1
|
Celik MN, Yesildemir O. Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure. Curr Nutr Rep 2025; 14:14. [PMID: 39775248 PMCID: PMC11706864 DOI: 10.1007/s13668-024-00604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Endocrine disruptors (EDs) can mimic or interfere with hormones in the body, leading to non-communicable diseases, such as obesity, diabetes, and metabolic syndrome. Susceptibility to EDs increases during prenatal and postnatal life, a critical time window. This review aims to summarize the latest evidence on the relation of early life exposure to some EDs with obesity and the other metabolic disorders. RECENT FINDINGS: There is increasing evidence that early life exposure to EDs may impair adipogenesis by increasing the number and size of adipocytes, thereby increasing susceptibility to obesity in childhood. It is stated that exposure to EDs during the prenatal and postnatal period may raise the risk of type 2 diabetes in adulthood by disrupting glucose, lipid, and insulin homeostasis in the offspring. They can also accelerate the development of type 1 diabetes through various mechanisms, like immunomodulation, gut microbiota, and vitamin D pathways. There is a growing understanding that ED exposure during critical stages of life could play an important role in the development of obesity and metabolic disorders. We suggest setting national goals, global standards, and policies to reduce environmental exposure to pregnant and lactating women, and babies, considered sensitive populations.
Collapse
Affiliation(s)
- Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey.
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
2
|
Chen CY, Lee CC, Hsu HJ, Wu IW, Chen YC, Pan HC, Chen YT, Hsu CK, Sun CY. Long-term impacts of endocrine-disrupting chemicals exposure on kidney function: A community-based cohort study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104379. [PMID: 38307303 DOI: 10.1016/j.etap.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
This study explores the extended renal effects of endocrine-disrupting chemicals (EDCs) exposure, a linkage already established with adverse health outcomes, notably chronic kidney disease. To delve deeper, the Chang Gung Community Research Center conducted a longitudinal study with 887 participants. Among them, 120 individuals were scrutinized based on EDC scores, analyzing 17 urinary EDCs and renal function. Findings revealed elevated mono-(2-ethylhexyl) phthalate (MEHP) and bisphenol A levels in higher EDC exposure cases. MEHP notably correlated with increased urinary albumin-to-creatinine ratio (UACR), predicting a > 15% decline in estimated glomerular filtration rate. Higher MEHP levels also hinted at declining renal function. UACR escalation linked significantly with specific EDCs: MEHP, methylparaben, nonylphenol, and 4-tert-octylphenol. This research underscores enduring renal hazards tied to environmental EDC exposure, particularly MEHP, emphasizing the urgent call for robust preventive public health strategies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - I-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Republic of China; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei City 110301, Taiwan, Republic of China
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333423, Taiwan, Republic of China
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China.
| |
Collapse
|
3
|
Charytan DM, Wu W, Liu M, Li ZM, Kannan K, Trasande L, Pal VK, Lee S, Trachtman H. Organic Pollutant Exposure and CKD: A Chronic Renal Insufficiency Cohort Pilot Study. Kidney Med 2024; 6:100778. [PMID: 38435069 PMCID: PMC10907218 DOI: 10.1016/j.xkme.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Rationale & Objective This study aimed to assess the effect of exposure to organic pollutants in adults with chronic kidney disease (CKD). Study Design This was a cross-sectional and longitudinal analysis. Setting and Participants Forty adults enrolled in the Chronic Renal Insufficiency Cohort (CRIC). Exposures Exposure at baseline and longitudinally to various organic chemical pollutants. Outcomes The outcomes were as follows: death; composite of congestive heart failure, myocardial infarction, and stroke; event-free survival from kidney failure or ≥50% decline in estimated glomerular filtration rate (eGFR); and longitudinal trajectory of eGFR. Analytical Approach We used high-performance liquid chromatography with tandem mass spectrometry to measure urinary concentrations of bisphenols, phthalates, organophosphate pesticides, polycyclic aromatic hydrocarbons, melamine, and cyanuric acid at years 1, 3, and 5 after enrollment in the CRIC. Univariate and multivariable logistic regression were used to examine the association of individual compounds and classes of pollutants with the outcomes. The Cox proportional hazards model and Kaplan-Meier method were used to calculate hazard ratios and 95% CIs for each class of pollutants. Results Median baseline eGFR and urinary protein-to-creatinine ratio were 33 mL/min/1.73 m2 and 0.58 mg/g, respectively. Of 52 compounds assayed, 30 were detectable in ≥50% of participants. Urinary chemical concentrations were comparable in patients with CKD and healthy individuals from contemporaneous National Health and Nutrition Examination Survey cohorts. Phthalates were the only class with a trend toward higher exposure in patients with CKD. There was an inverse relationship between exposure and the eGFR slopes for bisphenol F, mono-(3-carboxypropyl) phthalate, mono-benzyl phthalate, mono-[2-(carboxymethyl)hexyl] phthalate, and melamine. There were no associations between organic pollutant exposure and cardiovascular outcomes. Limitations Small sample size, evaluation of single rather than combined exposures. Conclusions Simultaneous measurement of multiple organic pollutants in adults with CKD is feasible. Exposure levels are comparable with healthy individuals. Select contaminants, especially in the phthalate class, may be associated with more rapid deterioration in kidney function.
Collapse
Affiliation(s)
- David M. Charytan
- Division of Nephrology, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Wenbo Wu
- Division of Nephrology, Department of Medicine, New York University Grossman School of Medicine, New York, New York
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York
- Center for Data Science, New York University, New York, New York
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York
- Center for Data Science, New York University, New York, New York
| | - Zhong-Min Li
- Wadsworth Center, Environmental Health Sciences, New York State Department of Health, Albany, New York
| | - Kurunthachalam Kannan
- Wadsworth Center, Environmental Health Sciences, New York State Department of Health, Albany, New York
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York
| | - Vineet Kumar Pal
- Wadsworth Center, Environmental Health Sciences, New York State Department of Health, Albany, New York
| | - Sunmi Lee
- Wadsworth Center, Environmental Health Sciences, New York State Department of Health, Albany, New York
| | - Howard Trachtman
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Akash MSH, Rasheed S, Rehman K, Imran M, Assiri MA. Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions. RSC Adv 2023; 13:21613-21628. [PMID: 37476040 PMCID: PMC10354593 DOI: 10.1039/d3ra04285e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Bisphenol A (BPA) is a prominent endocrine-disrupting compound that shares structural similarities with estrogen. It is widely used, particularly in the production of food packaging, canned goods, and dental sealants. Of the eight bisphenol analogues, BPA is the most frequently utilized chemical in packaging food items, canned foods and dental sealants. However, chronic exposure to BPA can pose severe health risks, particularly in children. To ensure public safety, it is crucial to adopt proper precautionary measures to minimize BPA exposure. This article explores the toxic effects of bisphenols on various body systems and mechanisms, shedding light on their impact on the reproductive and endocrine system, obesity, albuminuria, and the generation of reactive oxygen species. Understanding the detrimental effects of bisphenols on these systems and mechanisms is vital for developing strategies to mitigate their harmful consequences. Furthermore, the article delves into the biotransformation processes of bisphenols, focusing on their occurrence in vertebrates, invertebrates, plants, and microorganisms. Investigating the biotransformation pathways provides valuable insights into the fate of bisphenols in various organisms and ecosystems. Lastly, the article emphasizes preventive measures to avoid bisphenol exposure and highlights the potential use of plant-based bioactive compounds for treatment strategies. By implementing effective preventive measures, such as utilizing BPA-free products and adopting safer alternatives, individuals can reduce their exposure to bisphenols. Additionally, exploring the potential of plant-based bioactive compounds as therapeutic agents offers promising avenues for addressing the adverse effects of bisphenols. The findings presented herein contribute to a better understanding of the novelty, significance, and potential implications of bisphenol research in the field, aiding in the development of safer practices and interventions to safeguard public health.
Collapse
Affiliation(s)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| | - Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| |
Collapse
|
5
|
Cao M, Chen J, Sun X, Xie F, Li B. Theoretical predictions and experimental verifications of SERS detection in colorants. RSC Adv 2023; 13:15086-15098. [PMID: 37207097 PMCID: PMC10189245 DOI: 10.1039/d3ra01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Synthetic colorants added during food processing not only fail to provide nutrients, but also can be harmful to human health when used in excess. To establish a simple, convenient, rapid and low-cost surface-enhanced Raman spectroscopy (SERS) detection method for colorants, an active surface-enhanced substrate of colloidal gold nanoparticles (AuNPs) was prepared in this study. The density functional theory (DFT) method of B3LYP with 6-31G(d) was applied to determine the theoretical Raman spectra of erythrosine, basic orange 2, 21 and 22, and to attribute their characteristic spectral peaks. The SERS spectra of the four colorants were pre-processed using local least squares (LLS) and morphological weighted penalized least squares (MWPLS), and multiple linear regression (MLR) models were established to quantify the four colorants in beverages. The results showed that the prepared AuNPs with a particle size of about 50 nm were reproducible and stable, with a good enhancement of the SERS spectrum of rhodamine 6G at 10-8 mol L-1. The theoretical Raman frequencies were in good agreement with the experimental Raman frequencies, and the peak position differences of the main characteristic peaks of the four colorants were within 20 cm-1. The MLR calibration models for the concentrations of the four colorants showed relative errors of prediction (REP) of 2.97-8.96%, root mean square errors of prediction (RMSEP) of 0.03-0.94, R2 of 0.973-0.999, and limits of detection of 0.06 μg mL-1. The present method could be used to quantify erythrosine, basic orange 2, 21, and 22, revealing its wide range of applications in food safety.
Collapse
Affiliation(s)
- Mingyan Cao
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Jiamin Chen
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Xiaohong Sun
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Feng Xie
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
- Guizhou Academy of Testing and Analysis Guiyang 550000 China
| | - Boyan Li
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| |
Collapse
|
6
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
7
|
Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci 2023; 24:ijms24054585. [PMID: 36902016 PMCID: PMC10002922 DOI: 10.3390/ijms24054585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.
Collapse
|
8
|
Al-Griw MA, Zaed SM, Hdud IM, Shaibi T. Vitamin D ameliorates liver pathology in mice caused by exposure to endocrine disruptor bisphenol A. Open Vet J 2023; 13:90-98. [PMID: 36777431 PMCID: PMC9897508 DOI: 10.5455/ovj.2023.v13.i1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background Increasing evidence suggests that bisphenol A (BPA) induces liver pathological changes. Further, an association between BPA and circulating vitamin D (VitD) levels were documented. Aim The role of VitD in BPA-induced liver pathological changes was explored in this study. Methods Healthy 4.5-week-old male (n = 35) and female (n = 35) Swiss albino mice were used in this study. The animals were randomly divided into control and treated groups. The control groups were further divided into sham (no treatment) and vehicle (corn oil), whereas the treated groups were also divided into VitD (2195 U/kg), BPA (50 μg/kg), and BPA + VitD (50 μg/kg + 2195 U/kg) groups. For 6 weeks (twice a week), the animals were dosed intraperitoneally. One week later (at 10.5-weeks-old), the animals were sacrificed for biochemical and histological analyses. Results BPA produced a considerable rise in the body and liver weights in both genders of mice when compared to control mice. BPA also caused significant increases in the liver damage markers alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT). It also induced liver histopathological changes, including higher apoptotic indices in both genders. On the other hand, treatment with VitD considerably reduced liver damage and slightly decreased the apoptotic index rate. The ALP, ALT, and GGT levels were also markedly reduced. VitD has been proven to have a protective effect on both genders. Conclusions According to our findings, VitD protects mice from BPA-induced liver damage, possibly via suppressing liver damage markers.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Suhila M. Zaed
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya,Corresponding Author: Taher Shaibi. Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya.
| |
Collapse
|
9
|
Dong Y, Chen L, Gao D, Li Y, Chen M, Ma T, Ma Y, Liu J, Zhang Y, Ma Q, Wang X, Song Y, Zou Z, Ma J. Endogenous sex hormones homeostasis disruption combined with exogenous phthalates exposure increase the risks of childhood high blood pressure: A cohort study in China. ENVIRONMENT INTERNATIONAL 2022; 168:107462. [PMID: 35998410 DOI: 10.1016/j.envint.2022.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The structural similarity between sex hormones and exogenous phthalates (PAEs) enabled them as disrupters in regulating childhood blood pressure (BP). We aim to explore the association of sex hormones homeostasis and PAEs metabolites with childhood high BP (HBP). METHODS A cohort study was conducted with 1416 children aged 7-13 years at baseline and with 824, 819, and 801 children completing three waves' follow up. Serum testosterone (TT) and estradiol (E2) in children during three consecutive waves of surveys were measured by radioimmunoassay, and then TT/E2 ratio calculated as TT divided by E2 were used to represent sex hormones homeostasis. Seven urinary PAEs metabolites were measured in children of first wave. The BP Z-Scores and HBP across waves were obtained by sex, age, and height specific percentiles. Log-binomial regression models with adjusted risk ratios (aRR) after adjusting for confounders were utilized. RESULTS The prevalence of HBP at the baseline survey was 25.5%, and increased from 26.3% in the first wave of survey to 35.0% in the third wave of survey. PAEs were negatively correlated with E2, while positively correlated with TT and TT/E2 ratio. A positive association of the serum TT levels, TT/E2 ratio, and total PAEs was found with HBP prevalence (in wave 1, 2 and 3 with TT (aRR): 1.63, 1.37 and 1.45; with TT/E2: 1.63, 1.42 and 1.20; with PAEs: 1.40, 1.32 and 1.32), persistent HBP (with TT (aRR): 2.19; TT/E2: 2.16; PAEs: 2.57), occasional HBP (with TT (aRR): 1.94; TT/E2: 1.72; PAEs: 1.38), and new HBP incidence (with TT (aRR): 1.44; TT/E2: 1.57; PAEs: 1.67), but E2 had a negative association with HBP phenotypes (HBP prevalence in wave 1, 2 and 3 (aRR): 0.77, 0.93, and 1.10; persistent HBP: 0.47; occasional HBP: 0.96; new HBP incidence: 0.81). The E2 and PAEs had antagonistic effects on HBP risks in children, particularly in girls and those with high BMI group, but the TT levels, TT/E2 ratio and PAEs had synergistic effects on HBP risks in children, particularly in boys and those with high BMI group. CONCLUSION Exogenous PAEs exposure and endogenous sex hormones homeostasis disruption independently increase the risks of HBP. Moreover, the exogenous PAEs exposure could disrupt the endogenous sex hormones homeostasis in children, thereby combinedly increased risks of childhood HBP.
Collapse
Affiliation(s)
- Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, 750004, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| |
Collapse
|
10
|
Wang Z, Sun Y, Gu L, Zhang T, Liu S, Wang S, Wang Z. Association of urinary phthalate metabolites with renal function among 9989 US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113930. [PMID: 35914397 DOI: 10.1016/j.ecoenv.2022.113930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to investigate the relationship between phthalate metabolites and renal function. METHODS We analyzed data from 9989 participants who took part in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Renal function was reflected by estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), and hypertension. We used generalized linear regression to estimate the correlation between covariate-adjusted creatinine-normalized phthalate metabolites and renal function. In addition, subgroup analysis was used to further compare the effect differences between various populations. RESULTS In the adjusted model, we found differential associations between phthalates and plasticizers metabolites and renal function. We found that Mono-benzyl phthalate, Mono-(3-carboxypropyl) phthalate, and Mono-(2-ethyl-5-oxohexyl) phthalate were positively associated with lower eGFR with odds ratios (95% confidence intervals) of 1.38 (1.14, 1.67), 1.30 (1.09, 1.57), and 1.27 (1.04, 1.53). While Mono-ethyl phthalate, Mono-(2-ethyl)-hexyl phthalate, Mono-isononyl phthalate and Mono-isobutyl phthalate were negatively associated with lower eGFR with OR values of 0.79 (0.69, 0.90), 0.64 (0.52, 0.78), 0.65 (0.51, 0.82) and 0.80 (0.63, 1.00), respectively. In addition, we found that Mono(carboxyoctyl) phthalate and Mono-isobutyl phthalate were negatively associated with hypertension with ORs of 0.86 (0.78, 0.96) and 0.84 (0.72, 0.98). But phthalates and plasticizers metabolites were not associated with UACR. CONCLUSION This study found differences in the effects of phthalates and plasticizers metabolites on kidney function, which may raise concerns about possible changes in kidney function resulting from exposure to current levels of plasticizers.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Yuhan Sun
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Shouyong Liu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China.
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
11
|
Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. FRONTIERS IN TOXICOLOGY 2022; 3:663372. [PMID: 35295127 PMCID: PMC8915840 DOI: 10.3389/ftox.2021.663372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL, United States
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
12
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [DOI: https:/doi.org/10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [PMID: 34718120 DOI: 10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-β, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-β, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, Alcalá de Henares, Spain
| | - Carmen Muñoz-Moreno
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Nuria Olea-Herrero
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Paula Reventun
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Biochemistry and Molecular Biology Area, Department of Basic Sciences of Health, Alcorcon, Spain
| | - Alba Antón-Cornejo
- Clinical Analysis Service, Principe de Asturias Hospital, Alcalá de Henares, Spain
| | - Marta González-Santander
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)/Facultad de Medicina Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marta Saura
- Universidad de Alcalá, Laboratory of Pathophysiology of the Vascular Wall, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, IRICYS, Department of System Biology/Physiology Unit, Alcalá de Henares, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain.
| |
Collapse
|
14
|
Nagarajan M, Raja B, Manivannan J. Exposure to a "safe" dose of environmental pollutant bisphenol A elevates oxidative stress and modulates vasoactive system in hypertensive rats. Hum Exp Toxicol 2021; 40:S654-S665. [PMID: 34797181 DOI: 10.1177/09603271211053285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to the prevalence of hypertension (one of the major risk factors of CVD) in the population, it is necessary to explore the adverse effects of daily tolerable and "safe" dose of bisphenol A (BPA) under hypertensive conditions. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME, 40 mg/kg b.w/day) induced hypertensive Wistar rats to BPA (50 μg/kg b.w/day) by oral administration along with appropriate controls for 30 days period. The results illustrate that a 'safe' dose of BPA does not influence the systolic blood pressure (SBP) and levels of circulatory biomarkers of tissue damage. On the other hand, BPA exposure significantly (p < 0.05) elevates the thiobarbituric acid reactive substances (TBARS) content in plasma and tissues (heart, aorta, liver and kidney) in hypertensive rats when compared with respective control (BPA alone exposed) rats. Similarly, a significant modulation of ROS generation in RBC, plasma nitric oxide (NO) level and angiotensin-converting enzyme (ACE) activity was observed only under hypertensive milieu. In conclusion, the observed adverse effects during 'safe' dose of BPA exposure are specific to the hypertensive condition. Therefore, a precise investigation to explore the effects of BPA exposure in vulnerable hypertensive populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| | - Boobalan Raja
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, 364050Annamalai University, Chidambaram, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Kang H, Lee JP, Choi K. Exposure to phthalates and environmental phenols in association with chronic kidney disease (CKD) among the general US population participating in multi-cycle NHANES (2005-2016). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148343. [PMID: 34126474 DOI: 10.1016/j.scitotenv.2021.148343] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to consumer chemicals has been associated with chronic kidney disease (CKD) among humans, but their associations with estimated glomerular filtration rate (eGFR) are inconsistent. Such observations may be due to potential bias caused by the method of urine dilution adjustment and lack of consideration for multiple chemical exposure in the association models. This study aimed to identify major urinary chemicals associated with CKD by applying an alternative adjustment method of urine dilution ('novel' covariate-adjusted creatinine adjustment vs 'traditional' creatinine adjustment) and with a mixture exposure concept in the association model. For this purpose, the adult participants of US National Health and Nutrition Examination Survey (NHANES) 2005-2016 (n = 9008) were used, and the associations of urinary exposure biomarkers of major consumer chemicals, e.g., phthalates, bisphenol A, benzophenone-3, and parabens, with CKD related parameters of eGFR and albumin-to-creatinine ratio (ACR), were assessed. The use of the novel covariate-adjusted creatinine standardization resulted in significant inverse associations with eGFR for most measured chemicals, unlike the results with the use of the conventional creatinine adjustment. Phthalate metabolites, such as monobutyl phthalate (MBP) and mono-benzyl phthalate (MBzP), were positively associated with ACR. Even in mixture exposure models using weighted quantile sum (WQS) regression, MBzP, metabolites of di-(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA) were revealed as major drivers of the association with eGFR or ACR. Results of sensitivity analyses with the subpopulation with normal eGFR range (n = 7041) were generally similar. Our observation suggests that exposure to benzyl butyl phthalate (BBP), DEHP, and BPA may be responsible for declined eGFR and increased ACR even at the exposure levels occurring among general adults.
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environmental, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Mahfouz N, Salah E, Armaneous A, Youssef MM, Abu Shady MM, Sallam S, Anwar M, Morsy S, Hussein J. Association between Bisphenol A Urine Level with Low-Grade Albuminuria in Egyptian Children and Adolescents. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The glomerulus is the accessible window to visualize the endothelial status of the whole body. Minimal level of albuminuria even below the cutoff point of microalbuminuria might be a marker of endothelial dysfunction. Exposure to Bisphenol A may be a risk factor of developing low-grade albuminuria in pediatrics. Aim: This study investigated the association of exposure to Bisphenol A and the presence of low-grade albuminuria. Methods: A cross-sectional study enrolling 158 children; 91 boys and 67 girls. Children with hepatic disease, kidney disease and endocrinopathies were excluded from the study. Urinary albumin and creatinine were measured in a first morning urine specimen. Urinary albumin/creatinine ratio was calculated in mg/gm and was stratified into: macroalbuminuria of ˃300mg/gm, microalbuminuria of 30-300mg/gm and low grade albuminuria of ˂30mg/gm. Urinary Bisphenol A was measured by high performance liquid chromatography using florescent detector. Results: Low grade albuminuria was detected in 141 participants (89.24%), while microalbuminuria and macroalbuminuria were detected in 15 (9.5%) and 2 (1.26%) participants, respectively. The total urinary Bisphenol A in candidates with low grade albuminuria was categorized into four quartiles (<0.285, 0.285–0.599, 0.600–1.215, >1.215) ng/mL and similarly their low grade albuminuria into (<2.0404, 2.0404–4.0385, 4.0386–7.3870, >7.3870) mg/gm. Children with the highest compared to the lowest quartile of urinary Bisphenol A had comparable mean of low grade albuminuria with insignificant P value. Conclusion: low grade albuminuria was found in 141 out of 158 children. A direct cause effect of exposure to Bisphenol A could not be proved. Further studies are needed to investigate the pathophysiology of low grade albuminuria and its significance
Collapse
|
17
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
18
|
Moreno-Gómez-Toledano R, Arenas MI, Vélez-Vélez E, Coll E, Quiroga B, Bover J, Bosch RJ. Bisphenol a Exposure and Kidney Diseases: Systematic Review, Meta-Analysis, and NHANES 03-16 Study. Biomolecules 2021; 11:1046. [PMID: 34356670 PMCID: PMC8301850 DOI: 10.3390/biom11071046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) is a compound that is especially widespread in most commonly used objects due to its multiple uses in the plastic industry. However, several data support the need to restrict its use. In recent years, new implications of BPA on the renal system have been discovered, which denotes the need to expand studies in patients. To this end, a systematic review and a meta-analysis was performed to explore existing literature that examines the BPA-kidney disease paradigm and to determine what and how future studies will need to be carried out. Our systematic review revealed that only few relevant publications have focused on the problem. However, the subsequent meta-analysis revealed that high blood concentrations of BPA could be a factor in developing kidney disease, at least in people with previous pathologies such as diabetes or hypertension. Furthermore, BPA could also represent a risk factor in healthy people whose urinary excretion is higher. Finally, the data analyzed from the NHANES 03-16 cohort provided new evidence on the possible involvement of BPA in kidney disease. Therefore, our results underline the need to carry out a thorough and methodologically homogeneous study, delving into the relationship between urinary and blood BPA, glomerular filtration rate, and urine albumin-to-creatinine ratio, preferably in population groups at risk, and subsequently in the general population, to solve this relevant conundrum with critical potential implications in Public Health.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| | - María I. Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Spain;
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, 28040 Madrid, Spain;
| | - Elisabeth Coll
- Nephrology Service, Fundació Puigvert, 08025 Barcelona, Spain;
| | - Borja Quiroga
- Nephrology Service, La Princesa Universitary Hospital, 28806 Madrid, Spain;
| | - Jordi Bover
- Nephrology Service, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Ricardo J. Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| |
Collapse
|
19
|
Priego AR, Parra EG, Mas S, Morgado-Pascual JL, Ruiz-Ortega M, Rayego-Mateos S. Bisphenol A Modulates Autophagy and Exacerbates Chronic Kidney Damage in Mice. Int J Mol Sci 2021; 22:7189. [PMID: 34281243 PMCID: PMC8268806 DOI: 10.3390/ijms22137189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous environmental toxin that accumulates in chronic kidney disease (CKD). Our aim was to explore the effect of chronic exposition of BPA in healthy and injured kidney investigating potential mechanisms involved. METHODS In C57Bl/6 mice, administration of BPA (120 mg/kg/day, i.p for 5 days/week) was done for 2 and 5 weeks. To study BPA effect on CKD, a model of subtotal nephrectomy (SNX) combined with BPA administration for 5 weeks was employed. In vitro studies were done in human proximal tubular epithelial cells (HK-2 line). RESULTS Chronic BPA administration to healthy mice induces inflammatory infiltration in the kidney, tubular injury and renal fibrosis (assessed by increased collagen deposition). Moreover, in SNX mice BPA exposure exacerbates renal lesions, including overexpression of the tubular damage biomarker Hepatitis A virus cellular receptor 1 (Havcr-1/KIM-1). BPA upregulated several proinflammatory genes and increased the antioxidant response [Nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1) and NAD(P)H dehydrogenase quinone 1 (Nqo-1)] both in healthy and SNX mice. The autophagy process was modulated by BPA, through elevated autophagy-related gene 5 (Atg5), autophagy-related gene 7 (Atg7), Microtubule-associated proteins 1A/1B light chain 3B (Map1lc3b/Lc3b) and Beclin-1 gene levels and blockaded the autophagosome maturation and flux (p62 levels). This autophagy deregulation was confirmed in vitro. CONCLUSIONS BPA deregulates autophagy flux and redox protective mechanisms, suggesting a potential mechanism of BPA deleterious effects in the kidney.
Collapse
Affiliation(s)
- Alberto Ruiz Priego
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - Emilio González Parra
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - Sebastián Mas
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - José Luis Morgado-Pascual
- Cellular Biology, Physiology and Immunology Department, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid Faculty of Medicine, 28040 Madrid, Spain;
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid Faculty of Medicine, 28040 Madrid, Spain;
| |
Collapse
|
20
|
Al-Griw MA, Marwan ZM, Hdud IM, Shaibi T. Vitamin D mitigates adult onset diseases in male and female mice induced by early-life exposure to endocrine disruptor BPA. Open Vet J 2021; 11:407-417. [PMID: 34722204 PMCID: PMC8541727 DOI: 10.5455/ovj.2021.v11.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022] Open
Abstract
Background During early development, environmental compounds can induce adult onset diseases and disrupt the circulating vitamin D (VitD) levels. Aim This study aimed to examine the protective role of VitD against the adverse effects of BPA on male and female mice. Methods A total of 60 male and female Swiss Albino mice (3 weeks old) were randomly divided into 5 groups; each consisted of 12 mice (6 males and 6 females) and was treated as follows: Group I received no treatment (sham control); Group II, sterile corn oil only (vehicle control); Group III, BPA (400 μg/kg); Group IV, VitD (2,195 IU/kg); and Group V, BPA + VitD. At 10.5 weeks, the animals were sacrificed to conduct histological examinations. Results BPA-exposed mice were found to have neurobehavioral abnormalities, heart, kidney, and lung diseases with increased apoptotic indices in both sexes. On the other hand, the treatment of BPA mice with VitD altered this scenario with modulated motor activity, enhanced body and organ weights, and preserved the heart, kidney, and lung architecture, alongside a decreased percent apoptotic index. Conclusion Our findings illustrate that VitD protects mice against BPA-induced heart, kidney, and lung abnormalities.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Zohour M. Marwan
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
21
|
Kobroob A, Peerapanyasut W, Kumfu S, Chattipakorn N, Wongmekiat O. Effectiveness of N-Acetylcysteine in the Treatment of Renal Deterioration Caused by Long-Term Exposure to Bisphenol A. Biomolecules 2021; 11:655. [PMID: 33946939 PMCID: PMC8145636 DOI: 10.3390/biom11050655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Human health hazards caused by bisphenol A (BPA), a precursor for epoxy resins and polycarbonate-based plastics, are well documented and are closely associated with mitochondrial impairment and oxidative imbalance. This study aimed to assess the therapeutic efficacy of N-acetylcysteine (NAC) on renal deterioration caused by long-term BPA exposure and examine the signaling transduction pathway involved. Male Wistar rats were given vehicle or BPA orally for 12 weeks then the BPA-treated group was subdivided to receive vehicle or NAC concurrently with BPA for a further 4 weeks, while the vehicle-treated normal control group continued to receive vehicle through to the end of experiment. Proteinuria, azotemia, glomerular filtration reduction and histopathological abnormalities caused by chronic BPA exposure were significantly reduced following NAC therapy. NAC also diminished nitric oxide and lipid peroxidation but enhanced renal glutathione levels, and counteracted BPA-induced mitochondrial swelling, increased mitochondrial reactive oxygen species production, and the loss of mitochondrial membrane potential. The benefit of NAC was related to the modulation of signaling proteins in the AMPK-SIRT3-SOD2 axis. The present study shows the potential of NAC to restore mitochondrial integrity and oxidative balance after long-term BPA exposure, and suggests that NAC therapy is an effective approach to tackle renal deterioration in this condition.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Wachirasek Peerapanyasut
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Orawan Wongmekiat
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
22
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
23
|
Jain RB. Concentrations of bisphenol A and its associations with urinary albumin creatinine ratios across the various stages of renal function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9946-9953. [PMID: 33164123 DOI: 10.1007/s11356-020-11535-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 05/26/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2003-2016 for US adults aged ≥ 20 years (N = 10,942) were used to study variabilities and associations with urinary albumin creatinine ratio (UACR) in the adjusted concentrations (AGM) of urine bisphenol A (BPA) across various stages of renal function (RF). RF stages considered were RF-1 (eGFR > 90 mL/min/1.73 m2), RF-2 (60 ≤ eGFR ≤ 90 mL/min/1.73 m2), RF-3A (45 ≤ eGFR < 60 mL/min/1.73 m2), and RF-3B/4 (15 ≤ eGFR < 45 mL/min/1.73 m2). Irrespective of gender, race/ethnicity, and smoking status, AGMs for BPA were located on U-curves with point of inflection at RF-2. In general, decreases from RF-1 to RF-2 were followed by increases from RF-2 to RF-3A and from RF-3A to RF-3B/4. For example, AGMs for males were observed to be 1.52, 1.48, 1.61, and 1.69 ng/mL at RF-1, RF-2, RF-3A, and RF-3B/4 respectively. A similar U-curve was observed for those without albuminuria but for those with albuminuria, BPA levels continued increasing until RF-3A before decreasing at RF-3B/4. Severe kidney dysfunction was found to be associated with statistically significantly higher concentrations of BPA in urine. Shape of concentration curves for BPA across RF stages is determined by the balance of actively mediated secretion and reabsorption operating on both sides of renal proximal tubules during each stage of RF. Shape of concentration curves for BPA across various stages of RF was age and concentration dependent. Associations between BPA and UACR were found to be negative (p = 0.02), positive (p = 0.23), negative (p = 0.53), and negative (p < 0.01) respectively at RF-1, RF-2, RF-3A, and RF-3B/4 respectively.
Collapse
|
24
|
Silva CCV, Jaddoe VWV, Sol CM, El Marroun H, Martinez‐Moral M, Kannan K, Trasande L, Santos S. Phthalate and Bisphenol Urinary Concentrations, Body Fat Measures, and Cardiovascular Risk Factors in Dutch School-Age Children. Obesity (Silver Spring) 2021; 29:409-417. [PMID: 33491307 PMCID: PMC7898506 DOI: 10.1002/oby.23082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the associations of urinary phthalates and bisphenols at age 6 years old with body fat and cardiovascular risk factors at 6 and 10 years and with the change from 6 to 10 years. METHODS Among 471 Dutch children, the phthalates and bisphenols urinary concentrations at 6 years and BMI, fat mass index, android fat mass, blood pressure, glucose, insulin, and lipids blood concentrations at 6 and 10 years were measured. RESULTS An interquartile range increase in di-n-octyl phthalate (DNOP) metabolites concentrations at 6 years was associated with an increased risk of overweight at 6 and 10 years (odds ratio: 1.44; 95% CI: 1.11-1.87, and 1.43; 95% CI: 1.09-1.86, respectively). Also, higher DNOP metabolites concentrations were associated with higher fat mass index at 6 years, higher systolic blood pressure at 10 years, a decrease in high-density lipoprotein cholesterol, and an increase in triglycerides concentrations from 6 to 10 years (P < 0.05). Higher total bisphenols and bisphenol A concentrations were associated with a decrease in BMI from 6 to 10 years (P < 0.01). CONCLUSIONS DNOP metabolites are associated with overweight and an adverse cardiovascular profile in childhood. Total bisphenols and bisphenol A are associated with a decrease in BMI from 6 to 10 years.
Collapse
Affiliation(s)
- Carolina C. V. Silva
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of PediatricsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Vincent W. V. Jaddoe
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of PediatricsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Chalana M. Sol
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of PediatricsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Hanan El Marroun
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of PediatricsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
| | - Maria‐Pilar Martinez‐Moral
- Wadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
- Department of Environmental Health SciencesSchool of Public HealthState University of New York at AlbanyAlbanyNew YorkUSA
| | - Kurunthachalam Kannan
- Wadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
- Department of Environmental Health SciencesSchool of Public HealthState University of New York at AlbanyAlbanyNew YorkUSA
- Faculty of ScienceDepartment of BiochemistryKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of PediatricsNew York University School of MedicineNew YorkNew YorkUSA
| | - Leonardo Trasande
- Department of PediatricsNew York University School of MedicineNew YorkNew YorkUSA
- Department of Environmental MedicineNew York University School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University School of MedicineNew YorkNew YorkUSA
- New York Wagner School of Public ServiceNew YorkNew YorkUSA
- New York University Global Institute of Public HealthNew YorkNew YorkUSA
| | - Susana Santos
- The Generation R Study GroupErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of PediatricsErasmus MC – Sophia Children’s HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
25
|
Tsai HJ, Wu PY, Huang JC, Chen SC. Environmental Pollution and Chronic Kidney Disease. Int J Med Sci 2021; 18:1121-1129. [PMID: 33526971 PMCID: PMC7847614 DOI: 10.7150/ijms.51594] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a global public health problem associated with high rates of morbidity and mortality due to end-stage renal disease and cardiovascular disease. Safe and effective medications to reverse or stabilize renal function in patients with CKD are lacking, and hence it is important to identify modifiable risk factors associated with worsening kidney function. Environmental pollutants, including metals, air pollutant, phthalate and melamine can potentially increase the risk of CKD or accelerate its progression. In this review, we discuss the epidemiological evidence for the association between environmental pollution and kidney disease, including heavy metals, air pollution and other environmental nephrotoxicants in the general population.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiun-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
27
|
Bisphenol A impaired cell adhesion by altering the expression of adhesion and cytoskeleton proteins on human podocytes. Sci Rep 2020; 10:16638. [PMID: 33024228 PMCID: PMC7538920 DOI: 10.1038/s41598-020-73636-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a chemical -xenoestrogen- used in food containers is present in the urine of almost the entire population. Recently, several extensive population studies have proven a significant association between urinary excretion of BPA and albuminuria. The alteration of glomerular podocytes or "podocytopathy" is a common event in chronic albuminuric conditions. Since many podocytes recovered from patients' urine are viable, we hypothesized that BPA could impair podocyte adhesion capabilities. Using an in vitro adhesion assay, we observed that BPA impaired podocyte adhesion, an effect that was abrogated by Tamoxifen (an estrogen receptor blocker). Genomic and proteomic analyses revealed that BPA affected the expression of several podocyte cytoskeleton and adhesion proteins. Western blot and immunocytochemistry confirmed the alteration in the protein expression of tubulin, vimentin, podocin, cofilin-1, vinculin, E-cadherin, nephrin, VCAM-1, tenascin-C, and β-catenin. Moreover, we also found that BPA, while decreased podocyte nitric oxide production, it lead to overproduction of ion superoxide. In conclusion, our data show that BPA induced a novel type of podocytopathy characterizes by an impairment of podocyte adhesion, by altering the expression of adhesion and cytoskeleton proteins. Moreover, BPA diminished production of podocyte nitric oxide and induced the overproduction of oxygen-free metabolites. These data provide a mechanism by which BPA could participate in the pathogenesis and progression of renal diseases.
Collapse
|
28
|
Jacobson MH, Wu Y, Liu M, Attina TM, Naidu M, Karthikraj R, Kannan K, Warady BA, Furth S, Vento S, Trachtman H, Trasande L. Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med 2020; 17:e1003384. [PMID: 33052911 PMCID: PMC7556524 DOI: 10.1371/journal.pmed.1003384] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exposure to environmental chemicals may be a modifiable risk factor for progression of chronic kidney disease (CKD). The purpose of this study was to examine the impact of serially assessed exposure to bisphenol A (BPA) and phthalates on measures of kidney function, tubular injury, and oxidative stress over time in a cohort of children with CKD. METHODS AND FINDINGS Samples were collected between 2005 and 2015 from 618 children and adolescents enrolled in the Chronic Kidney Disease in Children study, an observational cohort study of pediatric CKD patients from the US and Canada. Most study participants were male (63.8%) and white (58.3%), and participants had a median age of 11.0 years (interquartile range 7.6 to 14.6) at the baseline visit. In urine samples collected serially over an average of 3.0 years (standard deviation [SD] 1.6), concentrations of BPA, phthalic acid (PA), and phthalate metabolites were measured as well as biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane). Clinical renal function measures included estimated glomerular filtration rate (eGFR), proteinuria, and blood pressure. Linear mixed models were fit to estimate the associations between urinary concentrations of 6 chemical exposure measures (i.e., BPA, PA, and 4 phthalate metabolite groups) and clinical renal outcomes and urinary concentrations of KIM-1, NGAL, 8-OHdG, and F2-isoprostane controlling for sex, age, race/ethnicity, glomerular status, birth weight, premature birth, angiotensin-converting enzyme inhibitor use, angiotensin receptor blocker use, BMI z-score for age and sex, and urinary creatinine. Urinary concentrations of BPA, PA, and phthalate metabolites were positively associated with urinary KIM-1, NGAL, 8-OHdG, and F2-isoprostane levels over time. For example, a 1-SD increase in ∑di-n-octyl phthalate metabolites was associated with increases in NGAL (β = 0.13 [95% CI: 0.05, 0.21], p = 0.001), KIM-1 (β = 0.30 [95% CI: 0.21, 0.40], p < 0.001), 8-OHdG (β = 0.10 [95% CI: 0.06, 0.13], p < 0.001), and F2-isoprostane (β = 0.13 [95% CI: 0.01, 0.25], p = 0.04) over time. BPA and phthalate metabolites were not associated with eGFR, proteinuria, or blood pressure, but PA was associated with lower eGFR over time. For a 1-SD increase in ln-transformed PA, there was an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI: -0.75, -0.01; p = 0.04). Limitations of this study included utilization of spot urine samples for exposure assessment of non-persistent compounds and lack of specific information on potential sources of exposure. CONCLUSIONS Although BPA and phthalate metabolites were not associated with clinical renal endpoints such as eGFR or proteinuria, there was a consistent pattern of increased tubular injury and oxidative stress over time, which have been shown to affect renal function in the long term. This raises concerns about the potential for clinically significant changes in renal function in relation to exposure to common environmental toxicants at current levels.
Collapse
Affiliation(s)
- Melanie H. Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Yinxiang Wu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
| | - Mengling Liu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
| | - Teresa M. Attina
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Mrudula Naidu
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Bradley A. Warady
- Division of Nephrology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri, United States of America
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Suzanne Vento
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
- Wagner Graduate School of Public Service, New York University, New York, New York, United States of America
- School of Global Public Health, New York University, New York, New York, United States of America
| |
Collapse
|
29
|
Lee I, Park JY, Kim S, An JN, Lee J, Park H, Jung SK, Kim SY, Lee JP, Choi K. Association of exposure to phthalates and environmental phenolics with markers of kidney function: Korean National Environmental Health Survey (KoNEHS) 2015-2017. ENVIRONMENT INTERNATIONAL 2020; 143:105877. [PMID: 32645486 DOI: 10.1016/j.envint.2020.105877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Increasing number of consumer chemicals have been associated with chronic kidney disease (CKD) in human populations. However, many studies that investigated estimated glomerular filtration rate (eGRF) as an outcome reported inconsistent associations. In the present study, we employed a subset (n = 1292) of a nationally representative adult population participating in Korean National Environmental Health Survey (KoNEHS) 2015-2017, and assessed associations of major phthalates, bisphenol A (BPA), and parabens with both eGRF and albuminuria. In order to address a potential collider issue, a covariate-adjusted standardization method was applied, in addition to the conventional creatinine-correction, for adjusting urine dilution. Regardless of adjustment method, urinary DEHP metabolites showed significant positive associations with albumin to creatinine ratio (ACR). In addition, urinary metabolites of other heavy molecular weight phthalates such as MCOP and MCNP showed significant positive associations with ACR in the female population, but only following the covariate-adjusted standardization. For eGFR, conventional creatinine-correction resulted in positive associations with most of measured phthalate metabolites. However, with the covariate-adjusted standardization, most of positive associations with eGFR disappeared, and instead, significant negative associations were observed for MnBP, BPA, and EtP. Secondary analysis following stratification by CKD status, as well as principal component analysis (PCA), generally supported the observed associations. The present observations highlight the importance of urine dilution adjustment method for association studies on eGFR, and suggest potential effects of several consumer chemicals on adverse kidney function among humans.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea; Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sun Kyoung Jung
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Sung Yeon Kim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
McKinney C, Leroux B, Seminario A, Kim A, Liu Z, Samy S, Sathyanarayana S. A Prospective Cohort Study of Bisphenol A Exposure from Dental Treatment. J Dent Res 2020; 99:1262-1269. [PMID: 32579872 PMCID: PMC7649256 DOI: 10.1177/0022034520934725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Laboratory studies show that bisphenol A (BPA) leaches from bisphenol A-glycidyl methacrylate (bisGMA)-based dental materials. We aimed to quantify the extent to which children are exposed to BPA from dental treatment with bisGMA materials, by amount of treatment and type of sedation. We hypothesized that posttreatment urinary BPA (uBPA) concentrations would be higher among patients with more surfaces treated with bisGMA-based materials and among patients receiving general anesthesia compared with pretreatment concentrations. We conducted a prospective cohort study in 211 children, 4 to 12 y old, who had no prior resin-based dental treatment. We measured uBPA concentrations twice before treatment and at 2 d and 1, 4, and 16 wk posttreatment. We abstracted treatment data (surfaces treated) from the chart. We generated descriptive statistics and compared pre- and posttreatment uBPA concentrations using generalized estimating equations. Participants were 51% female, 46% non-White, and 74% publicly insured. The median age was 6 y. The mean number of tooth surfaces exposed to BisGMA materials (composites/sealants) was 7.5 (SD 5.3). Overall, uBPA concentrations were 86% higher (95% confidence interval [CI] 42% to 143%, P < 0.001) at 2 d posttreatment compared with pretreatment concentrations. The uBPA concentrations 2 d posttreatment versus pretreatment tended to be higher (112%, 95% CI 53% to 194%) among those receiving treatment on >4 surfaces than those receiving treatment on ≤4 surfaces (50%, 95% CI -2% to 130%). Two days after treatment, uBPA was significantly higher than pretreatment concentrations in children receiving nitrous oxide but not in those receiving general anesthesia. Among all findings, uBPA concentrations returned to baseline by 4 wk. Children experience short-term increases in BPA from dental treatment. The impact of relatively high, short-term BPA exposure on child health is unknown. Given the widespread use of BisGMA-based dental materials and that chronic low-dose BPA exposure may adversely affect child health, strategies that minimize BPA exposure could potentially improve child health.
Collapse
Affiliation(s)
- C.M. McKinney
- Seattle Children’s Research Institute, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - B.G. Leroux
- School of Dentistry, University of Washington, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - A.L. Seminario
- School of Dentistry, University of Washington, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - A. Kim
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Z. Liu
- School of Public Health, University of Washington, Seattle, WA, USA
| | - S. Samy
- School of Public Health, University of Washington, Seattle, WA, USA
| | - S. Sathyanarayana
- Seattle Children’s Research Institute, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
32
|
Haq MEU, Akash MSH, Sabir S, Mahmood MH, Rehman K. Human exposure to bisphenol A through dietary sources and development of diabetes mellitus: a cross-sectional study in Pakistani population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26262-26275. [PMID: 32361967 DOI: 10.1007/s11356-020-09044-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/23/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) is considered as xenoestrogen, a crucial component utilized for the manufacturing of plastic products. It has a potential to disrupt the endocrine system and induces endocrine-related metabolic disorders. We aimed to investigate the exposure of BPA in Pakistani population and its association with sociodemographic features, dietary habits, and risk factors of diabetes mellitus (DM). This cross-sectional study was conducted on 400 participants among which 61.75% participants were diabetic and 38.25% were non-diabetic. We developed a structured questionnaire, gathered sociodemographic data, and collected their urine and blood samples for the estimation of BPA and various biomarkers as risk factors of DM, respectively. Pearson correlation coefficient was determined for urinary BPA levels and DM risk factors. Urinary BPA values were adjusted for confounders. Sociodemographic data shown that urinary BPA level was significantly higher (p < 0.05) in obese people (BMI > 27) living in semi-urban and industrial areas. BPA was detectable in 75% of study participants. Urinary BPA level was found to be higher in diabetic participants compared with that of non-diabetics. A significant correlation is observed between BPA exposure and DM risk factors. We found that urinary BPA level was correlated with elevated levels of HbA1c (r = 0.6028), HOMA-IR (r = 0.5356), CRP (r = 0.6946), BUN (r = 0.6077), AST (r = 0.5151), FFA (r = 0.5759), TGs (r = 0.5608), and MDA (r = 0.6908). Hence, our study adds to the growing body of evidence supporting the role of BPA exposure as a risk factor for DM and may be associated with higher glycemic index, increased pro-inflammatory and oxidative stress biomarkers, dyslipidemia, and impaired functioning of the liver and kidney. Heating food in plastic containers and consumption of packed food items are the main sources of BPA exposure which are positively associated with DM.
Collapse
Affiliation(s)
- Muhammad Ejaz Ul Haq
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | | | - Shakila Sabir
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
33
|
Trace Level Detection of Bisphenol A Analogues and Parabens by LC-MS/MS in Human Plasma from Malaysians. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2581287. [PMID: 32420332 PMCID: PMC7210526 DOI: 10.1155/2020/2581287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
In this study, a novel LC-MS/MS method was designed using a simple extraction procedure that was scientifically developed to capture the most relevant bisphenol A (BPA) analogues (BPB, BPF, BPS, and BPAF) and parabens (propylparaben, ethylparaben, butylparaben, and methylparaben) in human plasma. The LC-MS/MS method was validated using US FDA guidelines, and all validation requirements were satisfactory. This is the method that allows for the detection of plasma bisphenols and parabens in one run and is also the fastest BPA analogue and paraben detection technique for human plasma. The method was used to analyze samples from 150 healthy volunteers from Malaysia who enrolled in the study. No BPB was detected in any of the volunteers; however, 99.3% were positive for BPF. Only 24% and 10.7% of volunteers were positive for BPAF and BPS, respectively. A high percentage of volunteers were negative for propylparaben, ethylparaben, butylparaben, and methylparaben (56%, 68%, 86.7%, and 83.3%, respectively). These results suggest that persons in Malaysia are exposed to different BPA analogues and parabens, from both the daily use of products (cosmetic and plastic products) and the environment.
Collapse
|
34
|
Taghizadeh Moghaddam S, Javadi A, Matin AA. Reduction of bisphenol A by
Lactobacillus acidophilus
and
Lactobacillus plantarum
in yoghurt. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sara Taghizadeh Moghaddam
- Department of Food Science and Technology Mamaghan branch Islamic Azad University Mamaghan53751-13135Iran
| | - Afshin Javadi
- Department of Food Hygiene Tabriz branch Islamic Azad University Tabriz51579-44533Iran
| | - Amir Abbas Matin
- Department of Chemistry Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz53751-71379Iran
| |
Collapse
|
35
|
Dong Y, Zhang Z, Liu H, Jia L, Qin M, Wang X. Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice. Am J Transl Res 2020; 12:649-659. [PMID: 32194912 PMCID: PMC7061848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
For the development of Lupus nephritis, environmental factors are reasoned to be one of the risk factors. In recent years, the role of bisphenol A (BPA) in kidney injury has attracted wide attention. In this study, we explored the nephrotoxicity and its possible mechanism of BPA exposure to lupus-prone MRL/lpr mice. Orally exposure of BPA increased serum anti-dsDNA level and urinary protein, and aggravated renal pathological injury in MRL/lpr mice. BPA increased the expression of NF-κB protein and activated the inflammatory response in both MRL/lpr and C57 mice. Unlike C57 mice, BPA exposure partially activated autophagy associated proteins, but the autophagy signaling pathway lacked the regulation of Becline1 and LC3-associated phagocytosis deficiency, and decreased Nrf2 protein expression in renal tissue of MRL/lpr mice. Therefore, exacerbating lupus nephritis induced by BPA exposure was associated with the activation of inflammation, abnormal autophagy and decreased antioxidant ability.
Collapse
Affiliation(s)
- Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical UniversityShenyang 110022, Liaoning Province, China
| | - Zeming Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical UniversityShenyang 110022, Liaoning Province, China
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical UniversityShenyang 110122, Liaoning Province, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical UniversityShenyang 110122, Liaoning Province, China
| | - Muting Qin
- Department of Rheumatology, Shengjing Hospital of China Medical UniversityShenyang 110022, Liaoning Province, China
| | - Xiaofei Wang
- Department of Rheumatology, Shengjing Hospital of China Medical UniversityShenyang 110022, Liaoning Province, China
| |
Collapse
|
36
|
Hall JM, Greco CW. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019; 9:cells9010013. [PMID: 31861598 PMCID: PMC7016921 DOI: 10.3390/cells9010013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Much of the early work on Nuclear Hormone Receptors (NHRs) focused on their essential roles as mediators of sex steroid hormone signaling in reproductive development and function, and thyroid hormone-dependent formation of the central nervous system. However, as NHRs display tissue-specific distributions and activities, it is not surprising that they are involved and vital in numerous aspects of human development and essential for homeostasis of all organ systems. Much attention has recently been focused on the role of NHRs in energy balance, metabolism, and lipid homeostasis. Dysregulation of NHR function has been implicated in numerous pathologies including cancers, metabolic obesity and syndrome, Type II diabetes mellitus, cardiovascular disease, hyperlipidemia, male and female infertility and other reproductive disorders. This review will discuss the dysregulation of NHR function by environmental endocrine disrupting chemicals (EDCs), and the associated pathological consequences of exposure in numerous tissues and organ systems, as revealed by experimental, clinical, and epidemiological studies.
Collapse
|
37
|
N-Acetylcysteine Attenuates the Increasing Severity of Distant Organ Liver Dysfunction after Acute Kidney Injury in Rats Exposed to Bisphenol A. Antioxidants (Basel) 2019; 8:antiox8100497. [PMID: 31640182 PMCID: PMC6826922 DOI: 10.3390/antiox8100497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Distant organ liver damage after acute kidney injury (AKI) remains a serious clinical setting with high mortality. This undesirable outcome may be due to some hidden factors that can intensify the consequences of AKI. Exposure to bisphenol A (BPA), a universal chemical used in plastics industry, is currently unavoidable and can be harmful to the liver. This study explored whether BPA exposure could be a causative factor that increase severity of remote liver injury after AKI and examined the preventive benefit by N-acetylcysteine (NAC) in this complex condition. Male Wistar rats were given vehicle, BPA, or BPA + NAC for 5 weeks then underwent 45 min renal ischemia followed by 24 h reperfusion (RIR), a group of vehicle-sham-control was also included. RIR not only induced AKI but produced liver injury, triggered systemic oxidative stress as well as inflammation, which increasing severity upon exposure to BPA. Given NAC to BPA-exposed rats diminished the added-on effects of BPA on liver functional impairment, oxidative stress, inflammation, and apoptosis caused by AKI. NAC also mitigated the abnormalities in mitochondrial functions, dynamics, mitophagy, and ultrastructure of the liver by improving the mitochondrial homeostasis regulatory signaling AMPK-PGC-1α-SIRT3. The study demonstrates that NAC is an effective adjunct for preserving mitochondrial homeostasis and reducing remote effects of AKI in environments where BPA exposure is vulnerable.
Collapse
|
38
|
Peerapanyasut W, Kobroob A, Palee S, Chattipakorn N, Wongmekiat O. Bisphenol A aggravates renal ischemia-reperfusion injury by disrupting mitochondrial homeostasis and N-acetylcysteine mitigates the injurious outcomes. IUBMB Life 2019; 72:758-770. [PMID: 31587481 DOI: 10.1002/iub.2175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Exposure to bisphenol A (BPA), a chemical generally used in consumer products, becomes a global public health concern, as humans are increasingly exposed through their daily consuming activities. Renal ischemia-reperfusion (RIR) is the major cause of acute kidney injury with high prevalence and increased long-term risks for multiple comorbidities and mortality. As the kidney is susceptible to these conditions, we explored whether the outcomes following the RIR episode could be influenced by BPA exposure, and investigated the therapeutic possibility by N-acetylcysteine (NAC) including the mechanisms involved. Three groups of male Wistar rats were fed with vehicle, BPA 5, and 50 mg/kg, respectively, for five consecutive weeks then underwent the sham operation. Three other groups with identical treatment underwent bilateral renal IR induction (45-min ischemia followed by 24-hr reperfusion). An additional RIR group was treated with BPA 50 plus NAC 100 mg/kg. BPA-exposed rats that encountered RIR episode showed dose-dependent worsening of RIR injury as evidenced by augmentations of renal dysfunction and histopathological abnormalities, oxidative stress, apoptosis, mitochondrial functional impairment, mitochondrial dynamic, and mitophagy disproportion compared with the vehicle-exposed RIR group. The NAC therapy considerably attenuated the exacerbated effects of BPA, which was associated with increased AMP-activated protein kinase (AMPK), PGC-1α, silent information regulator 3 or sirtuin 3 (SIRT3), and mitofusin 2 (MFN2) expressions but decreased Phosphorylated dynamin-related protein 1 (p-DRP1)/Dynamin-related protein 1 (DRP1), PTEN-induced putative kinase (PINK), and PARKIN expressions. These findings reveal the detrimental effect of repeated BPA exposure on the renal outcomes following the IR episode, and further demonstrate the protective efficacy of NAC by maintaining mitochondrial homeostasis, which is, partly, mediated through the AMPK-PGC-1α-SIRT3 axis.
Collapse
Affiliation(s)
- Wachirasek Peerapanyasut
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Science, University of Phayao, Phayao, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Orawan Wongmekiat
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Kim S, Uhm JY. Individual and Environmental Factors Associated with Proteinuria in Korean Children: A Multilevel Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183317. [PMID: 31505832 PMCID: PMC6766052 DOI: 10.3390/ijerph16183317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Proteinuria is a significant sign of childhood renal disorders. However, little is known about how sociodemographic and environmental factors are related to the presence of proteinuria among children and adolescents. This paper focuses on the prevalence of proteinuria and its risk factors among children and adolescents. This study conducted a secondary analysis of data from the 2016 Sample Schools Raw Data of Health Examination for School Students (SSRDHESS). Data collected from 27,081 students who had undergone a health screening were analyzed using Chi-square tests, independent t-tests, and multilevel logistic regression analysis. The prevalence of proteinuria was higher in the thin group than in the normal weight group (adjusted odds ratio (aOR) = 1.77; 95% confidence interval (CI) = 1.34–2.33) and lower in the overweight/obese group (aOR = 0.64; 95% CI = 0.51–0.80). Additionally, those in metropolitan and small–medium sized cities had a proteinuria prevalence about 1.5-fold higher than that of those in rural areas (95% CI = 1.08–2.02, 95% CI = 1.19–1.92, respectively). Proteinuria was associated with environmental pollution, including smoking rate, ambient particulate matter and heavy metals in drinking water (aOR = 1.10; 95% CI = 1.01–1.20; aOR = 1.06; 95% CI = 1.01–1.11, aOR = 1.001; 95% CI = 1.0001–1.0015). These results suggest that to improve health management effectiveness, kidney disease prevention efforts for children and adolescents should focus on geographical area and environmental pollution, as well as body weight as individual factors.
Collapse
Affiliation(s)
- Suhee Kim
- School of Nursing and Research Institute of Nursing Science, Hallym University, Chuncheon-si, Gangwon-do 24252, Korea.
| | - Ju-Yeon Uhm
- Department of Nursing, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
40
|
Mansouri V, Ebrahimpour K, Poursafa P, Riahi R, Shoshtari-Yeganeh B, Hystad P, Kelishadi R. Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18604-18614. [PMID: 31055746 DOI: 10.1007/s11356-019-05123-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Some obese individuals have normal metabolic profile, and some normal-weight persons have impaired metabolic status. Our hypothesis was that one of the potential underlying factors for such differences in cardiometabolic profiles might be the exposure to some environmental chemicals. This study aimed to investigate the association of serum bisphenol A (BPA) and phthalate metabolites with cardiometabolic risk factors in children and adolescents independent of their weight status. This case-control study was conducted on a subsample of 320 participants of a national school-based surveillance program in Iran. We measured serum BPA and phthalate metabolites by gas chromatography mass spectrophotometry. We compared them in children and adolescents with and without excess weight and those with and without cardiometabolic risk factors (80 in each group). We categorized the concentrations of chemicals to tertiles and then we applied logistic regression models after adjustment for potential confounding factors. The concentrations of BPA and some metabolites of phthalates were significantly different in the four groups studied. MEHP concentration was associated with higher odds ratio of cardiometabolic risk factors in participants with normal weight (OR, 95% CI 2.82, 1.001-7.91) and those with excess weight (OR, 95% CI 3.15, 1.27-7.83). MBP concentration increased the odds ratio of cardiometabolic risk factors only in normal weight children and adolescents (OR, 95% CI 6.59, 2.33-18.59, P < 0.001). In participants without cardiometabolic risk factor, MMP and MEHHP were significantly associated with increased risk of excess weight (OR, 95% CI 5.90, 1.21-28.75 and 7.82, 1.5-41.8, respectively). This study showed that the association of BPA and phthalate with cardiometabolic risk factors is independent of the weight status. Our findings suggest that the metabolic impairment in some normal weight children and normal metabolic profile of some obese children can be, in part, related to exposure to these environmental chemicals. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Mansouri
- Medical Student, Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran.
| |
Collapse
|
41
|
Kang H, Kim S, Lee G, Lee I, Lee JP, Lee J, Park H, Moon HB, Park J, Kim S, Choi G, Choi K. Urinary metabolites of dibutyl phthalate and benzophenone-3 are potential chemical risk factors of chronic kidney function markers among healthy women. ENVIRONMENT INTERNATIONAL 2019; 124:354-360. [PMID: 30660848 DOI: 10.1016/j.envint.2019.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chronic kidney disease (CKD) is a global health threat of growing concern. Recently, exposure to endocrine disrupting compounds (EDCs) such as phthalates and bisphenol A has been suggested as a risk factor for CKD. However, most epidemiological studies have focused on a limited number of urinary chemicals. This study aimed to identify chemical determinants of the urinary albumin-to-creatinine ratio (ACR), which is a kidney function marker, among multiple major EDCs including phthalate metabolites, bisphenols, and benzophenones in a Korean female population (20-45 years old, n = 441). First, the creatinine-adjusted urinary concentration of each urinary chemical was associated with ACR in a linear regression model (single-pollutant model). Then, compounds with a significant association with ACR in the single-pollutant model were added in a multi-pollutant model and evaluated for their association with ACR. Moreover, to prevent potential reverse causality due to impaired kidney function, quartile analyses were performed for the subjects with healthy renal function (ACR < 9.71 mg/g). In addition to creatinine adjustment, the statistical analysis was also conducted with specific gravity-adjusted concentrations of urinary chemicals, and the results were compared. Several compounds measured in the urine showed a significant association with ACR in the single-pollutant model. In the multi-pollutant model, however, only monobutyl phthalate and benzophenone-1, which are metabolites of dibutyl phthalate and benzophenone-3, respectively, showed significant positive associations. The association of these chemicals remained significant in a couple of the sensitivity analyses with a different adjustment of urine dilution and in a subpopulation with normal ACR. In conclusion, among dozens of urinary chemicals, monobutyl phthalate and benzophenone-1 consistently showed a strong association with urinary ACR. Confirmation of our observation in other human populations and experimental studies is warranted.
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jeongim Park
- Department of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Shirani M, Alizadeh S, Mahdavinia M, Dehghani MA. The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7688-7696. [PMID: 30666577 DOI: 10.1007/s11356-018-04119-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Recent studies have demonstrated that bisphenol A (BPA) has an adverse or toxic effect on the kidney. This study was designed to evaluate the ability of quercetin (QUER) to prevent BPA-induced mitochondrial dysfunction. Thirty-two healthy adult male Wistar rats were randomly divided into four groups, as follows: control group (olive oil), BPA group (250 mg/kg), BPA þ QUER group (250 mg/kg + 75 mg/kg), and QUER group (75 mg/kg). All treatments were orally administered for 14 days. Kidney mitochondria were isolated by administration of the different centrifugation method. Uric acid and creatinine were considered to be biomarkers of nephrotoxicity. The ameliorative effects of QUER on BPA toxicity were evaluated by determining the glutathione (GSH) content, CAT, the damage to the mitochondrial membrane, the reactive oxygen species (ROS), and lipid peroxidation (LPO). Administration of BPA significantly decreased kidney weight. In the kidney, BPA can deplete GSH content and CAT activity, increase the mitochondrial ROS formation, and enhances LPO and mitochondrial membrane damage. The pretreatment of mitochondria with QUER has the ability to reduce the toxic effects of BPA in isolated mitochondria. These findings suggest a potential role for QUER in protecting mitochondria from oxidative damage in kidney tissue.
Collapse
Affiliation(s)
- Maryam Shirani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
43
|
Amin MM, Ebrahim K, Hashemi M, Shoshtari-Yeganeh B, Rafiei N, Mansourian M, Kelishadi R. Association of exposure to Bisphenol A with obesity and cardiometabolic risk factors in children and adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:94-106. [PMID: 30203985 DOI: 10.1080/09603123.2018.1515896] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, the association of exposure to Bisphenol A (BPA) with obesity and cardiometabolic risk factors was investigated on 132 children and adolescents aged 6-18 years living in Isfahan, Iran. Potential contributors to BPA exposure were assessed by a questionnaire. Total BPA was detected in urine samples of all participants without significant difference in boys and girls. The mean body mass index (BMI) and waist circumference (WC) increased significantly across the BPA tertiles (p for trend = < 0.001). Similar trend was documented for systolic blood pressure (SBP) and diastolic blood pressure (DBP) as well as fasting blood sugar. The risk of obesity was 12.48 times higher in participants in the third tertile of BPA than in others (95% CI: 3.36-46.39, p < 0.001). The current study showed significant association between BPA exposure with obesity and some cardiometabolic risk factors in children and adolescents, however, further longitudinal studies are necessary to evaluate the clinical effects of this finding. Abbreviations: BMI: Body Mass Index; BPA: Bisphenol A; BSTFA: N, O-Bistrifluoroacetamide; CDC: Centers for Disease Control and Prevention; CI: Circumference Interval; DBP: Diastolic Blood Pressure; DLLME: Dispersive liquid-liquid microextraction method; FBS: Fasting Blood Glucose; HDL: high-density lipoprotein cholesterol were; LDL: low-density lipoprotein cholesterol; OR: Odd Ratio; PA: Physical Activity; SBP: Systolic Blood Pressure; TC: total cholesterol; TG: triglycerides; WC: Waist Circumference.
Collapse
Affiliation(s)
- Mohammad Mehdi Amin
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Karim Ebrahim
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Hashemi
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
- c Student Research Committee , Isfahan University of Medical Sciences , Isfahan , Iran
- d Environmental Health engineering, school of health , Kerman university of medical sciences , Kerman , Iran
| | - Bahareh Shoshtari-Yeganeh
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nasim Rafiei
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Marjan Mansourian
- e Department of Biostatistics and Epidemiology, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Roya Kelishadi
- f Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
44
|
Tong S, Yang S, Li T, Gao R, Hu J, Luo T, Qing H, Zhen Q, Hu R, Li X, Yang Y, Peng C, Li Q. Role of neutrophil extracellular traps in chronic kidney injury induced by bisphenol-A. J Endocrinol 2019; 241:JOE-18-0608.R2. [PMID: 30798321 DOI: 10.1530/joe-18-0608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
Bisphenol-A (BPA) is a common environmental pollutant, and exposure to it is associated with proteinuria and may predict the progression of chronic kidney disease,however, the mechanism is not clear. Neutrophil extracellular traps (NETs) is a DNA skeleton coated with various proteases, and it is associated with various autoimmune nephritis. In this study, we examine whether NETs is involved in BPA-induced chronic kidney injury. In vivo, BPA exposure resulted in impaired renal function and altered renal morphology, including glomerular mesangial matrix expansion and increased renal interstitial fibroblast markers. Meanwhile, more dsDNA can be detected in the serum, and the NETs-associated proteins, MPO and citH3 were deposited in the renal system. In vitro, BPA and NETs treatment caused podocyte injury, a loss of marker proteins, and disorder in the actin skeleton. After NETs inhibition via DNase administration, BPA-induced injuries were significantly relieved. In conclusion, the increase of NETosis in circulation and the renal system during BPA exposure suggests that NETs may be involved in BPA-induced chronic kidney injury.
Collapse
Affiliation(s)
- Shiyun Tong
- S Tong, Department of Endocrinology , The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- S Yang, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Li
- T Li, Department of Endocrinology, Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, ChengDu, China
| | - Rufei Gao
- R Gao, Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China, Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- J Hu, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China., Chongqing, 400016, China
| | - Ting Luo
- T Luo, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- H Qing, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, ChongQing, China
| | - Qianna Zhen
- Q Zhen, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renzhi Hu
- R Hu, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Xuan Li
- X Li, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Yi Yang
- Y Yang, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Chuan Peng
- C Peng, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Qifu Li
- Q Li, Department of Endocrine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Peerapanyasut W, Kobroob A, Palee S, Chattipakorn N, Wongmekiat O. Activation of Sirtuin 3 and Maintenance of Mitochondrial Integrity by N-Acetylcysteine Protects Against Bisphenol A-Induced Kidney and Liver Toxicity in Rats. Int J Mol Sci 2019; 20:ijms20020267. [PMID: 30641872 PMCID: PMC6358790 DOI: 10.3390/ijms20020267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial impairment ensuing from oxidative imbalance is related to adverse consequences of bisphenol A (BPA), a globally utilized industrial chemical. Recent evidence reveals sirtuin 3 (SIRT3) as a key regulator of mitochondrial homeostasis; however, its role in BPA toxicity remains unidentified. This study explored the potential benefits of N-acetylcysteine (NAC), an effective antioxidant, against BPA toxicity in the kidney and liver, and examined whether SIRT3 was involved in this condition. Male Wistar rats were fed with vehicle, BPA (5, 50 mg/kg), BPA (50 mg/kg) plus NAC (100 mg/kg) and were evaluated after 5 weeks. NAC treatment significantly diminished BPA-induced kidney and liver functional disorders, histopathological alterations, oxidative stress, and apoptosis. The increased mitochondrial reactive oxygen species, the disrupted membrane potential, the swelling, and the impaired mitochondrial fission caused by BPA were also mitigated upon concurrent treatment with NAC. The benefits of NAC were associated with enhanced AMPK-PGC-1α-SIRT3 signaling protein expressions, which led to decreased acetylation of superoxide dismutase 2 (SOD2) and increased expression of mitochondrial antioxidant manganese superoxide dismutase (MnSOD). The findings demonstrate the efficacy of NAC in protecting BPA-induced kidney and liver injury, which, in part, is mediated by activating SIRT3 and improving mitochondrial function, dynamics, and oxidative imbalance.
Collapse
Affiliation(s)
- Wachirasek Peerapanyasut
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Orawan Wongmekiat
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
46
|
Abstract
Increasing scientific evidence suggests potential adverse effects on children's health from synthetic chemicals used as food additives, both those deliberately added to food during processing (direct) and those used in materials that may contaminate food as part of packaging or manufacturing (indirect). Concern regarding food additives has increased in the past 2 decades in part because of studies that increasingly document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. This report focuses on those food additives with the strongest scientific evidence for concern. Further research is needed to study effects of exposure over various points in the life course, and toxicity testing must be advanced to be able to better identify health concerns prior to widespread population exposure. The accompanying policy statement describes approaches policy makers and pediatricians can take to prevent the disease and disability that are increasingly being identified in relation to chemicals used as food additives, among other uses.
Collapse
Affiliation(s)
- Leonardo Trasande
- Departments of Pediatrics, Environmental Medicine, and Health Policy, School of Medicine, New York University, New York, New York
| | - Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | |
Collapse
|
47
|
Chen MC, Wang JH, Chu CH, Cheng CF. Differential prevalence of hematuria and proteinuria with socio-demographic factors among school children in Hualien, Taiwan. Pediatr Neonatol 2018; 59:360-367. [PMID: 29221788 DOI: 10.1016/j.pedneo.2017.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pediatric hematuria/proteinuria is a risk factor for chronic kidney disease in later life, and school urinary screening can detect asymptomatic glomerulonephritis in the early stage. This study aimed to evaluate the prevalence of hematuria/proteinuria and its association with different socio-demographic factors among school children in 2013 in Hualien, Taiwan. METHODS A cross-sectional study was conducted among first, fourth, and seventh graders. Health examination results and urinalysis data were analyzed. Logistic regression models were used to the simultaneously analyze the association between the prevalence of hematuria/proteinuria and socio-demographic factors. RESULTS A total of 9544 students were included. The overall prevalence of hematuria and proteinuria was 4.1% and 5.7%, respectively. Students who were females, of a high grade level, of aboriginal ethnicity, and living in rural areas had higher hematuria risk (all P < 0.001) than other students. Underweight students had low odds ratio (0.53) of hematuria (P < 0.001). Seventh-grade students had higher odds ratio (3.63) of proteinuria than first grade students (P < 0.001). Students with both parents of aboriginal descent had lower odds ratio (0.81) of proteinuria than those with non-aboriginal parents (P = 0.044). Only higher grade level students had significantly higher risk of combined hematuria and light proteinuria (odds ratio: 10.67) and heavy proteinuria with/without hematuria (odds ratio: 3.22) than first graders. CONCLUSION Increased hematuria/proteinuria prevalence was noted in our county as compared to prior studies. Hematuria/proteinuria was significantly associated with gender, grade level, body mass index, ethnicity, and residence urbanization. Our data can be used for future longitudinal dataset collection to prevent pediatric renal disorders in Taiwan.
Collapse
Affiliation(s)
- Ming-Chun Chen
- Department of Pediatrics, Hualien Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Hsiang Chu
- Department of Pediatrics, Hualien Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Hualien Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Research, Tzu Chi General Hospital, Hualien, Taiwan; Department of Pediatrics, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
48
|
Association between polymorphisms in genes encoding estrogen receptors (ESR1 and ESR2) and excreted bisphenol A levels after orthodontic bracket bonding: a preliminary study. Prog Orthod 2018; 19:19. [PMID: 29961922 PMCID: PMC6026583 DOI: 10.1186/s40510-018-0219-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background Bisphenol A (BPA) is released from orthodontic composites used for bracket bonding. Genetic variations could modify the metabolism of this chemical within the organism. Considering that free BPA binds to estrogen receptors causing harmful effects to health, the present in vivo study aimed to evaluate the association between genetic polymorphisms in genes encoding estrogen receptors (ESR1 and ESR2) and excreted BPA levels in orthodontic patients. Methods Quantification of BPA levels in the urine of 16 patients was performed in a gas chromatograph mass spectrometer before (T0), at 24 h (T1), and 1 week (T2) after bracket bonding. DNA was extracted from saliva, and one genetic polymorphism in ESR1 (rs2234693) and two in ESR2 (rs4986938 and rs1256049) were analyzed by real-time PCR. Increases in BPA levels in the urine at T1 and T2 were grouped according to the genotype, and mean differences were compared by unpaired T test or Mann-Whitney test according to the normality of the data. The established alpha was 5%. Results BPA levels increased significantly at T1 and T2. There were no statistically significant differences in the increases in BPA levels according to the genotype for any genetic polymorphism (P > 0.05), at neither 24 h nor 1 week after bracket bonding. Conclusions The results suggested that there are no association between excreted BPA levels after bracket bonding and the evaluated genetic polymorphisms in ESR1 and ESR2. Further research should be performed in order to confirm these results.
Collapse
|
49
|
Assessment of monomer release from 3 different fissure sealants. J Appl Biomater Funct Mater 2018; 16:90-96. [DOI: 10.5301/jabfm.5000380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Light-activated resin-based dental fissure sealants are the most widely accepted among clinicians. The objective of this study was to determine monomer release of 3 different light-curing fissure sealants in vitro: Control Seal (Voco, Germany), Fissurit FX (Voco, Germany) and R&D Series Fıssured Nova (Imicrly, Turkey). Methods: Each material was polymerized with a curing light: Valo Cordless (Ultradent) LED in standard mode for 20 seconds (n = 27) and 40 seconds (n = 27) and in Xtra power mode (plasma arc) for 3 seconds (n = 27). High-performance liquid chromatography (HPLC) was used to measure the amount of monomers released over 1, 3 and 7 days. Results: Plasma arc groups showed the highest release of monomers at 1, 3 and 7 days in the 3 fissure sealant groups (p<0.001). The greatest release of bisphenol A glycidyl methacrylate (bis-GMA) determined for R&D Series Fissured Nova both with LED 20 seconds and LED 40 seconds and for Control Seal was with the plasma arc. With time, release of the monomer was reduced for all polymerization systems. Conclusions: Efficiency of the polymerization system and applying the recommended curing time for light-activated resin-based dental materials are very important to protect the patient from potential hazards of residual monomers.
Collapse
|
50
|
Renal and hepatic effects following neonatal exposure to low doses of Bisphenol-A and 137Cs. Food Chem Toxicol 2018; 114:270-277. [PMID: 29477810 DOI: 10.1016/j.fct.2018.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
137-Cesium (137Cs) is one of the most important distributed radionuclides after a nuclear accident. Humans are usually co-exposed to various environmental toxicants, being Bisphenol-A (BPA) one of them. Exposure to IR and BPA in early life is of major concern, due to the higher vulnerability of developing organs. We evaluate the renal and hepatic effects of low doses of ionizing radiation (IR) and BPA. Sixty male mice (C57BL/6J) were randomly assigned to six experimental groups (n=10) and received a single subcutaneous dose of 0.9% saline solution, 137Cs and/or BPA on postnatal day 10: control, BPA (25 μg/kgbw), Cs4000 (4000 Bq 137Cs/kgbw), Cs8000 (8000 Bq 137Cs/kgbw), BPA/Cs4000 and BPA/Cs8000. At the age of two months, urines (24h) and blood samples were collected from animals of each group to determine biochemical parameters. Finally, kidneys and liver were removed to quantify DNA damage (8-OHdG), as well as to determine CYP1A2 mRNA expression. Data suggest that both BPA and 137Cs induced renal and liver damage evidenced by oxidative stress. However, when there is a co-exposure, it seems that there are compensatory mechanisms that may reverse the damage induced by each toxic itself. Notwithstanding, more studies are necessary to better understand the synergistic mechanisms behind.
Collapse
|