in ALI-treated mRTECs. Kidney-specific knockout of Rev-erbα reduced the sensitivity of mice to AAI-induced ferroptosis and renal injury. Furthermore, knockdown of Rev-erbα by siRNA or SR8278 (a REV-ERBα antagonist) treatment attenuated ALI-induced ferroptosis in mRTECs. Moreover, REV-ERBα antagonism by SR8278 alleviated ferroptosis and renal injury caused by AAI in mice. In conclusion, we identify REV-ERBα as a regulator of AAI-induced renal injury via promoting ferroptosis. Targeting REV-ERBα may represent a promising approach for management of AAI nephropathy.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Menglin Chen
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Pei Yu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Ang LP, Ng PW, Lean YL, Kotra V, Kifli N, Goh HP, Lee KS, Sarker MMR, Al-Worafi YM, Ming LC. Herbal products containing aristolochic acids: A call to revisit the context of safety. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Chen J, Kong A, Shelton D, Dong H, Li J, Zhao F, Bai C, Huang K, Mo W, Chen S, Xu H, Tanguay RL, Dong Q. Early life stage transient aristolochic acid exposure induces behavioral hyperactivity but not nephrotoxicity in larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105916. [PMID: 34303159 PMCID: PMC8881052 DOI: 10.1016/j.aquatox.2021.105916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 05/12/2023]
Abstract
Aristolochic acids (AA) are nitrophenanthrene carboxylic acids found in plants of the Aristolochiaceae family. Humans are exposed to AA by deliberately taking herbal medicines or unintentionally as a result of environmental contamination. AA is notorious for its nephrotoxicity, however, fewer studies explore potential neurotoxicity associated with AA exposure. The developing nervous system is vulnerable to xenobiotics, and pregnant women exposed to AA may put their fetuses at risk. In the present study, we used the embryonic zebrafish model to evaluate the developmental neurotoxicity associated with AA exposure. At non-teratogenic concentrations (≤ 4 µM), continuous AA exposure from 8 to 120 hours post fertilization (hpf) resulted in larval hyperactivity that was characterized by increased moving distance, elevated activity and faster swimming speeds in several behavioral assays. Further analysis revealed that 8-24 hpf is the most sensitive exposure window for AA-induced hyperactivity. AA exposures specifically increased motor neuron proliferation, increased apoptosis in the eye, and resulted in cellular oxidative stress. In addition, AA exposures increased larval eye size and perturbed the expression of vision genes. Our study, for the first time, demonstrates that AA is neurotoxic to the developmental zebrafish with a sensitive window distinct from its well-documented nephrotoxicity.
Collapse
Affiliation(s)
- Jiangfei Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China..
| | - Aijun Kong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Delia Shelton
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiani Li
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Kaiyu Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wen Mo
- Zhejiang rehabilitation medical center, Hangzhou 310051, PR China
| | - Shan Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China..
| |
Collapse
|
17
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
18
|
Stoyanov GS, Kobakova I, Petkova L, Dzhenkov DL, Popov H. Balkan Endemic Nephropathy: An Autopsy Case Report. Cureus 2021; 13:e12415. [PMID: 33542864 PMCID: PMC7847780 DOI: 10.7759/cureus.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Balkan endemic nephropathy (BEN) is a form of interstitial nephritis seen only in certain geographical areas in the Balkan peninsula. Herein we describe the gross and histological changes in a diseased 42-year-old male Caucasian patient with BEN. All the changes fit the classically described alterations, with copper hue discoloration of the skin of the torso and orange discoloration of the soles and palms. Grossly, the kidneys were atrophic, with the left one weighing 31 grams and the right one 32 grams. Their surface was predominantly smooth with areas of fine granulations and cystic transformations. Histology revealed hyalinization of the glomeruli, predominantly in the external part of the cortex, severe vascular changes, interstitial fibrosis, and scant inflammatory cell infiltrate. The renal pelvis and ureters revealed multiple urothelial papillomas and atypical urothelial hyperplasia. BEN is only one geographical variant of interstitial nephritis caused by exposure to aristolochic acid. Other forms of this condition include Chinese herb nephropathy/aristolochic acid nephropathy, as well as several similar endemic conditions with a yet unestablished link to aristolochic acid.
Collapse
Affiliation(s)
- George S Stoyanov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Ina Kobakova
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Lilyana Petkova
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Deyan L Dzhenkov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Hristo Popov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| |
Collapse
|
19
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12102945. [PMID: 33065960 PMCID: PMC7599787 DOI: 10.3390/cancers12102945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Balkan endemic nephropathy (BEN) is chronic kidney disease caused by intoxication with Aristolochia plant. Apart from subtle decline of renal function that eventually results in kidney failure, the patients are at increased risk for urothelial carcinoma (UC) development. Based on the observed UC markers, the aim of this study was to examine urinary and plasma levels of some these markers in BEN patients without carcinoma, in order to potentially identify those with predictive value. Our study revealed either plasma or urinary survivin levels as a potential predictors of future malignant transformation of urothelium. Abstract Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease frequently accompanied by urothelial carcinoma (UC). In light of the increased UC incidence and the markers observed in BEN patients with developed UC, the aim of the current case–control study is to assess survivin, p53 protein, growth factors and receptors (VEGF, VEGFR1, IGF I, IGF-1R and IGFBP5), tumor marker (TF)/CD142, circulating soluble Fas receptor and neopterin, as potentially predictive markers for UC in patients with BEN (52 patients), compared to healthy, age-matched subjects (40). A threefold increase was registered in both circulating and urinary survivin level in BEN patients. Especially noticeable was the ratio of U survivin/U Cr level five times the ratio of BEN patients associated with standard renal markers in multivariate regression models. The concentrations of VEGF, VEGFR1, (TF)/CD142, (sFas) were not significantly different in BEN patients, while urinary/plasma level demonstrated a significant decrease for VEGF. The levels of IGF I, IGFBP5 and IGF-1R were significantly reduced in the urine of BEN patients. Plasma concentration of neopterin was significantly higher, while urinary neopterin value was significantly lower in BEN patients compared to healthy controls, which reflected a significantly lower urine/plasma ratio and low local predictive value. As BEN is a slow-progressing chronic kidney disease, early detection of survivin may be proposed as potential predictor for malignant alteration and screening tool in BEN patients without the diagnosis of UC.
Collapse
|
21
|
Ameh OI, Ekrikpo U, Bello A, Okpechi I. Current Management Strategies of Chronic Kidney Disease in Resource-Limited Countries. Int J Nephrol Renovasc Dis 2020; 13:239-251. [PMID: 33116755 PMCID: PMC7567536 DOI: 10.2147/ijnrd.s242235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence of chronic kidney disease (CKD) and kidney failure continues to increase worldwide, especially in resource-limited countries. Many countries in this category already have a massive burden of communicable diseases, as well as socio-economic and socio-demographic challenges. The rising CKD burden and exorbitant economic cost associated with treatment are mainly responsible for the alarming mortality rate associated with kidney disease in these regions. There is often poor risk factor (diabetes and hypertension) and CKD awareness in these countries and limited availability and affordability of treatment options. Given these observations, early disease detection and preventive measures remain the best options for disease management in resource-limited settings. Primary, secondary and tertiary preventive strategies need to be enhanced and should particularly include measures to increase awareness, regular assessment to detect hypertension, diabetes and albuminuria, options for early referral of identified patients to a nephrologist and options for conservative kidney management where kidney replacement therapies may not be available or indicated. Much is still needed to be done by governments in these regions, especially regarding healthcare funding, improving the primary healthcare systems and enhancing non-communicable disease detection and treatment programs as these will have effects on kidney care in these regions.
Collapse
Affiliation(s)
| | - Udeme Ekrikpo
- Renal Unit, Department of Internal Medicine, University of Uyo, Uyo, Nigeria
| | - Aminu Bello
- Division of Nephrology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ikechi Okpechi
- Division of Nephrology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa
- Kidney and Hypertension Research Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Kathuria P, Singh P, Sharma P, Wetmore SD. Replication of the Aristolochic Acid I Adenine Adduct (ALI-N6-A) by a Model Translesion Synthesis DNA Polymerase: Structural Insights on the Induction of Transversion Mutations from Molecular Dynamics Simulations. Chem Res Toxicol 2020; 33:2573-2583. [DOI: 10.1021/acs.chemrestox.0c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Prebhleen Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Luo L, Dong L, Huang Q, Ma S, Fantke P, Li J, Jiang J, Fitzgerald M, Yang J, Jia Z, Zhang J, Wang H, Dai Y, Zhu G, Xing Z, Liang Y, Li M, Wei G, Song J, Wei J, Peng C, Zhang H, Zhang W, Wang S, Mizuno K, Marco AAG, Wu L, Xu J, Xiong C, Chen S. Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. CHEMOSPHERE 2020; 262:127477. [PMID: 32799136 DOI: 10.1016/j.chemosphere.2020.127477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
Focus on the safety of herbal medicines has mainly been directed towards the presence of intrinsic toxicity, as found in the cases of renal and hepatic dysfunction caused by aristolochic acids. However, contamination from extrinsic hazards may impart an even greater reduction in their safety and efficacy. This study reveals that pesticides were present in the majority (88%) of a comprehensive cross-section (n = 1771) of herbal medicine samples. Alarmingly, more than half (59%) contained pesticides over the European Pharmacopoeia (EP) limit, and 43% of them contained 35 varieties of banned, extremely toxic pesticides, eight of which were detected at levels over 500 times higher than the default Maximum Residue Limit (MRL). DDTs, carbofuran, and mevinphos were confirmed as being among the most risk-inducing pesticides by three different risk assessment methods, reported to produce carcinogenic, genotoxic, reproductive, and developmental effects, in addition to carrying nephrotoxicity and hepatotoxicity. In light of these findings, and withstanding that extrinsic hazards can be controlled unlike intrinsic toxicity, the authors here strongly recommend the application of herbal medicine quality-control measures and solutions to safeguard against a neglected but certainly potentially serious health risk posed to the majority of the global population that consumes herbal medicines.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Qin Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 100050, PR China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark
| | - Jianhui Li
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Jingwen Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Martin Fitzgerald
- Department of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK
| | - Jane Yang
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Zhengwei Jia
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Jiqing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Haifeng Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Zhihan Xing
- College of Science and Mathematics, University of Massachusetts Boston, 100 William T. Morrissey Blvd, Boston, MA, 02125-3393, USA
| | - Yichuan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Mengzhi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guangfei Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, Hunan, PR China
| | - Shumei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Kaito Mizuno
- Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, 510-0293, Japan
| | - Alarcon Arauco Gian Marco
- Intelligence of Science and Technology, School of Automation and Electrical Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Lan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chao Xiong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
24
|
Ishii T, Fujimaru T, Nakano E, Takahashi O, Nakayama M, Yamauchi T, Komatsu Y. Association between chronic kidney disease and mortality in stage IV cancer. Int J Clin Oncol 2020; 25:1587-1595. [PMID: 32514878 DOI: 10.1007/s10147-020-01715-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is known to be associated with cancer mortality. However, no study has considered the well-known cancer prognostic factors, ECOG Performance Status (PS) and cancer treatment, as confounding factors. We assessed the independent relationship between CKD and cancer death in stage IV cancer patients. METHODS In this retrospective observational study, we included stage IV cancer patients diagnosed from 2009 to 2014 in a single center. We collected baseline clinical and laboratory variables, and cancer-specific variables, and assessed the presence of CKD. Our primary outcome was all-cause mortality. The secondary outcome was cancer-specific mortality and site-specific cancer mortality. RESULTS Among 961 eligible stage IV cancer patients (median age 69 years, 51.8% male), 150 patients had CKD. During follow-up (median 9.8 months), 638 patients died, of whom 526 patients died from cancer. After adjusting for prognostic variables, including ECOG PS and cancer treatment, all-cause mortality and cancer-specific mortality were significantly higher in CKD patients than in non-CKD patients (HR 1.41, 95% CI 1.13-1.77 and HR 1.43, 95% CI 1.12-1.83, respectively). In patients with breast and kidney and urinary tract cancers, CKD was associated with a significantly increased risk of death (HR 7.01, 95% CI 1.47-33.4 and HR 3.33, 95% CI 1.42-7.78, respectively). CONCLUSIONS CKD at the time of stage IV cancer diagnosis was associated with all-cause mortality and cancer-specific mortality. Moreover, the association between CKD and cancer-specific death was site specific for breast cancer and kidney and urinary tract cancer.
Collapse
Affiliation(s)
- Taisuke Ishii
- Department of Nephrology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.,Department of Medical Oncology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Takuya Fujimaru
- Department of Nephrology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.
| | - Eriko Nakano
- Department of Medical Oncology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Osamu Takahashi
- Graduate School of Public Health, St. Luke's International University, OMURA Susumu and Mieko Memorial, St. Luke's Center for Clinical Academia 5th Floor, 3-6 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masaaki Nakayama
- Department of Nephrology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Teruo Yamauchi
- Department of Medical Oncology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Yasuhiro Komatsu
- Department of Nephrology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.,Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine, 3-39-22 Shouwa-cho, Maebashi-shi, Gunma, 371-8511, Japan
| |
Collapse
|
25
|
Zhang J, Chan CK, Ham YH, Chan W. Identifying Cysteine, N-Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. Chem Res Toxicol 2020; 33:1374-1381. [DOI: 10.1021/acs.chemrestox.9b00488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
26
|
Ji F, Jin R, Luo C, Deng C, Hu Y, Wang L, Wang R, Zhang J, Song G. Fast determination of aristolochic acid I (AAI) in traditional Chinese medicine soup with magnetic solid-phase extraction by high performance liquid chromatography. J Chromatogr A 2020; 1609:460455. [DOI: 10.1016/j.chroma.2019.460455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
|
27
|
Medunjanin D, Sonicki Z, Vena JE, Cvitkovic A, Robb SW. Geographic distribution and risk of upper urothelial carcinomas in Croatia, 2001-2011. BMC Cancer 2019; 19:950. [PMID: 31615453 PMCID: PMC6792263 DOI: 10.1186/s12885-019-6160-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Strong associations exist between Balkan endemic nephropathy (BEN) and upper urothelial carcinomas (UUCs). However, the common etiology between the two remains unclear and there are no studies to date that visualize UUC risks in Croatia. In Croatia, 14 villages in the southwestern part of Brod-Posavina County are considered endemic for BEN. The aim of this ecological study is to map cancer risks and describe the case distribution of UUCs in Croatia at the county level during 2001-2011. METHODS A total of 608 incident cases from the Croatian National Cancer Registry were identified. Indirect standardization was employed to compute standardized incidence ratios (SIRs). RESULTS Counties with SIRs greater than 1 were concentrated around the agricultural region of Slavonia and the coastal region of Dalmatia. However, only Brod-Posavina County and Vukovar-Srijem County had a statistically significant risk of UUC development, where there were 390 and 210% more UUC cases observed than expected, respectively. Only unique to Brod-Posavina County, females were at higher risk (SIR 4.96; 95% CI 3.59-6.34) of developing UUCs than males (SIR 3.03; 95% CI 2.04-4.01) when compared to their Croatian counterparts. Although Brod-Posavina County only made up 3.7% of the total Croatian population (as of 2011), it had the highest frequency of incident UUC cases after the capital City of Zagreb. No elevated cancer risks were noted in the City of Zagreb, even after stratifying by sex. CONCLUSION Our findings suggest that Brod-Posavina County had the highest cancer risk for UUCs, especially among females, when compared to Croatia as a whole during 2001-2011. Given that a majority of BEN patients develop associated UUCs, concurrent screening programs for UUCs and BEN should be considered not only in endemic areas of BEN but also the surrounding rural areas and amongst at-risk groups such as those undergoing hemodialysis, who frequently develop UUCs, to help clarify BEN-UUC associations by identifying common risk factors while standardizing disease estimates across endemic regions for BEN.
Collapse
Affiliation(s)
- Danira Medunjanin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Zdenko Sonicki
- University of Zagreb, School of Medicine, Andrija Stampar School of Public Health, Zagreb, Croatia
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Ante Cvitkovic
- Institute for Public Health, Brodsko Posavska County, Slavonski Brod, Croatia.,Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.,Josip Juraj Strossmayer University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Sara Wagner Robb
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
28
|
Petrescu AM, Lukinich‐Gruia AT, Paunescu V, Ilia G. A Theoretical Study of the Molecular Coupled Structures of Aristolochic Acids and Humic Acid, Potential Environmental Contaminants. Chem Biodivers 2019; 16:e1900406. [PMID: 31568671 DOI: 10.1002/cbdv.201900406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alina M. Petrescu
- OncoGen CenterCounty Hospital ‘Pius Branzeu' 156 Liviu Rebreanu Blvd. 300736 Timisoara Romania
- West University of Timisoara 14 Pestalozzi Str. Timisoara RO-300115 Romania
| | | | - Virgil Paunescu
- OncoGen CenterCounty Hospital ‘Pius Branzeu' 156 Liviu Rebreanu Blvd. 300736 Timisoara Romania
- University of Medicine and Pharmacy ‘Victor Babes' 2 Eftimie Murgu Sq. 300041 Timisoara Romania
| | - Gheorghe Ilia
- West University of Timisoara 14 Pestalozzi Str. Timisoara RO-300115 Romania
- Institute of Chemistry ‘Coriolan Dragulescu' 24 Mihai Viteazu Blvd. 300223 Timisoara Romania
| |
Collapse
|
29
|
Yang HY, Yang CC, Wu CY, Wang LJ, Lu KL. Aristolochic Acid and Immunotherapy for Urothelial Carcinoma: Directions for unmet Needs. Int J Mol Sci 2019; 20:ijms20133162. [PMID: 31261684 PMCID: PMC6650931 DOI: 10.3390/ijms20133162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Urothelial carcinoma of the bladder (UCB) and upper tracts (UTUC) used to share management with similar principles. However, their genetic and epigenetic differences along with different responses to immunotherapy were recently identified, which are reminiscent of their distinct etiologies. Different from the variety of environmental factors relating to UCB, UTUC is best known for its close relationship with exposure to aristolochic acid (AA). AA is believed to cause its carcinogenicity through forming DNA adducts of deoxyadenosine-aristolactam, as well as A:T → T:A transversions in the TP53 tumor suppressor gene. Since recent findings suggested that cancers with higher somatic mutations are associated with better treatment responses upon immune checkpoint blockade, UTUC and AA-related biomarkers reasonably serve as good candidates, as well as a potential prognostic predictor for the flourishing immunotherapy. This review covers the current state of the literature on the clinical response of UTUC and UCB receiving immunotherapy and points out directions for refinement regarding patient selection.
Collapse
Affiliation(s)
- Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Jen Wang
- Department of Medical Imaging and Radiological Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Kun-Lin Lu
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| |
Collapse
|
30
|
Han J, Xian Z, Zhang Y, Liu J, Liang A. Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms. Front Pharmacol 2019; 10:648. [PMID: 31244661 PMCID: PMC6580798 DOI: 10.3389/fphar.2019.00648] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Aristolochic acids (AAs) are a group of toxins commonly present in the plants of genus Aristolochia and Asarum, which are spread all over the world. Since the 1990s, AA-induced nephropathy (AAN) and upper tract urothelial carcinoma (UTUC) have been reported in many countries. The underlying mechanisms of AAN and AA-induced UTUC have been extensively investigated. AA-derived DNA adducts are recognized as specific biomarkers of AA exposure, and a mutational signature predominantly characterized by A→T transversions has been detected in AA-induced UTUC tumor tissues. In addition, various enzymes and organic anion transporters are involved in AA-induced adverse reactions. The progressive lesions and mutational events initiated by AAs are irreversible, and no effective therapeutic regimen for AAN and AA-induced UTUC has been established until now. Because of several warnings on the toxic effects of AAs by the US Food and Drug Administration and the regulatory authorities of some other countries, the sale and use of AA-containing products have been banned or restricted in most countries. However, AA-related adverse events still occur, especially in the Asian and Balkan regions. Therefore, the use of AA-containing herbal remedies and the consumption of food contaminated by AAs still carry high risk. More strict precautions should be taken to protect the public from AA exposure.
Collapse
Affiliation(s)
- Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Jelaković B, Dika Ž, Arlt VM, Stiborova M, Pavlović NM, Nikolić J, Colet JM, Vanherweghem JL, Nortier JL. Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid. Semin Nephrol 2019; 39:284-296. [DOI: 10.1016/j.semnephrol.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Niu SW, Liang PI, Lin MY, Yeh SM, Zhen YY, Chang YH, Huang PC, Hung CC, Kuo IC, Lin HYH, Kuo MC, Li WM, Huang CN, Wu WJ, Chen LT, Chiu YW, Hwang SJ. Predominant global glomerulosclerosis in patients of upper urinary tract urothelial carcinoma with pre-existing renal function impairment is a predictor of poor renal outcomes. BMC Cancer 2019; 19:337. [PMID: 30961555 PMCID: PMC6454684 DOI: 10.1186/s12885-019-5414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background Incidence of renal dysfunction and risks of progression to end-stage renal disease (ESRD) were reported higher in upper urinary tract urothelial carcinoma (UTUC) than in renal cell carcinoma (RCC) patients after unilateral nephrectomy. Methods Totally 193 renal cancer patients, including 132 UTUC and 61 RCC, were studied to clarify whether the pathological changes of the kidney remnant removed from nephrectomy and the clinical factors might predict the risk of ESRD. Renal tubulointerstitial (TI) score and global glomerulosclerosis (GGS) rate were examined by one pathologist and two nephrologists independently under same histopathological criteria. Results The glomerular filtration rates at the time of surgery were lower in UTUC than RCC groups (p < 0.001). Average GGS score and average TI rate were higher in UTUC than in RCC groups (p < 0.001; p < 0.001). Competitive risk factor analysis revealed that abnormal GGS rate not related to age, predominant in UTUC with pre-existing renal function impairment, was a histopathological predictor of poor renal outcomes (creatinine doubling or ESRD) within 5 years in UTUC patients. Conclusion Pre-existing renal function and pathological change of kidney remnant in both UTUC and RCC have the value for prediction of renal outcomes. Electronic supplementary material The online version of this article (10.1186/s12885-019-5414-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-Wen Niu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shih-Meng Yeh
- Yozen clinic, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan
| | - Yu-Han Chang
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pin-Chia Huang
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chi Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Ching Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, 80708, Kaohsiung, Taiwan. .,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Ojeda AS, Ford SD, Gallucci RM, Ihnat MA, Philp RP. Geochemical characterization and renal cell toxicity of water-soluble extracts from U.S. Gulf Coast lignite. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1037-1053. [PMID: 30276587 DOI: 10.1007/s10653-018-0196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
An assortment of organic material can leach from lignite (low-rank coal) in water, and the water-soluble fraction from lignite has been associated with adverse health effects in areas of the Balkans. Recent efforts have been made to evaluate this hypothesis in other areas where lignite is in contact with groundwater like in the U.S. Gulf Coast region. In this study, five Gulf Coast lignite samples were extracted with water, and the water-soluble portion of the coal was then characterized by total organic carbon, UV-Vis spectroscopy, and gas chromatography/mass spectrometry. Additionally, human kidney cells (HK-2) were exposed to water-soluble extracts of Gulf Coast lignite to assess toxicity. Cell viability was measured, and a dose-response curve was used to generate IC50 values that ranged from 490 to 3000 ppm. The most toxic extract (Dolet Hills) was from Louisiana where lignite-derived organic material has been previously linked to high incidence of renal pelvic cancer. Concentrations of nephrotoxic metals (As, Cd, Co, Cu, Hg, Pb, V, Zn) were screened and were below those considered toxic to renal cells. We conclude that leachates from lignite do indeed have toxic affects on cultured human renal cells. Although the IC50 values are higher than the concentration of organic matter in the local groundwater, typically < 5 ppm, the effects of long-term low-level exposure is not known.
Collapse
Affiliation(s)
- A S Ojeda
- Department of Geology and Geophysics, The University of Oklahoma, Norman, OK, 73019, USA.
| | - S D Ford
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - R M Gallucci
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - R P Philp
- Department of Geology and Geophysics, The University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
34
|
Cetinkaya B, Unek G, Kipmen-Korgun D, Koksoy S, Korgun ET. Effects of Human Placental Amnion Derived Mesenchymal Stem Cells on Proliferation and Apoptosis Mechanisms in Chronic Kidney Disease in the Rat. Int J Stem Cells 2019; 12:151-161. [PMID: 30595007 PMCID: PMC6457703 DOI: 10.15283/ijsc18067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives The feature of chronic kidney failure (CKF) is loss of kidney functions due to erosion of healthy tissue and fibrosis. Recent studies showed that Mesenchymal stem cells (MSCs) differentiated into tubular epithelial cells thus renal function and structures renewed. Furthermore, MSCs protect renal function in CKF. Therefore, we aimed to investigate whether human amnion-derived mesenchymal stem cells (hAMSCs) can repair fibrosis and determine the effects on proliferation and apoptosis mechanisms in chronic kidney failure. Methods and Results In this study, rat model of CKF was constituted by applying Aristolochic acid (AA). hAMSCs were isolated from term placenta amnion membrane and transplanted into tail vein of rats. At the end of 30 days and 60 days of recovery period, we examined expressions of PCNA, p57 and Parp-1 by western blotting. Immunoreactivity of PCNA, Ki67, IL-6 and Collagen type I were detected by immunohistochemistry. Besides, apoptosis was detected by TUNEL. Serum creatinine and urea were measured. Expressions of PCNA and Ki67 increased in hAMSC groups compared with AA group. Furthermore, expressions of PARP-1 apoptosis marker and p57 cell cycle inhibitory protein increased in AA group significantly according to control, hAMSC groups and sham groups. IL-6 proinflammatory cytokine increased in AA group significantly according to control, hAMSCs groups and sham groups. Expressions of Collagen type I protein reduced in hAMSCs groups compared to AA group. After hAMSC treatment, serum creatinine and urea levels significantly decreased compared to AA group. After injection of hAMSC to rats, Masson’s Trichrome and Sirius Red staining showed fibrosis reduction in kidney. Conclusions According to our results hAMSCs can be ameliorate renal failure.
Collapse
Affiliation(s)
- Busra Cetinkaya
- Departments of Histology and Embryology.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | | | | | - Sadi Koksoy
- Medical Microbiology and Immunology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
35
|
Aristolochic Acids: Newly Identified Exposure Pathways of this Class of Environmental and Food-Borne Contaminants and its Potential Link to Chronic Kidney Diseases. TOXICS 2019; 7:toxics7010014. [PMID: 30893813 PMCID: PMC6468885 DOI: 10.3390/toxics7010014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids naturally produced by Aristolochia plants. These plants were widely used to prepare herbal remedies until AAs were observed to be highly nephrotoxic and carcinogenic to humans. Although the use of AA-containing Aristolochia plants in herbal medicine is prohibited in countries worldwide, emerging evidence nevertheless has indicated that AAs are the causative agents of Balkan endemic nephropathy (BEN), an environmentally derived disease threatening numerous residents of rural farming villages along the Danube River in countries of the Balkan Peninsula. This perspective updates recent findings on the identification of AAs in food as a result of the root uptake of free AAs released from the decayed seeds of Aristolochia clematitis L., in combination with their presence and fate in the environment. The potential link between AAs and the high prevalence of chronic kidney diseases in China is also discussed.
Collapse
|
36
|
Abstract
Tubulointerstitial nephritis (TIN) is a cause of acute kidney injury in children characterized histologically by an inflammatory cell infiltrate in the kidney interstitium. The most common causes of TIN in children include medications, infections, inflammatory disorders, and genetic conditions. TIN typically presents with nonoliguric acute kidney injury and may be associated with systemic symptoms, including fever, rash, and eosinophilia. The long-term prognosis is generally favorable, with full kidney recovery; however, some patients may develop progressive chronic kidney disease. Immunosuppressive therapy may be indicated for severe or prolonged disease.
Collapse
Affiliation(s)
- Rebecca L Ruebner
- Department of Pediatrics, Division of Nephrology, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3055, Baltimore, MD 21287, USA.
| | - Jeffrey J Fadrowski
- Department of Pediatrics, Division of Nephrology, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3055, Baltimore, MD 21287, USA
| |
Collapse
|
37
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
38
|
Afsar B, Elsurer Afsar R, Kanbay A, Covic A, Ortiz A, Kanbay M. Air pollution and kidney disease: review of current evidence. Clin Kidney J 2018; 12:19-32. [PMID: 30746128 PMCID: PMC6366136 DOI: 10.1093/ckj/sfy111] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Along with amazing technological advances, the industrial revolution of the mid-19th century introduced new sources of pollution. By the mid-20th century, the effects of these changes were beginning to be felt around the world. Among these changes, health problems due to environmental air pollution are increasingly recognized. At the beginning, respiratory and cardiovascular diseases were emphasized. However, accumulated data indicate that every organ system in the body may be involved, and the kidney is no exception. Although research on air pollution and kidney damage is recent, there is now scientific evidence that air pollution harms the kidney. In this holistic review, we have summarized the epidemiology, disease states and mechanisms of air pollution and kidney damage.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C.I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
39
|
Gruia AT, Oprean C, Ivan A, Cean A, Cristea M, Draghia L, Damiescu R, Pavlovic NM, Paunescu V, Tatu CA. Balkan endemic nephropathy and aristolochic acid I: an investigation into the role of soil and soil organic matter contamination, as a potential natural exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1437-1448. [PMID: 29288399 DOI: 10.1007/s10653-017-0065-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Aristolochic acids (AAs) are carcinogenic and nephrotoxic plant alkaloids present in Aristolochia species, used in traditional medicine. Recent biomolecular and environmental studies have incriminated these toxins as an etiological agent in Balkan endemic nephropathy (BEN), a severe kidney disease occurring in the Balkan Peninsula. The questions on how the susceptible populations are exposed to these toxins have not yet been clearly answered. Exposure to AAs through the food chain, and environmental pollution (soil/dust), could provide an explanation for the presence of BEN in the countries where no folkloric use of the plant has been documented (Bulgaria, Croatia). Additional exposure pathways are likely to occur, and we have shown previously that AAs can contaminate crop plants through absorption from soil, under controlled laboratory environment. Here, we attempt to provide additional support to this potential exposure pathway, by revealing the presence of AAI in soil and soil organic matter samples collected from BEN and non-BEN areas. The samples were processed in order to be analyzed by high-pressure liquid chromatography, and ion trap mass spectrometry. Our results showed the presence of AAI in small concentrations, both in BEN and non-BEN soils, especially where Aristolochia plants and seeds were present.
Collapse
Affiliation(s)
- Alexandra T Gruia
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Camelia Oprean
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, 300041, Timisoara, Romania.
| | - Alexandra Ivan
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Biology and Environmental Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | - Ada Cean
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Mirabela Cristea
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Lavinia Draghia
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | - Roxana Damiescu
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | | | - Virgil Paunescu
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | - Calin A Tatu
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Biology and Environmental Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| |
Collapse
|
40
|
Li W, Chan CK, Wong YL, Chan KKJ, Chan HW, Chan W. Cooking methods employing natural anti-oxidant food additives effectively reduced concentration of nephrotoxic and carcinogenic aristolochic acids in contaminated food grains. Food Chem 2018; 264:270-276. [PMID: 29853376 DOI: 10.1016/j.foodchem.2018.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that aristolochic acids (AA) produced naturally by a common weed Aristolochia clematitis in the cultivation fields is contaminating the food products in Balkan Peninsula and acting as the etiological agent in the development of Balkan endemic nephropathy. In this study, we investigated the combined use of natural anti-oxidative "food additives" and different cooking methods to find a solution for the widespread contamination of AA in food products. The results indicated that the addition of healthy dietary supplements (such as cysteine, glutathione, ascorbic acid, citric acid and magnesium) during cooking, is a highly efficient method in lowering the concentration of AA in the final food products. Because previous observation indicated one of the toxicological mechanisms by which AA exert its toxicity is to induce oxidative stress in internal organs, it is anticipated that these added anti-oxidants will also help to attenuate the nephrotoxicity of AA.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yee-Lam Wong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - K K Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ho Wai Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
41
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
42
|
Bhattacharjee P, Bera I, Chakraborty S, Ghoshal N, Bhattacharyya D. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase. Toxicon 2017; 138:1-17. [PMID: 28803055 DOI: 10.1016/j.toxicon.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 02/02/2023]
Abstract
Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Indrani Bera
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Subhamoy Chakraborty
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
43
|
Wu TK, Pan YR, Wang HF, Wei CW, Yu YL. Vitamin E (α‑tocopherol) ameliorates aristolochic acid‑induced renal tubular epithelial cell death by attenuating oxidative stress and caspase‑3 activation. Mol Med Rep 2017; 17:31-36. [PMID: 29115579 PMCID: PMC5780138 DOI: 10.3892/mmr.2017.7921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Aristolochic acid (AA) is a component identified in traditional Chinese remedies for the treatment of arthritic pain, coughs and gastrointestinal symptoms. However, previous studies have indicated that AA can induce oxidative stress in renal cells leading to nephropathy. α-tocopherol exists in numerous types of food, such as nuts, and belongs to the vitamin E isoform family. It possesses antioxidant activities and has been used previously for clinical applications. Therefore, the aim of the present study was to determine whether α-tocopherol could reduce AA-induced oxidative stress and renal cell cytotoxicity, determined by cell survival rate, reactive oxygen species detection and apoptotic features. The results indicated that AA markedly induced H2O2 levels and caspase-3 activity in renal tubular epithelial cells. Notably, the presence of α-tocopherol inhibited AA-induced H2O2 and caspase-3 activity. The present study demonstrated that antioxidant mechanisms of α-tocopherol may be involved in the increased survival rates from AA-induced cell injury.
Collapse
Affiliation(s)
- Tsai-Kun Wu
- China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| | - Ying-Ru Pan
- Division of Renal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsueh-Fang Wang
- Deparment of Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Deparment of Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Yung-Luen Yu
- China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
44
|
Herath C, Jayasumana C, De Silva PMCS, De Silva PHC, Siribaddana S, De Broe ME. Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy. Kidney Int Rep 2017; 3:271-280. [PMID: 29725631 PMCID: PMC5932118 DOI: 10.1016/j.ekir.2017.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
The beginning of the 21st century has seen the emergence of a new chronic tubulo-interstitial kidney disease of uncertain cause among agricultural communities in Central America and Sri Lanka. Despite many similarities in demography, presentation, clinical features, and renal histopathology in affected individuals in these regions, a toxic etiology has been considered mainly in Sri Lanka, whereas the predominant hypothesis in Central America has been that recurrent acute kidney injury (AKI) caused by heat stress leads to chronic kidney disease (CKD). This is termed the heat stress/dehydration hypothesis. This review attempts to demonstrate that there is sparse evidence for the occurrence of significant AKI among manual workers who are at high risk, and that there is little substantial evidence that an elevation of serum creatinine < 0.3 mg/dl in previously healthy people will lead to CKD even with recurrent episodes. It is also proposed that the extent of global warming over the last half-century was not sufficient to have caused a drastic change in the effects of heat stress on renal function in manual workers. Comparable chronic tubulo-interstitial kidney disease is not seen in workers exposed to heat in most tropical regions, although the disease is seen in individuals not exposed to heat stress in the affected regions. The proposed pathogenic mechanisms of heat stress causing CKD have not yet been proved in humans or demonstrated in workers at risk. It is believed that claims of a global warming nephropathy in relation to this disease may be premature and without convincing evidence.
Collapse
Affiliation(s)
- Chula Herath
- Department of Nephrology, Sri Jayewardenepura General Hospital, Sri Lanka
| | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | | | | | - Sisira Siribaddana
- Department of Pharmacology, Faculty of Medicine, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Marc E De Broe
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
45
|
Kasote DM, Jagtap SD, Thapa D, Khyade MS, Russell WR. Herbal remedies for urinary stones used in India and China: A review. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:55-68. [PMID: 28344029 DOI: 10.1016/j.jep.2017.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 05/13/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE The process of formation or appearance of a urinary stone anywhere in the renal tract is known as urolithiasis. It is a longstanding health problem, known to exist since early age of civilization. Records about symptoms, signs and treatment strategies of urinary stones diseases are found in the several ancient texts of traditional medicines such as Ayurveda, Traditional Chinese Medicine (TCM), Siddha and Unani. In Ayurveda, urolithiasis has been considered as one of the eight most troublesome diseases. Ayurvedic management and cure of urinary stone involves herbal formulas, alkaline liquids and surgical procedures. Whereas, TCM recommends polyherbal drugs, acupuncture and mexibustion for treatment of the urinary stones. Among these therapies, herbal remedies are in practice till today for the treatment and cure urinary stone diseases. MATERIALS AND METHODS A comprehensive review of the scientific literature about pathophysiology of urinary stones and antiurolithiatic plants was undertaken using the following bibliographic databases: MEDLINE/PubMed, Scopus, Web of Knowledge and Google Scholar. The search was conducted from publications from all years until Dec., 2015 by combination of the search terms and Boolean operators; 'urinary stone' OR 'kidney stone' AND 'plant' OR 'medicine' OR 'antiurolithiatic plants'. Outputs were restricted to those completed studies only published in English. In this review, literatures about plants which are used as diuretic and/or in treatment urinary tract infections have not also been considered. The Plant List and Royal Botanical Garden, Kew databases were used to authenticate botanical names of plants. Books and monographs published in English were used to collect information about historical records of antiurolithiatic plants. RESULTS Recent pharmacological interventions accredited ancient antiurolithiatic claims to several plants and their formulations. The majority of antiurolithiatic plants were found to either dissolve the stones or inhibit the process of urinary stone formation. Plants such as Phyllanthus niruri L. and Elymus repens (L.) Gould, as well as herbal products including 'Wu-Ling-San' formula, 'Cystone' and 'Herbmed' have been proved their utility as promising antiurolithiatic medicines in the different phases of clinical trials. In addition, some of the isolated phytochemicals such as berberine, lupeol, khelin, visnagin, 7-hydroxy-2',4',5'-trimethoxyisoflavone and 7-hydroxy-4'-methoxyisoflavone were reported to have potent antiurolithiatic activity. CONCLUSION In ancient medicinal texts, antiurolithiatic potential has been ascribed to several plants and their formulations. Present scientific studies provide scientific evidences for few of these claims however, they are insufficient to establish many of these plants and herbal formulations as therapeutic remedies for the treatment and management of urinary stones. Conversely, findings of pre-clinical and clinical studies about some plants and herbal formulations are promising, which underlines the utility of herbal remedies as alternative medicines for the treatment and management of urinary stones in the future.
Collapse
Affiliation(s)
- Deepak M Kasote
- Natural Products Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK; Herbal Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Pune Satara Road, Pune 411043, Maharashtra, India.
| | - Suresh D Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Pune Satara Road, Pune 411043, Maharashtra, India
| | - Dinesh Thapa
- Natural Products Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| | - Mahendra S Khyade
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B.N. Sarda Science College, Sangamner 422605, Maharashtra, India
| | - Wendy R Russell
- Natural Products Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| |
Collapse
|
46
|
Čulig B, Bevardi M, Bošnir J, Serdar S, Lasić D, Racz A, Galić A, Kuharić Ž. PRESENCE OF CITRININ IN GRAINS AND ITS POSSIBLE HEALTH EFFECTS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:22-30. [PMID: 28480413 PMCID: PMC5412229 DOI: 10.21010/ajtcam.v14i3.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Citrinin is a mycotoxin produced by several species of the genera Aspergillus, Penicillium and Monascus and it occurs mainly in stored grain. Citrinin is generally formed after harvest and occurs mainly in stored grains, it also occurs in other plant products. Often, the co-occurrence with other mycotoxins is observed, especially ochratoxin A, which is usually associated with endemic nephropathy. At the European Union level, systematic monitoring of Citrinin in grains began with the aim of determining its highest permissible amount in food. Thus, far the systematic monitoring of the above mentioned mycotoxin in Croatia is yet to begin. Materials and Methods: The main goal of this study was to determine the presence of Citrinin in grains sampled in the area of Međimurje, Osijek-Baranja, Vukovar-Srijem and Brod-Posavina County. For the purpose of identification and quantification of citrinin, high performance liquid chromatograph (HPLC) with fluorescence was used (Calibration curve k > 0.999; Intra assay CV = 2.1%; Inter assay CV = 4.3%; LOQ < 1 μg/kg). Results: From the area of Međimurje County, 10 samples of corn and 10 samples of wheat were analyzed. None of the samples contained Citrinin (<1 μg/kg). From the area of Osijek-Baranja and Vukovar-Srijem County, 15 samples from each County were analyzed. The mean value for the samples of Osijek-Baranja County was 19.63 μg/kg (median=15.8 μg/kg), while for Vukovar-Srijem County the mean value of citrinin was 14,6 μg/kg (median=1.23 μg/kg). From 5 analyzed samples from Brod-Posavina County, one of the samples contained citrinin in the amount of 23.8 μg/kg, while the registered amounts in the other samples were <1 μg/kg. Conclusion: The results show that grains from several Counties contain certain amounts of Citrinin possibly indicating a significant intake of citrinin in humans. It must be stated that grains and grain-based products are the basis of everyday diet of all age groups, especially small children, where higher intake of citrinin can occur. Consequently, we emphasize the need for systematic analysis of larger amount of samples, from both large grains and small grains, especially in the area of Brod-Posavina County, in order to obtain more realistic notion of citrinin contamination of grains and to asses the health risk in humans.
Collapse
Affiliation(s)
- Borna Čulig
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Martina Bevardi
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Jasna Bošnir
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Sonja Serdar
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Dario Lasić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Aleksandar Racz
- Zagreb University of Health Sciences, Mlinarska 38, Zagreb, Croatia
| | - Antonija Galić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Željka Kuharić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| |
Collapse
|
47
|
Jadot I, Declèves AE, Nortier J, Caron N. An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Int J Mol Sci 2017; 18:ijms18020297. [PMID: 28146082 PMCID: PMC5343833 DOI: 10.3390/ijms18020297] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
The term “aristolochic acid nephropathy” (AAN) is used to include any form of toxic interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA) as part of traditional phytotherapies (formerly known as “Chinese herbs nephropathy”), or by the environmental contaminants in food (Balkan endemic nephropathy). It is frequently associated with urothelial malignancies. Although products containing AA have been banned in most of countries, AAN cases remain regularly reported all over the world. Moreover, AAN incidence is probably highly underestimated given the presence of AA in traditional herbal remedies worldwide and the weak awareness of the disease. During these two past decades, animal models for AAN have been developed to investigate underlying molecular and cellular mechanisms involved in AAN pathogenesis. Indeed, a more-in-depth understanding of these processes is essential to develop therapeutic strategies aimed to reduce the global and underestimated burden of this disease. In this regard, our purpose was to build a broad overview of what is currently known about AAN. To achieve this goal, we aimed to summarize the latest data available about underlying pathophysiological mechanisms leading to AAN development with a particular emphasis on the imbalance between vasoactive factors as well as a focus on the vascular events often not considered in AAN.
Collapse
Affiliation(s)
- Inès Jadot
- Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium.
| | - Anne-Emilie Declèves
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons 7000, Belgium.
| | - Joëlle Nortier
- Nephrology Department, Erasme Academic Hospital and Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium.
| |
Collapse
|
48
|
Toxic environmental exposures and kidney health in children. Pediatr Nephrol 2016; 31:2043-54. [PMID: 26458883 PMCID: PMC4829489 DOI: 10.1007/s00467-015-3222-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
High-level exposures to a number of agents are known to have direct nephrotoxic effects in children. A growing body of literature supports the hypothesis that chronic, relatively low-level exposure to various nephrotoxicants may also increase the risk for chronic kidney disease (CKD) or accelerate its progression. In this review we highlight several environmental nephrotoxicants and their association with CKD in children and adolescents. We also discuss unique epidemiological challenges in the use of kidney biomarkers in environmental nephrotoxicology.
Collapse
|
49
|
Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90:2595-2615. [PMID: 27538407 PMCID: PMC5065591 DOI: 10.1007/s00204-016-1819-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/02/2023]
Abstract
Balkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN. Over the last 50 years, several hypotheses on the cause of BEN have been formulated, including mycotoxins, heavy metals, viruses, and trace-element insufficiencies. However, recent molecular epidemiological studies provide a strong case that chronic dietary exposure to aristolochic acid (AA) a principal component of Aristolochia clematitis which grows as a weed in the wheat fields of the endemic regions is the cause of BEN and associated UUC. One of the still enigmatic features of BEN that need to be resolved is why the prevalence of BEN is only 3-7 %. This suggests that individual genetic susceptibilities to AA exist in humans. In fact dietary ingestion of AA along with individual genetic susceptibility provides a scenario that plausibly can explain all the peculiarities of BEN such as geographical distribution and high risk of urothelial cancer. For the countries harbouring BEN implementing public health measures to avoid AA exposure is of the utmost importance because this seems to be the best way to eradicate this once mysterious disease to which the residents of BEN villages have been completely and utterly at mercy for so long.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
50
|
Jayasumana C, Orantes C, Herrera R, Almaguer M, Lopez L, Silva LC, Ordunez P, Siribaddana S, Gunatilake S, De Broe ME. Chronic interstitial nephritis in agricultural communities: a worldwide epidemic with social, occupational and environmental determinants. Nephrol Dial Transplant 2016; 32:234-241. [DOI: 10.1093/ndt/gfw346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/03/2016] [Indexed: 11/12/2022] Open
|