1
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
2
|
Liu Y, Ashmawy S, Latta L, Weiss AV, Kiefer AF, Nasr S, Loretz B, Hirsch AKH, Lee S, Lehr CM. pH-Responsive Dynaplexes as Potent Apoptosis Inductors by Intracellular Delivery of Survivin siRNA. Biomacromolecules 2023; 24:3742-3754. [PMID: 37523746 DOI: 10.1021/acs.biomac.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Gene knockdown by siRNA offers an unrestricted choice of targets and specificity based on the principle of complementary Watson-Crick base pairing with mRNA. However, the negative charge, large molecular size, and susceptibility to enzymatic degradation of siRNA impede its successful transfection, hence limiting its potential for therapeutic use. The development of efficient and safe siRNA transfection agents is, therefore, critical for siRNA-based therapy. Herein, we developed a protein-based biodynamic polymer (biodynamer) that showed potential as a siRNA transfection vector, owing to its excellent biocompatibility, easy tunability, and dynamic polymerization under acidic environments. The positively charged biodynamers formed stable dynamic nanocomplexes (XL-DPs, hydrodynamic diameter of approximately 104 nm) with siRNA via electrostatic interactions and chemical cross-linking. As a proof of concept, the optimized XL-DPs were stable in physiological conditions with serum proteins and demonstrated significant pH-dependent size change and degradability, as well as siRNA release capability. The minimal cytotoxicity and excellent cellular uptake of XL-DPs effectively supported the intracellular delivery of siRNA. Our study demonstrated that the XL-DPs in survivin siRNA delivery enabled potent knockdown of survivin mRNA and induced notable apoptosis of carcinoma cells (2.2 times higher than a lipid-based transfection agent, Lipofectamine 2000). These findings suggested that our XL-DPs hold immense potential as a promising platform for siRNA delivery and can be considered strong candidates in the advancement of next-generation transfection agents.
Collapse
Affiliation(s)
- Yun Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Salma Ashmawy
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | - Alexander F Kiefer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Sarah Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Longitudinal associations of serum survivin with the severity and prognosis of community-acquired pneumonia patients. Respir Investig 2023; 61:84-94. [PMID: 36336629 DOI: 10.1016/j.resinv.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Survivin is a member of apoptosis inhibitor proteins that evokes cellular proliferation and inhibits apoptosis. However, the role of survivin in community-acquired pneumonia (CAP) patients remains to be firmly established. The aim of this cohort study was to evaluate the correlations of serum survivin with the severity and prognosis of CAP patients. METHODS This research included 470 eligible CAP patients. Serum fasting samples were drawn from patients, and serum survivin was measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, demographic characteristics and clinical information were collected. The prognosis of CAP patients was tracked. RESULTS Serum survivin gradually decreased with elevated CAP severity scores. Additionally, the correlative analysis suggested that serum survivin was associated with many clinical characteristics. Furthermore, mixed linear and logistic regression models indicated that serum survivin was negatively associated with severity. After adjusting for confounding factors, logistic regression analyses found that lower serum survivin on admission elevated the risks of mechanical ventilation, vasoactive agent usage, longer hospital stays, ICU admission, and even death during hospitalization. Serum survivin in combination with CAP severity scores elevated the predictive capacities for severity and death in CAP patients compared with a single indicator. CONCLUSION On admission, there are inverse dose-response associations of serum survivin with severity and poor prognosis in CAP patients, demonstrating that serum survivin may be involved in the pathophysiology process of CAP. Serum survivin may serve as a potential biomarker for disease evaluation and prognosis in CAP patients.
Collapse
|
4
|
Zhan P, Lu X, Li Z, Wang WJ, Peng K, Liang NN, Wang Y, Li J, Fu L, Zhao H, Xu DX, Tan ZX. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol 2022; 113:109359. [DOI: 10.1016/j.intimp.2022.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
5
|
Ali SA, Kadry MO, Hammam O, Hassan SA, Abdel-Megeed RM. Ki-67 pulmonary immunoreactivity in silver nanoparticles toxicity: Size-rate dependent genotoxic impact. Toxicol Rep 2022; 9:1813-1822. [PMID: 36518381 PMCID: PMC9742976 DOI: 10.1016/j.toxrep.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 12/08/2022] Open
Abstract
UNLABELLED Engineered nanoparticles have been recently utilized in numerous domains particularly, silver nanoparticles (AgNPs). Nonetheless, the possible side effects resulting from AgNPs exposure are not fully clarified. The present study was designed to clarify the toxicity of AgNPs on lung tissue. Furthermore, therapeutic impact of Glycosmis pentaphylla (G. pentaphylla) and Casimiroa edulis (C. edulis) leaves extracts in addition to mucilage and protein (the purified compounds from C. edulis) was investigated against AgNPs induced pulmonary toxicity. Male Swiss albino mice were administered AgNPs orally in two different particle sizes (20 nm and 100 nm) for one month and was further treated via G. pentaphylla, C. edulis, mucilage and protein in a dose of 500 mg/ kg for three weeks. Biochemical, molecular, immunohistochemistry, and histopathological investigations were further assessed. An obvious alteration in oxidative stress biomarkers as well as mRNA gene expression of both survivin and matrix metalloproteinase (MMP-9) was recorded in AgNPs intoxicated group. In addition to, exploration of positive nuclei for Ki-67 was also observed upon AgNPs intoxication. Data declared a significant improvement in the assessed parameters upon G. pentaphylla, C. edulis, mucilage and protein treatment. In conclusion; G. pentaphylla and C. edulis extracts could be considered as a promising candidate as therapeutic regimen against pulmonary toxicity induced via AgNPs due to their enrichment with different active constituents. PRACTICAL APPLICATIONS Due to the expansion of AgNPs applications, it is urgent to investigate their toxic impact associated with release of free silver ions. Different particle sizes of AgNPs can induce various alterations in cellular biochemical parameters, mRNA gene expression, histopathological and immunohistopathological examination. Herein, this natural products extracts are used for the first time as promising therapeutic regimen to ameliorate the toxic effect in AgNPs intoxicated lung tissue in mice model as a result of the bioactive metabolites, especially flavonoids and polyphenolic compounds.
Collapse
Affiliation(s)
- Sanaa A. Ali
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mai O. Kadry
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Egypt
| | - Sohair A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
6
|
Amelioration of Endotoxin-Induced Acute Lung Injury and Alveolar Epithelial Cells Apoptosis by Simvastatin Is Associated with Up-Regulation of Survivin/NF-kB/p65 Pathway. Int J Mol Sci 2022; 23:ijms23052596. [PMID: 35269738 PMCID: PMC8910433 DOI: 10.3390/ijms23052596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Disruption of the alveolar−endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10−40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar−endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.
Collapse
|
7
|
Ahmed AS, Mona MM, Abdel‑Kareem MA, Elsisy RA. Potential of rosmarinic acid to ameliorate toxic effects of diethyl methoxy thio‑phosphoryl thio‑succinate on albino wistar rats' lung, mast cell infiltration inhibitory pathway. Food Sci Nutr 2021; 9:3593-3601. [PMID: 34262720 PMCID: PMC8269576 DOI: 10.1002/fsn3.2316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Malathion (MA) is a widely used pesticide in agriculture. It can cause toxicity in different organs of the body. Rosmarinic acid (RO) is found in rosemary extract that can be absorbed through gastrointestinal tract mucosa with potent antioxidant, and anti-inflammatory potential. The current study is designed to investigate the potential of RO to protect the lung after MA administration. Forty albino rats were allocated equally to four groups. C-group received corn oil. RO-group received RO orally. MA-group received MA. MA-RO-group received RO in addition to MA. After three weeks the lungs were dissected for histopathological and biochemical investigations. MA-group showed manifestations of severe inflammation with inflammatory cells infiltration in the lung. MA-RO-group showed limited inflammatory cell infiltration. C-group and RO-group appeared with weak anti-survivin immunoreactivity. MA-group showed strong positive immunoreactivity. The reactivity was weakly positive in MA-RO-group. MA-group showed a significant decrease in SP-D gene expression in comparison to the C-group, in addition, MA-RO-group showed a significant increase in SP-D expression. In conclusion, the current study approves that oral administration of MA causes lung injury as it has inflammatory effects, caused by oxidative stress and reports the potential of RO to protect lung tissue against toxic effects of MA through its anti-inflammatory, antioxidant, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Ahmed S. Ahmed
- Anatomy and Embryology DepartmentCollege of MedicineTanta UniversityTantaEgypt
| | - Marwa M. Mona
- Medical Biochemistry and Molecular Biology DepartmentCollege of MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Mona A. Abdel‑Kareem
- Anatomy and Embryology DepartmentCollege of MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Rasha A. Elsisy
- Anatomy and Embryology DepartmentCollege of MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| |
Collapse
|
8
|
Zeng Y, Wang J, Huang Q, Ren Y, Li T, Zhang X, Yao R, Sun J. Cucurbitacin IIa: A review of phytochemistry and pharmacology. Phytother Res 2021; 35:4155-4170. [PMID: 33724593 DOI: 10.1002/ptr.7077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Cucurbitacin IIa was first found in plants and it belongs to tetracyclo triterpenoids. It is one of the most important active components in cucurbitaceae plants. Studies have found that cucurbitacin IIa has a variety of pharmacological effects, such as antitumor, antiinflammatory, antibacterial, antihepatitis B virus, inhibition of human immunodeficiency virus replication, and antidepressant effect. However, the underlying mechanisms, intracellular targets, and structure-activity relationships of cucurbitacin IIa remain to be completely elucidated. This review summarizes the current advances concerning the phytochemistry and pharmacology of cucurbitacin IIa. Electronic databases such as PubMed, Web of Science, Google Scholar, Science Direct, and CNKI were used to find relevant information about cucurbitacin IIa using keywords such as "Cucurbitacin IIa," "Pharmacology," and "Phytochemistry." These pharmacological effects involve the actin cytoskeleton aggregation, the regulation of JAK2/STAT3, ERBB-MAPK, CaMKII α/CREB/BDNF signal pathways, as well as the regulation of survivin, caspases, and other cell cycles, apoptosis, autophagy-related cytokines, and kinases. It has high development and use value.
Collapse
Affiliation(s)
- Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renchuan Yao
- Sichuan Provincial Engineering Research Center for Fermented Traditional Chinese Medicine, Jianyang, China
| | - Jilin Sun
- Sichuan Fu Zheng Pharmaceutical Co. Ltd., Jianyang, China
| |
Collapse
|
9
|
Hassan M, Abuhamdah S, Abdel-Bary M, Wahman M, Abd-Elhamid T, Beshay M, Mosallam K, Elsadek B. Circulating and local nuclear expression of survivin and fibulin-3 genes in discriminating benign from malignant respiratory diseases: correlation analysis. Biosci Rep 2021; 41:BSR20203097. [PMID: 33226065 PMCID: PMC7789905 DOI: 10.1042/bsr20203097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/10/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
Survivin is an inhibitor of apoptosis as well as a promoter of cell proliferation. Fibulin-3 is a matrix glycoprotein that displays potential for tumor suppression or propagation. The present study aimed to validate the expression levels of survivin and fibulin-3 in benign and malignant respiratory diseases. This case-control study included 219 patients categorized into five groups. Group A included 63 patients with lung cancer, group B included 63 patients with various benign lung diseases, group D included 45 patients with malignant pleural mesothelioma (MPM), and group E included 48 patients with various benign pleural diseases. Group C included 60 healthy individuals (control group). Serum survivin and fibulin-3 levels were measured by ELISA, whereas their nuclear expressions in the lung and pleura were assessed via Western blot analysis. The results showed significantly higher survivin serum levels and significantly lower fibulin-3 levels in group A compared with in group B and controls (P<0.001). There were significantly higher serum levels of survivin and fibulin-3 in group D compared with in group E and controls (P<0.001), consistent with observed nuclear survivin and fibulin-3 expression levels. Fibulin-3 was determined to have higher value than survivin in discriminating lung cancer from MPM (P<0.05). Survivin and fibulin-3 could be useful diagnostic markers for lung and pleural cancers, and fibulin-3 expression was particularly useful in differentiating lung cancer from MPM.
Collapse
Affiliation(s)
- Mohammed H. Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sawsan Abuhamdah
- College of Pharmacy, Al Ain University, Abu Dhabi, UAE
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohamed Abdel-Bary
- Department of Cardio-Thoracic Surgery, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed Wahman
- Department of Oncology and Nuclear Medicine, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Morris Beshay
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, Bielefeld, Germany
| | - Karam Mosallam
- Department of Cardio-Thoracic Surgery, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Bakheet E.M. Elsadek
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt
| |
Collapse
|
10
|
Abdo W, Elmadawy MA, Abdelhiee EY, Abdel-Kareem MA, Farag A, Aboubakr M, Ghazy E, Fadl SE. Protective effect of thymoquinone against lung intoxication induced by malathion inhalation. Sci Rep 2021; 11:2498. [PMID: 33510276 PMCID: PMC7843975 DOI: 10.1038/s41598-021-82083-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023] Open
Abstract
Malathion is considered one of the vastest pesticides use all over the world. Malathion-inhalation toxicity commonly occurred in many occupational farmers. Therefore, this study aimed to ameliorate the possible malathion-induced pulmonary toxicity through thymoquinone administration. Forty animals were used to conduct our study, divided into five groups; G1 control group, G2 thymoquinone (50 mg/kg) group, G3 malathion group (animals inhaled 100 mg/ml/m3 for 15 min for 5 days/week for three weeks), G4 and G5 were subjected to the same malathion inhalation protocol beside oral thymoquinone administration at doses of 25 and 50 (mg/kg), respectively. Malathion-inhalation induced marked systemic toxicity as hepatotoxicity and nephrotoxicity associated with increased serum hepatic and renal enzymes, and hypersensitivity accompanied with increased total IgE serum level. The lung showed severe interstitial pneumonia associated with severe vascular damage and marked eosinophil infiltration. Moreover, the lung showed a marked decrease in the pulmonary surfactant protein, especially SP-D gene expression. While, thymoquinone treatment to malathion-inhaled animals decremented the following; hepatic enzymes and renal function tests, total IgE as well as pneumonia and hypersensitivity pathological features, and augmented the expression of SP-D. In conclusion, thymoquinone could be potentially used in pest control workers to ameliorate the systemic and pulmonary intoxication caused by one of the most field-used pesticides.
Collapse
Affiliation(s)
- Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Mostafa A Elmadawy
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Mona A Abdel-Kareem
- Anatomy and Embryology Department, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Amira Farag
- Anatomy and Embryology Department, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Banha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| | - Emad Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| |
Collapse
|
11
|
A heparin derivatives library constructed by chemical modification and enzymatic depolymerization for exploitation of non-anticoagulant functions. Carbohydr Polym 2020; 249:116824. [PMID: 32933671 DOI: 10.1016/j.carbpol.2020.116824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Non-anticoagulant biological functions of heparin-based drugs have drawn increasing attention. However, the exploration into the non-anticoagulant activities of various low molecular weight heparins was associated with bleeding risks in clinical practice and often led to controversial conclusions due to the structural differences. In this study, we aimed to establish a process to produce a library of heparin derivatives with structural diversity and reduced/abolished anticoagulant activity through the combination of chemical modifications and enzymatic cleavage of heparins. The depolymerization characteristics of various selectively modified heparin derivatives by three heparinases were comprehensively analyzed. The order of periodate treatment and heparinase-I depolymerization was proved to significantly change the structural characteristics of the oligosaccharide products. Finally, among several heparin derivatives that screened in the bleomycin-induced cell apoptosis model, the low molecular weight partially 6-O-/N-desulfated heparins showed the strongest anti-apoptotic activities. This study provided a useful approach for future development of novel heparin-derivative medications.
Collapse
|
12
|
Zhang Y, Feng Q, Zhou S, Chen H. Downregulation of serum survivin correlates with increased inflammation, enhanced disease severity and worse prognosis in sepsis patients. Medicine (Baltimore) 2020; 99:e20272. [PMID: 32664056 PMCID: PMC7360292 DOI: 10.1097/md.0000000000020272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine the role of survivin in sepsis patients.Serum samples of 288 sepsis patients and 290 healthy individuals (as healthy controls) were collected 24 hours within enrollment. Serum survivin and inflammatory cytokines were detected by enzyme-linked immunosorbent assay, and biochemical indexes were recorded. In sepsis patients, acute pathologic and chronic health evaluation II score and sequential organ failure assessment score were evaluated, and 28-day mortality was recorded.Survivin was greatly decreased in sepsis patients compared to healthy controls (P < .001) and it predicted decreased sepsis risk (area under curve (AUC): 0.921, 95% confidence interval (CI): 0.900-0.942). For clinical characteristics of sepsis patients, survivin was negatively correlated with acute pathologic and chronic health evaluation II score (P < .001), score and sequential organ failure assessment score (P < .001), serum creatinine (P < .001), white blood cell (P = .037), C-reactive protein (P < .001), tumor necrosis factor-α (P < .001), interleukin (IL)-1β (P < .001), IL-6 (P < .001), and IL-8 (P < .001), while positively correlated with albumin (P < .001). For prognosis of sepsis patients, survivin was decreased in deaths compared to survivors (P < .001), and it predicted decreased death risk (AUC: 0.625, 95% CI: 0.558-0.692). Meanwhile, accumulating mortality was decreased in survivin high patients compared to survivin low patients (P = .006). However, multivariate logistic regression revealed survivin was not an independent predictive factor for 28-day mortality, indicating it might interact with other independent factors to affect prognosis of sepsis patients.Survivin was decreased in sepsis patients and predicted decreased sepsis risk. Meanwhile, survivin was correlated with declined inflammation, reduced disease severity, and favorable prognosis in sepsis patients.
Collapse
Affiliation(s)
- Yanmin Zhang
- Emergency Department, HanDan Central Hospital (East), Handan, China
| | - Qiang Feng
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Shaoying Zhou
- Emergency Department, HanDan Central Hospital (East), Handan, China
| | - Huimin Chen
- Emergency Department, HanDan Central Hospital (East), Handan, China
| |
Collapse
|
13
|
Ahmed RF, Moussa RA, Eldemerdash RS, Zakaria MM, Abdel-Gaber SA. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1483-1492. [PMID: 32133068 PMCID: PMC7043873 DOI: 10.22038/ijbms.2019.14069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Aspiration is a common cause of acute lung injury (ALI), which lacks an effective treatment. Inflammation and oxidative stress play key roles in ALI development. Silymarin is an active extract of Silybum marianum plant seeds (milk thistle). Silymarin has potent anti-inflammatory and antioxidant effects; however its role in aspiration induced ALI has not been investigated. The aim of this study is to investigate the role of silymarin in the treatment of hydrochloric acid (HCl) aspiration induced ALI and explores its mechanisms of action. MATERIALS AND METHODS The study included three groups of rats: Control non-treated group, ALI group (intra-tracheal HCl injected), and silymarin treated ALI group. White blood cells (WBCs) with differential count, oxidative stress parameters, B-cell lymphoma 2 (Bcl-2), transforming growth factor-beta (TGF-β), cyclooxygenase 2 (COX-2), nuclear factor erythroid 2-related factor-2 (Nrf-2), and heme oxygenase-1 (HO-1) were investigated. Lung tissue histopathology and immunohistochemical expression of survivin and proliferating cell nuclear antigen (PCNA) were also examined. RESULTS The results of the study showed that HCL caused histopathological changes in ALI with leukocytopenia and increased oxidative stress biomarkers. It increased TGF-β, up-regulated mRNA expression of COX-2, Nrf-2, and HO-1 and increased survivin and PCNA but decreased Bcl-2. Silymarin ameliorated the histopathological lung injury with further up-regulation of Nrf-2 and HO-1 mRNA and decreased the inflammatory and fibrotic parameters together with up-regulation of the anti-apoptotic and the proliferation parameters. CONCLUSION The protective effect of silymarin against ALI is mediated by Nrf-2/HO-1 pathway with subsequent antioxidant, anti-inflammatory, antiapoptotic, and proliferating activities.
Collapse
Affiliation(s)
- Rasha F Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Reda S Eldemerdash
- Research Building, Urology & Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Mahmoud M Zakaria
- Research Building, Urology & Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
14
|
Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries In Mice by Modifying Oxidative Stress and Apoptosis. Molecules 2019; 24:molecules24081498. [PMID: 30995821 PMCID: PMC6514788 DOI: 10.3390/molecules24081498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
Collapse
|
15
|
Hong GH, Park SY, Kwon HS, Bang BR, Lee J, Kim SY, Pack CG, Kim S, Moon KA, Kim TB, Moon HB, Cho YS. IL-32γ attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts. Respir Res 2018; 19:188. [PMID: 30257681 PMCID: PMC6158920 DOI: 10.1186/s12931-018-0863-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Background Fibrosis in severe asthma often leads to irreversible organ dysfunction. However, the mechanism that regulates fibrosis remains poorly understood. Interleukin (IL)-32 plays a role in several chronic inflammatory diseases, including severe asthma. In this study, we investigated whether IL-32 is involved in fibrosis progression in the lungs. Methods Murine models of chronic airway inflammation induced by ovalbumin and Aspergillus melleus protease and bleomycin-induced pulmonary fibrosis were employed. We evaluated the degree of tissue fibrosis after treatment with recombinant IL-32γ (rIL-32γ). Expression of fibronectin and α-smooth muscle actin (α-SMA) was examined and the transforming growth factor (TGF)-β-related signaling pathways was evaluated in activated human lung fibroblasts (MRC-5 cells) treated with rIL-32γ. Results rIL-32γ significantly attenuated collagen deposition and α-SMA production in both mouse models. rIL-32γ inhibited the production of fibronectin and α-SMA in MRC-5 cells stimulated with TGF-β. Additionally, rIL-32γ suppressed activation of the integrin-FAK-paxillin signaling axis but had no effect on the Smad and non-Smad signaling pathways. rIL-32γ localized outside of MRC-5 cells and inhibited the interaction between integrins and the extracellular matrix without directly binding to intracellular FAK and paxillin. Conclusions These results demonstrate that IL-32γ has anti-fibrotic effects and is a novel target for preventing fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-018-0863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - So-Young Park
- Department of Internal medicine, Division of Allergy and Respiratory Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Bo-Ram Bang
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Jaechun Lee
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Science, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, Seoul, Korea
| | - Chan-Gi Pack
- Asan Institute for Life Science, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan, Seoul, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul, Korea
| | - Keun-Ai Moon
- Asan Institute for Life Science, Seoul, Korea.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Tae-Bum Kim
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Hee-Bom Moon
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - You Sook Cho
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
16
|
Gravina G, Wasén C, Garcia-Bonete MJ, Turkkila M, Erlandsson MC, Töyrä Silfverswärd S, Brisslert M, Pullerits R, Andersson KM, Katona G, Bokarewa MI. Survivin in autoimmune diseases. Autoimmun Rev 2017; 16:845-855. [PMID: 28564620 DOI: 10.1016/j.autrev.2017.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Survivin is a protein functionally important for cell division, apoptosis, and possibly, for micro-RNA biogenesis. It is an established marker of malignant cell transformation. In non-malignant conditions, the unique properties of survivin make it indispensable for homeostasis of the immune system. Indeed, it is required for the innate and adaptive immune responses, controlling differentiation and maintenance of CD4+ and CD8+ memory T-cells, and in B cell maturation. Recently, survivin has emerged as an important player in the pathogenesis of autoimmune diseases. Under the conditions of unreserved inflammation, survivin enhances antigen presentation, maintains persistence of autoreactive cells, and supports production of autoantibodies. In this context, survivin takes its place as a diagnostic and prognostic marker in rheumatoid arthritis, psoriasis, systemic sclerosis and pulmonary arterial hypertension, neuropathology and multiple sclerosis, inflammatory bowel diseases and oral lichen planus. In this review, we summarise the knowledge about non-malignant properties of survivin and focus on its engagement in cellular and molecular pathology of autoimmune diseases. The review highlights utility of survivin measures for clinical applications. It provides rational for the survivin inhibiting strategies and presents results of recent reports on survivin inhibition in modern therapies of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- G Gravina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M J Garcia-Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - S Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - R Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - K M Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. J Transl Med 2016; 96:632-40. [PMID: 26999659 DOI: 10.1038/labinvest.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Collapse
|
18
|
Kawakubo-Yasukochi T, Kondo A, Mizokami A, Hayashi Y, Chishaki S, Nakamura S, Takeuchi H, Hirata M. Maternal oral administration of osteocalcin protects offspring from metabolic impairment in adulthood. Obesity (Silver Spring) 2016; 24:895-907. [PMID: 26945538 DOI: 10.1002/oby.21447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Maternal diet during pregnancy has been found to influence the health of offspring. However, strategies for modulation of maternal energy metabolism without an adverse effect on the fetus have remained limited. It was recently shown that oral administration of uncarboxylated osteocalcin (GluOC) improves metabolic status in adult female mice. Whether maternal GluOC administration during gestation might improve the metabolic status of offspring was investigated. METHODS Female C57BL/6 mice were fed a normal diet (ND) or high-fat, high-sucrose diet (HFS) and were given saline or GluOC by oral administration during pregnancy. The resulting offspring were in turn assigned to ND- or HFS-fed groups immediately after weaning, and their body weight, glucose metabolism, serum lipid parameters, and level of adipose tissue inflammation were subsequently assessed. RESULTS Maternal HFS feeding during gestation had adverse effects on glucose and lipid parameters, body weight, and adipose tissue inflammation in female offspring fed the same diet, and these effects were attenuated by maternal oral GluOC administration. CONCLUSIONS Maternal oral administration of GluOC protects HFS-fed female offspring from metabolic disorders induced by maternal obesity.
Collapse
Affiliation(s)
- Tomoyo Kawakubo-Yasukochi
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka, Japan
| | - Akihiko Kondo
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
| | - Akiko Mizokami
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
| | - Yoshikazu Hayashi
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
- Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sakura Chishaki
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Japan
| |
Collapse
|
19
|
Sharp C, Millar AB, Medford ARL. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89:420-434. [PMID: 25925331 DOI: 10.1159/000381102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of acute lung injury (ALI) occurs as a result of an initial acute systemic inflammatory response. This can be consequent to a plethora of insults, either direct to the lung or indirect. The insult results in increased epithelial permeability, leading to alveolar flooding with a protein-rich oedema fluid. The resulting loss of gas exchange leads to acute respiratory failure and typically catastrophic illness, termed acute respiratory distress syndrome (ARDS), requiring ventilatory and critical care support. There remains a significant disease burden, with some estimates showing 200,000 cases each year in the USA with a mortality approaching 50%. In addition, there is a significant burden of morbidity in survivors. There are currently no disease-modifying therapies available, and the most effective advances in caring for these patients have been in changes to ventilator strategy as a result of the ARDS network studies nearly 15 years ago. Here, we will give an overview of more recent advances in the understanding of the cellular biology of ALI and highlight areas that may prove fertile for future disease-modifying therapies.
Collapse
Affiliation(s)
- Charles Sharp
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Westbury-on-Trym, UK
| | | | | |
Collapse
|
20
|
Li X, Zhang X, Li X, Ding F, Ding J. The role of survivin in podocyte injury induced by puromycin aminonucleoside. Int J Mol Sci 2014; 15:6657-73. [PMID: 24747598 PMCID: PMC4013653 DOI: 10.3390/ijms15046657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Objective Survivin is a member of the inhibitor of apoptosis protein family, which uniquely promotes mitosis and regulates apoptosis in cancer cells. Recent studies have demonstrated that survivin also expresses in several normal adult cells. In the present study, we aimed to investigate the function of survivin in the terminally differentiated epithelial cells, podocytes. Methods Survivin expression and location were detected by Quantitative Real-Time PCR, western blot and fluorescence confocal microscopy methods in normal and injured mouse podocytes. Cyto-protection function of survivin was also studied in cultured podocyte injured by puromycin aminonucleoside (PAN), transfected with survivin siRNA to down-regulate survivin expression, or with survivin plasmid to transiently over-express survivin. Results In podocytes, PAN stimulated expressions of survivin and the apoptosis related molecule caspase 3. Knockdown of survivin expression by siRNA increased the activation of caspase 3, induced podocyte apoptosis and remarkable rearrangement of actin cytoskeleton. Moreover, over-expression of survivin inhibited PAN-induced podocyte apoptosis and cytoskeleton rearrangement. Conclusion Our data provides the evidence that survivin plays an important role in protecting podocytes from apoptosis induced by PAN. The mechanism of survivin related anti-apoptosis may, at least partially, be through the activation of caspase 3.
Collapse
Affiliation(s)
- Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Xiaoyan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Xiaoyan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China.
| |
Collapse
|