1
|
Adekunbi DA, Huber HF, Benavides GA, Tian R, Li C, Nathanielsz PW, Zhang J, Darley-Usmar V, Cox LA, Salmon AB. Sex-specific decline in prefrontal cortex mitochondrial bioenergetics in aging baboons correlates with walking speed. Neurobiol Aging 2025; 151:1-12. [PMID: 40156934 DOI: 10.1016/j.neurobiolaging.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Mitochondria play a crucial role in brain homeostasis and changes in mitochondrial bioenergetics are linked to age-related neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. We investigated changes in the activities of the electron transport chain (ETC) complexes in normally aging baboon brains and determined how these changes relate to donor sex, morning cortisol levels, and walking speed. We assessed mitochondrial bioenergetics from archived prefrontal cortex (PFC) tissues from a large cohort (60 individuals) of well-characterized aging baboons (6.6-22.8 years, approximately equivalent to 26.4-91.2 human years). Aging was associated with a decline in mitochondrial ETC complexes in the PFC, which was more pronounced when normalized for citrate synthase activity, suggesting that the decline is predominantly driven by changes in the specific activity of individual complexes rather than global changes in mitochondrial content. When donor sex was used as a covariate, we found that ETC activity was preserved with age in females and declined in males. Males had higher activities of each individual ETC complex and greater lactate dehydrogenase activity at a given age relative to females. Circulating cortisol negatively correlated with walking speed when male and female data were combined. We also observed a robust positive predictive relationship between walking speed and respiration linked to complexes I, III, and IV in males but not in females. This data reveals a link between frailty and PFC bioenergetic function and highlights a potential molecular mechanism for sexual dimorphism in brain resilience.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA; Departments of Molecular Medicine and Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
2
|
Sharma E, Fotooh Abadi L, Kombe Kombe JA, Kandala M, Parker J, Winicki N, Kelesidis T. Overview of methods that determine mitochondrial function in human disease. Metabolism 2025; 170:156300. [PMID: 40389059 DOI: 10.1016/j.metabol.2025.156300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Cellular metabolism has a key role in the pathogenesis of human disease. Mitochondria are the organelles that generate most of the energy needed for a cell to function and drive cellular metabolism. Understanding the link between metabolic and mitochondrial function can be challenging due to the variation in methods used to measure mitochondrial function and heterogeneity in mitochondria, cells, tissues, and end organs. Mitochondrial dysfunction can be determined at both the cellular and tissue levels using several methods, such as assessment of cellular bioenergetics, levels of mitochondrial DNA (mtDNA), mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mito-ROS), and levels of mitochondrial enzymes. Recent advances involving novel radiotracers in combination with PET imaging have allowed for the determination of mitochondrial function in vivo with high specificity. Understanding the barriers in existing methodologies used to study mitochondrial function may help further establish the assessment of mitochondrial function as a biologically and clinically relevant biomarker for human disease severity and prognosis. Herein, we critically review the existing literature regarding the strengths and limitations of methods that determine mitochondrial function, and we subsequently discuss how emerging research methods have begun to overcome some of these hurdles. We conclude that a combination of techniques, including respirometry and mitochondrial membrane potential assessment, is necessary to understand the complexity and biological and clinical relevance of mitochondrial function in human disease.
Collapse
Affiliation(s)
- Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA
| | - Leila Fotooh Abadi
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - John Arnaud Kombe Kombe
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Monisha Kandala
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Jordan Parker
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA; Lexington Medical Center, West Columbia, SC, USA
| | - Nolan Winicki
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
3
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Stephan JK, Knerr T, Wells CK, Gu Z, Johnson S, Jobe TK, Isaacs WS, Hill BG, Wysoczynski M. G-CSF-Induced Emergency Granulopoiesis Modulates Neutrophil Effector Function in Mice. Stem Cell Rev Rep 2025; 21:1113-1126. [PMID: 40299198 PMCID: PMC12167617 DOI: 10.1007/s12015-025-10885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Neutrophils function as first responders of the immune system by deploying cytotoxic armaments and orchestrating local inflammation. Their functionality is programmed during daily production in the bone marrow through granulopoiesis. During severe inflammation, increased neutrophil demand is met through activation of emergency granulopoiesis. The effect of emergency granulopoiesis on neutrophil functionality remains cryptic. In the present study, we assessed neutrophil function in mice injected with G-CSF (100 µg/kg/d for 3 days) to activate emergency granulopoiesis. We found that emergency granulopoiesis neutrophils exhibit impaired ROS production (n = 6, P = 0.003) and NETosis (n = 5, P < 0.01), but increase neutrophil elastase secretion (n = 9, P < 0.0001) and LPS-induced Tnfa, Il1b, Il1a, Il12a, and Ccl2 expression (n = 13, P < 0.01). To test the impact of emergency granulopoiesis neutrophils on the inflammatory response in vivo, we pre-treated mice with G-CSF and challenged them with zymosan to induce peritonitis. At 4 h post-zymosan injection, peritoneal neutrophils from G-CSF treated mice exhibit increased expression of Ccl2 (n = 3, P < 0.05). Subsequently, we observed enhanced peritoneal macrophage accumulation at 48 h post-zymosan administration in G-CSF-treated mice (n = 5, P < 0.05). These data indicate that emergency granulopoiesis programs neutrophils to have an enhanced immunomodulatory function that orchestrates the subsequent macrophage response in local tissue inflammation.
Collapse
Affiliation(s)
- Jonah K Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Taylor Knerr
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Collin K Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Zhen Gu
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Sidney Johnson
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Tyler K Jobe
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - William S Isaacs
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA.
| |
Collapse
|
6
|
Karvinen S, Lähteenmäki E, Hutz B, Juppi H, Karppinen JE, Kankaanpää A, Lehti M, Laakkonen EK. The acute exercise response of peripheral blood mononuclear cells and their bioenergetic function in women with high and low systemic estradiol levels. Physiol Rep 2025; 13:e70296. [PMID: 40312145 PMCID: PMC12045702 DOI: 10.14814/phy2.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 05/03/2025] Open
Abstract
Decrease in the systemic estradiol (E2) levels caused by menopause has been associated with an increased risk for cardiovascular disease. We have previously shown that E2 level is associated with the systemic response to an acute bout of endurance exercise. However, the association of systemic E2 level with peripheral blood mononuclear cell (PBMC) bioenergetic function has not been investigated. We examined the associations of systemic E2 level (HIGH and LOW E2 groups) on WBC count and PBMC bioenergetic function before and after an acute bout of endurance exercise (time points PRE, POST and 1 h POST exercise). Exercise stimulus was a maximal incremental bicycle ergometer test. We show that an acute bout of exercise induced a transient increase in WBC count in both HIGH and LOW E2 study groups (p < 0.001). We also observed an increase in the percentage of neutrophils and a decrease in the percentage of lymphocytes in response to exercise (p < 0.001). An acute bout of exercise was also associated with a transient increase in PBMC maximal electron transfer capacity and spare capacity (p < 0.001). No statistically significant associations were observed between systemic E2 level and PBMC bioenergetic function at the basal state or in the responses to acute exercise.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Emilia Lähteenmäki
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Bettina Hutz
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari E. Karppinen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Anna Kankaanpää
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Scioscia JP, Murrieta-Alvarez I, Li S, Xu Z, Zheng G, Uwaeze J, Walther CP, Gray Z, Nordick KV, Braverman V, Shafii AE, Loor G, Hochman-Mendez C, Ghanta RK, Chatterjee S, Frazier OH, Rosengart TK, Liao KK, Mondal NK. Machine Learning Assisted Stroke Prediction in Mechanical Circulatory Support: Predictive Role of Systemic Mitochondrial Dysfunction. ASAIO J 2025; 71:387-394. [PMID: 40310715 DOI: 10.1097/mat.0000000000002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Stroke continues to be a major adverse event in advanced congestive heart failure (CHF) patients after continuous-flow left ventricular assist device (CF-LVAD) implantation. Abnormalities in mitochondrial oxidative phosphorylation (OxPhos) have been critically implicated in the pathogenesis of neurodegenerative diseases and cerebral ischemia. We hypothesize that prior stroke may be associated with systemic mitochondrial OxPhos abnormalities, and impaired more in post-CF-LVAD patients with risk of developing new stroke. We studied 50 CF-LVAD patients (25 with prior stroke, 25 without); OxPhos complex proteins (complex I [C.I]-complex V [C.V]) were measured in blood leukocytes. Both at baseline (pre-CF-LVAD) and postoperatively (post-CF-LVAD), the prior-stroke group had significantly lower C.I, complex II (C.II), complex IV (C.IV), and C.V proteins when compared to the no-prior-stroke group. Oxidative phosphorylation proteins were significantly decreased in prior-stroke group at post-CF-LVAD compared to pre-CF-LVAD. Machine learning Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest modeling identified six prognostic factors that predicted postoperative stroke with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.93. Oxidative phosphorylation protein reduction appeared to be associated with the new stroke after implantation. Our study found for the first time the existence of mitochondrial dysfunction at the peripheral level in CHF patients with prior ischemic stroke even before CF-LVAD implantation. The changes in OxPhos protein expression could serve as biomarkers in predicting new post-CF-LVAD strokes.
Collapse
Affiliation(s)
- Jacob P Scioscia
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Ivan Murrieta-Alvarez
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Shiyi Li
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Zicheng Xu
- Department of Computer Science, Rice University, Houston, Texas
| | - Guangyao Zheng
- Department of Computer Science, Rice University, Houston, Texas
| | - Jason Uwaeze
- Department of Computer Science, Rice University, Houston, Texas
| | - Carl P Walther
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Zachary Gray
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Katherine V Nordick
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | | - Alexis E Shafii
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Gabriel Loor
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Camila Hochman-Mendez
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Ravi K Ghanta
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Subhasis Chatterjee
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - O Howard Frazier
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Todd K Rosengart
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Kenneth K Liao
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Nandan K Mondal
- From the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas
| |
Collapse
|
8
|
Li Z, Wei Z, Su W, Cheng L, Zhang L. The Impact of Mechanical Circulatory Support Devices on White Blood Cell Phenotype and Function. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00784-z. [PMID: 40251454 DOI: 10.1007/s13239-025-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Mechanical circulatory support devices (MCSDs) have gradually become an effective treatment of end-stage heart failure (HF). However, the introduction of foreign surfaces and non-physiological shear stress (NPSS) can cause severe damage to various blood cells, leading to impaired function of immune system and increased risk of complications such as inflammation and thrombosis. The effect of mechanical injury on white blood cell (WBC) has been largely neglected compared to that on red blood cell (RBC) and platelet (PLT). METHOD To better understand the impact of MCSDs on WBCs and emphasize the importance of investigating WBC damage to avoid adverse events during mechanical circulatory support, this review elaborated the induction of WBC phenotypic and functional injury by MCSD-related factors, and the relationship between injury and clinical complications. Furthermore, this article provided a detailed review and comparative analysis of in vitro blood-shearing devices (BSDs) and detection methods used in WBC damage investigation. RESULTS NPSS, biomaterials and other related factors can activate WBC, decrease WBC function, and promote the release of pro-inflammatory and pro-thrombotic microparticles, increasing the risk of inflammation and thrombotic complications. The evaluation of WBC damage typically involves measuring cell viability and dysfunction using in vitro BSDs (e.g. concentric cylinder devices) and injury detection methods (e.g. flow cytometry). CONCLUSIONS WBCs with normal morphology may also experience functional failure due to NPSS from MCSDs, leading to sublethal mechanical cell injury. Therefore, the effect of MCSDs on WBCs can be more comprehensively evaluated by a combination of measuring cell functional capacity and cell counting.
Collapse
Affiliation(s)
- Zhuo Li
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Zhenling Wei
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Wangwang Su
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Longhui Cheng
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Liudi Zhang
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
9
|
Soni N, Kaur P, Gurjar V, Bhargava A, Tiwari R, Chouksey A, Srivastava RK, Mishra PK. Unveiling the Interconnected Dynamics of Mitochondrial Dysfunction Associated With Age-Related Cardiovascular Risk: A Cross-Sectional Pilot Study. Cureus 2025; 17:e82961. [PMID: 40416162 PMCID: PMC12103716 DOI: 10.7759/cureus.82961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Aging, influenced by complex epigenetic mechanisms, significantly contributes to the progression of cardiovascular diseases (CVDs). This cross-sectional pilot study investigated mitochondrial-associated epigenetic stress responses in two age groups: Group I (18-38, n = 154), representing younger adults generally at lower risk for CVD, and Group II (39-65, n = 105), representing middle-aged and older adults with increased biological susceptibility. The age grouping was based on established physiological and cardiovascular risk transitions typically observed around age 40. To assess age-related molecular variations, we examined key mitochondrial and metabolic parameters, including mitochondrial DNA (mtDNA) damage repair capacity, mtDNA copy number (mtDNAcn), methylation status, mitochondrial dynamics (fusion/fission), telomere length, expression of respiratory complex genes, levels of pro-inflammatory cytokines, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations. Our results indicated that the older group exhibited higher mtDNA methylation (r² = 0.5205, p < 0.0001), increased mtDNAcn, and elevated NT-proBNP levels, which also showed a weak positive correlation with mtDNA methylation (r² = 0.3218, p < 0.0001). Additionally, a strong negative correlation was observed between telomerase reverse transcriptase (TERT) expression and age (r² = 0.6070, p < 0.0001), suggesting a decline in telomeric maintenance with advancing age. Group II also showed altered inflammatory and telomeric profiles and a notable reduction in the expression of mitochondrial respiratory complex genes (ND6, COXI, ATPase 6 and 8), alongside increased expression of genes involved in mitochondrial stress response pathways. We employed four machine learning models - Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM) - for CVD risk prediction, using selected mitochondrial and metabolic features. All models demonstrated high classification accuracy, ranging from 0.920 to 1.0, with the Random Forest model achieving the highest accuracy of 0.984. These preliminary findings highlight distinct age-related molecular signatures and illustrate the potential of combining biomarkers with machine-learning approaches to improve cardiovascular risk prediction and therapeutic targeting in aging populations.
Collapse
Affiliation(s)
- Nikita Soni
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Prasan Kaur
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Vikas Gurjar
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Arpit Bhargava
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, IND
| | - Rajnarayan Tiwari
- Epidemiology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Apoorva Chouksey
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Rupesh K Srivastava
- Biotechnology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Pradyumna K Mishra
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
10
|
Ahmadi A, Valencia AP, Begue G, Norman JE, Fan S, Durbin-Johnson BP, Jenner BN, Campbell MD, Reyes G, Kapahi P, Himmelfarb J, de Boer IH, Marcinek DJ, Kestenbaum BR, Gamboa JL, Roshanravan B. A Pilot Trial of Nicotinamide Riboside and Coenzyme Q10 on Inflammation and Oxidative Stress in CKD. Clin J Am Soc Nephrol 2025; 20:346-357. [PMID: 39847432 PMCID: PMC11905997 DOI: 10.2215/cjn.0000000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Key Points Nicotinamide riboside and coenzyme Q10 supplementation showed distinct beneficial effects on whole-blood transcriptome, inflammatory cytokines, and oxidative stress. Nicotinamide riboside treatment altered the expression of genes associated with metabolism and immune response coinciding with a decrease in markers of oxidative stress. Coenzyme Q10 supplementation altered genes associated with lipid metabolism coinciding with reductions in markers of oxidative stress and inflammatory cytokines. Background Mitochondria-driven oxidative/redox stress and inflammation play a major role in CKD pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD. Methods We conducted a pilot, randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/d of coenzyme Q10 (CoQ10) or 1000 mg/d of nicotinamide riboside (NR) supplementation with placebo in 25 patients with moderate-to-severe CKD (eGFR <60 ml/min per 1.73 m2). We assessed changes in blood transcriptome using 3′-Tag-Seq gene expression profiling and changes in prespecified secondary outcomes of inflammatory and oxidative stress biomarkers. For a subsample of participants (n =14), we assessed lymphocyte and monocyte bioenergetics using an extracellular flux analyzer. Results The (mean±SD) age, eGFR, and body mass index of the participants were 61±11 years, 37±9 ml/min per 1.73 m2, and 28±5 kg/m2, respectively. Of the participants, 16% had diabetes and 40% were female. Compared with placebo, NR-mediated transcriptomic changes were enriched in gene ontology terms associated with carbohydrate/lipid metabolism and immune signaling, whereas CoQ10 changes were enriched in immune/stress response and lipid metabolism gene ontology terms. NR increased plasma IL-2 (estimated difference, 0.32; 95% confidence interval [CI], 0.14 to 0.49 pg/ml), and CoQ10 decreased both IL-13 (estimated difference, −0.12; 95% CI, −0.24 to −0.01 pg/ml) and C-reactive protein (estimated difference, −0.11; 95% CI, −0.22 to 0.00 mg/dl) compared with placebo. Both NR and CoQ10 reduced five-series F2-isoprostanes (estimated difference, −0.16 and −0.11 pg/ml, respectively; P < 0.05 for both). NR, but not CoQ10, increased the Bioenergetic Health Index (estimated difference, 0.29; 95% CI, 0.06 to 0.53) and spare respiratory capacity (estimated difference, 3.52; 95% CI, 0.04 to 7 pmol/min per 10,000 cells) in monocytes. Conclusions Six weeks of NR and CoQ10 improved markers of oxidative stress, inflammation, and cell bioenergetics in patients with moderate-to-severe CKD. Clinical Trial registry name and registration number: NCT03579693 .
Collapse
Affiliation(s)
- Armin Ahmadi
- Division of Nephrology, Department of Medicine, University of California, Davis, California
| | - Ana P. Valencia
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | - Gwénaëlle Begue
- Kinesiology Department, California State University, Sacramento, California
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Sili Fan
- Department of Biostatistics, School of Medicine, University of California, Davis, California
| | | | - Bradley N. Jenner
- Department of Biostatistics, School of Medicine, University of California, Davis, California
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, Washington
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, California
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington
| | - David J. Marcinek
- Department of Radiology and Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Jorge L. Gamboa
- School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Baback Roshanravan
- Division of Nephrology, Department of Medicine, University of California, Davis, California
| |
Collapse
|
11
|
Korandová Z, Pecina P, Pecinová A, Koňaříková E, Tesařová M, Houštěk J, Hansíková H, Ptáčková H, Zeman J, Honzík T, Mráček T. Cryopreserved PBMCs can be used for the analysis of mitochondrial respiration and serve as a diagnostic tool for mitochondrial diseases. Anal Biochem 2025; 698:115745. [PMID: 39645068 DOI: 10.1016/j.ab.2024.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mitochondrial diseases are severe, inherited metabolic disorders that affect the paediatric population. They affect the functioning of mitochondrial oxidative phosphorylation (OXPHOS) apparatus either directly or indirectly. Since mutations in mtDNA are responsible for only 25 % of paediatric cases and next-generation sequencing does not always provide a conclusive diagnosis, the biochemical approach still represents a valuable tool in diagnostics. Mitochondrial defects can be identified in tissue biopsies (muscle or skin). However, they also often manifest in peripheral blood cells. We developed a protocol for isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs) from 5 ml of children's blood using Ficoll centrifugation which can be utilised for subsequent functional measurements on thawed samples. Furthermore, we evaluated the diagnostic utility of the optimised high-resolution oxygraphy protocol using digitonin-permeabilized cryopreserved PBMCs on 47 samples from patients with confirmed or suspected mitochondrial disease. Overall, the diagnosis was confirmed in 72 % of cases, while the analysis of cryopreserved PBMCs provided a false negative outcome in 13 % of cases. Our study demonstrates a sensitive, fast, and non-invasive approach for the diagnostics of various types of mitochondrial disorders, especially those of nuclear genetic origin manifesting in paediatric patients.
Collapse
Affiliation(s)
- Zuzana Korandová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Tesařová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Ptáčková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Jobe T, Stephan J, Wells CK, De Silva M, Lorkiewicz PK, Hill BG, Wysoczynski M. Phase partitioning of the neutrophil oxidative burst is coordinated by accessory pathways of glucose metabolism and mitochondrial activity. J Biol Chem 2025; 301:108091. [PMID: 39675714 PMCID: PMC11760813 DOI: 10.1016/j.jbc.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neutrophils are a part of the innate immune system and produce reactive oxygen species (ROS) to extinguish pathogens. The major source of ROS in neutrophils is NADPH oxidase, which is fueled by NADPH generated via the pentose phosphate pathway; however, it is unclear how other accessory glucose metabolism pathways and mitochondrial activity influence the respiratory burst. We examined the temporal dynamics of the respiratory burst and delineated how metabolism changes over time after neutrophil activation. Bone marrow-derived neutrophils were stimulated with phorbol 12-myristate 13-acetate, and the respiratory burst was measured via extracellular flux analysis. Metabolomics experiments utilizing 13C6-glucose highlighted the activation of glycolysis as well as ancillary pathways of glucose metabolism in activated neutrophils. Phorbol 12-myristate 13-acetate stimulation acutely increased 13C enrichment into glycerol 3-phosphate (G3P) and citrate, whereas increases in 13C enrichment in the glycogen intermediate, UDP-hexose, and end products of the hexosamine and serine biosynthetic pathways occurred only during the late phase of the oxidative burst. Targeted inhibition of the G3P shuttle, glycogenolysis, serine biosynthesis, and mitochondrial respiration demonstrated that the G3P shuttle contributes to the general magnitude of ROS production; that glycogen contributes solely to the early respiratory burst; and that the serine biosynthetic pathway activity and complex III-driven mitochondrial activity influence respiratory burst duration. Collectively, these results show that the neutrophil oxidative burst is highly dynamic, with coordinated changes in metabolism that control the initiation, magnitude, and duration of ROS production.
Collapse
Affiliation(s)
- Tyler Jobe
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Jonah Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky; Department of Biochemistry, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Collin K Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky; Department of Biochemistry, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Maleesha De Silva
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Pawel K Lorkiewicz
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky.
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
13
|
Kelly K, Kanias T, Leite C, Stanley C, Dumont LJ. Platelet storage in small bags as a model of platelet function in full-sized containers. Transfusion 2025; 65:185-193. [PMID: 39673312 DOI: 10.1111/trf.18097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Evaluation of additive solutions, storage containers, new collection and storage methods, and other potential modifications is resource intensive, resulting in diversion of platelets away from blood bank inventories and significant time to complete study recruitments. Our goal was to evaluate the feasibility of a small bag for the study of platelet storage, and, by using a standardized respirometry test, separate daily metabolic capacity from observations made in the dynamic storage environment of changing pH, fuels, and end products. METHODS Single-donor apheresis platelets collected in 100% plasma had small volumes removed to meet secondary processing requirements. Small volumes (23 ± 1.4 mL) were placed in 50-mL bags constructed of platelet storage material, stored 7 days, and assessed with a panel of in vitro assays. Platelet bioenergetics (oxygen consumption and acid production rates) were measured with a respirometer. RESULTS The patterns of platelet pH decline, activation, and potency by thrombin generation were consistent with historical reports. Lactate production rates (54.1 ± 11.3 μmol/1012plt/h) were significantly correlated with pH decrease, increased activation, and thrombin generation potency by Day 7. Respirometry revealed a reduction of the glycolytic capacity and accumulating damage to the oxidative system for ATP production over storage. DISCUSSION Small bags present a storage profile of metabolic changes and activation consistent with historical data for full bag storage. Therefore, this system has promise to provide a platform for scaling experiments of platelet storage in a manner that maximizes platelets collected in research settings and does not compromise availability for patient treatment as exercised in this study.
Collapse
Affiliation(s)
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | | | | | - Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Smith SR, Becker EJ, Bone NB, Kerby JD, Nowak JI, Tadié JM, Darley-Usmar VM, Pittet JF, Zmijewski JW. METABOLIC AND BIOENERGETIC ALTERATIONS ARE ASSOCIATED WITH INFECTION SUSCEPTIBILITY IN SURVIVORS OF SEVERE TRAUMA: AN EXPLORATORY STUDY. Shock 2024; 62:633-643. [PMID: 39012766 PMCID: PMC12184881 DOI: 10.1097/shk.0000000000002419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
Collapse
Affiliation(s)
- Samuel R. Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eugene J. Becker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathaniel B. Bone
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D. Kerby
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joanna I. Nowak
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Jean-Marc Tadié
- INSERM, EFS Bretagne, UMR U1236, Université Rennes, Rennes, France
| | | | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaroslaw W. Zmijewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Uchańska A, Morytko A, Kwiecień K, Oleszycka E, Grygier B, Cichy J, Kwiecińska P. Lazy neutrophils - a lack of DGAT1 reduces the chemotactic activity of mouse neutrophils. Inflamm Res 2024; 73:1631-1643. [PMID: 39043892 PMCID: PMC11445369 DOI: 10.1007/s00011-024-01920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Neutrophils are key players in the innate immune system, actively migrating to sites of inflammation in the highly energetic process of chemotaxis. In this study, we focus on the role of acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the synthesis of triglycerides, the major form of stored energy, in neutrophil chemotaxis. METHODS AND RESULTS Using a mouse model of psoriasis, we show that DGAT1-deficiency reduces energy-demanding neutrophil infiltration to the site of inflammation, but this inhibition is not caused by decreased glycolysis and reduced ATP production by neutrophils lacking DGAT1. Flow cytometry and immunohistochemistry analysis demonstrate that DGAT1 also does not influence lipid accumulation in lipid droplets during inflammation. Interestingly, as has been shown previously, a lack of DGAT1 leads to an increase in the concentration of retinoic acid, and here, using real-time PCR and publicly-available next-generation RNA sequencing datasets, we show the upregulation of retinoic acid-responsive genes in Dgat1KO neutrophils. Furthermore, supplementation of WT neutrophils with exogenous retinoic acid mimics DGAT1-deficiency in the inhibition of neutrophil chemotaxis in in vitro transwell assay. CONCLUSIONS These results suggest that impaired skin infiltration by neutrophils in Dgat1KO mice is a result of the inhibitory action of an increased concentration of retinoic acid, rather than impaired lipid metabolism in DGAT1-deficient mice.
Collapse
Affiliation(s)
- Alicja Uchańska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
- Selvita S.A, Cracow, Poland
| | - Agnieszka Morytko
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Kamila Kwiecień
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Ewa Oleszycka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Science, Cracow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Patrycja Kwiecińska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
18
|
Verhoeven JE, Wolkowitz OM, Satz IB, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Veibäck GS, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LK, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 PMCID: PMC11811959 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M. Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
- Center for Health and Community, University of California, San Francisco, San Francisco, CA 94107 USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Philippe A. Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, CA 95403, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02885, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kristoffer N. T. Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
20
|
Ahmadi A, Valencia AP, Begue G, Norman JE, Fan S, Durbin-Johnson BP, Jenner BN, Campbell MD, Reyes G, Kapahi P, Himmelfarb J, de Boer IH, Marcinek DJ, Kestenbaum BR, Gamboa JL, Roshanravan B. Randomized Crossover Clinical Trial of Nicotinamide Riboside and Coenzyme Q10 on Metabolic Health and Mitochondrial Bioenergetics in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.23.24312501. [PMID: 39228730 PMCID: PMC11370499 DOI: 10.1101/2024.08.23.24312501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD. Methods We conducted a randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (eGFR <60mL/min/1.73 m2). We assessed changes in the blood transcriptome using 3'-Tag-Seq gene expression profiling and changes in pre-specified secondary outcomes of inflammatory and oxidative stress biomarkers. For a subsample of participants (n=14), we assessed lymphocyte and monocyte bioenergetics using an extracellular flux analyzer. Results The (mean±SD) age, eGFR, and BMI of the participants were 61±11 years, 37±9 mL/min/1.73m2, and 28±5 kg/m2 respectively. Of the participants, 16% had diabetes and 40% were female. Compared to placebo, NR-mediated transcriptomic changes were enriched in gene ontology (GO) terms associated with carbohydrate/lipid metabolism and immune signaling while, CoQ10 changes were enriched in immune/stress response and lipid metabolism GO terms. NR increased plasma IL-2 (estimated difference, 0.32, 95% CI of 0.14 to 0.49 pg/mL), and CoQ10 decreased both IL-13 (estimated difference, -0.12, 95% CI of -0.24 to -0.01 pg/mL) and CRP (estimated difference, -0.11, 95% CI of -0.22 to 0.00 mg/dL) compared to placebo. Both NR and CoQ10 reduced 5 series F2-Isoprostanes (estimated difference, -0.16 and -0.11 pg/mL, respectively; P<0.05 for both). NR, but not CoQ10, increased the bioenergetic health index (BHI) (estimated difference, 0.29, 95% CI of 0.06 to 0.53) and spare respiratory capacity (estimated difference, 3.52, 95% CI of 0.04 to 7 pmol/min/10,000 cells) in monocytes. Conclusion Six weeks of NR and CoQ10 improved in oxidative stress, inflammation, and cell bioenergetics in persons with moderate to severe CKD.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA
| | - Ana P. Valencia
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Gwénaëlle Begue
- Kinesiology Department, California State University, Sacramento, CA, USA
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Sili Fan
- Department of Biostatistics, School of Medicine, University of California, Davis, CA, USA
| | | | - Bradley N. Jenner
- Department of Biostatistics, School of Medicine, University of California, Davis, CA, USA
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Jorge L. Gamboa
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Gao J, Guo H, Li J, Zhan M, You Y, Xin G, Liu Z, Fan X, Gao Q, Liu J, Zhang Y, Fu J. Buyang Huanwu decoction ameliorates myocardial injury and attenuates platelet activation by regulating the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. Chin Med 2024; 19:109. [PMID: 39160598 PMCID: PMC11331649 DOI: 10.1186/s13020-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese medicine to treat the syndrome of qi deficiency and blood stasis. Platelets play an important role in regulating thrombus and inflammation after ischemic injury, studies have shown that BYHWD regulate myocardial fibrosis and exert anti-inflammatory effects through IL-17 and TLR4 pathways, but the mechanism of platelet activation by BYHWD in stable coronary heart disease is still unknown. In the present study, model of left anterior descending coronary artery ligation was applied to investigate the mechanisms of BYHWD on modulating platelets hyperreactivity and heart function after fibrosis of ischemic myocardial infarction (MI). METHODS Myocardial infarction model was constructed by ligation of the left anterior descending coronary artery. The rats were randomly divided into five groups: sham, model, MI with aspirin (positive), MI with a low dosage of BYHWD (BYHWD-ld) and MI with a high dosage of BYHWD (BYHWD-hd) for 28 days. RESULTS Coronary artery ligation prominently induced left ventricle dysfunction, increased cardiomyocyte fibrosis, which was accompanied by platelets with hyperreactivity, and high levels of inflammatory factors. BYHWD obviously reversed cardiac dysfunction and fibrosis, increased the thickness of the left ventricular wall, and inhibited aggregation ratio and CD62p expression. BYHWD restored the mitochondrial respiration of platelets after MI, concomitant with an increased telomere expression and decreased inflammation. According to the result of transcriptome sequencing, we found that 106 differentially expressed genes compared model with BYHWD treatment. Enrichment analysis screened out the Ras-related protein Rap-1 (Rap1) signaling pathway and platelet activation biological function. Quantitative real-time PCR and Western blotting were applied to found that BYHWD reduced the expression of Rap1/PI3K-Akt/Src-CDC42 genes and attenuated the overactivity of PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. CONCLUSION BYHWD reduced inflammation and platelet activation via the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway and improved heart function after MI.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Hao Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Junmei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Gaojie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Zixin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Qinghe Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Jianhua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| |
Collapse
|
22
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
23
|
Bager Christensen I, Ribas L, Mosshammer M, Abrahamsen ML, Kühl M, Larsen S, Dela F, Gillberg L. Choice of medium affects PBMC quantification, cell size, and downstream respiratory analysis. Mitochondrion 2024; 77:101890. [PMID: 38718898 DOI: 10.1016/j.mito.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
High-resolution respirometry (HRR) can assess peripheral blood mononuclear cell (PBMC) bioenergetics, but no standardized medium for PBMC preparation and HRR analysis exist. Here, we study the effect of four different media (MiR05, PBS, RPMI, Plasmax) on the count, size, and HRR (Oxygraph-O2k) of intact PBMCs. Remarkably, the cell count was 21 % higher when PBMCs were resuspended in MiR05 than in PBS or Plasmax, causing O2 flux underestimation during HRR due to inherent adjustments. Moreover, smaller cell size and cell aggregation was observed in MiR05. Based on our findings, we propose that Plasmax, PBS or RPMI is more suitable than MiR05 for HRR of intact PBMCs. We provide oxygen solubility factors for Plasmax and PBS and encourage further optimization of a standardized HRR protocol for intact PBMCs.
Collapse
Affiliation(s)
- Ida Bager Christensen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Ribas
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Mosshammer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Kühl
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Linn Gillberg
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Alemany-Perna B, Tamarit J, Cabiscol E, Delaspre F, Miguela A, Huertas-Pons JM, Quiroga-Varela A, Merchan Ruiz M, López Domínguez D, Ramió I Torrentà L, Genís D, Ros J. Calcitriol Treatment Is Safe and Increases Frataxin Levels in Friedreich Ataxia Patients. Mov Disord 2024; 39:1099-1108. [PMID: 38696306 DOI: 10.1002/mds.29808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/μg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/μg), relative controls (10.1 pg/μg), and FRDA patients (5.7 pg/μg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Berta Alemany-Perna
- Ataxia Unit, Neurology Service, ICS/IAS, Hospital Josep Trueta/Hospital Santa Caterina, Girona/Salt, Spain
- Department of Medical Sciences, University of Girona (UdG), Girona, Spain
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - Albert Miguela
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Joana Maria Huertas-Pons
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Ana Quiroga-Varela
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Miguel Merchan Ruiz
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Daniel López Domínguez
- Ataxia Unit, Neurology Service, ICS/IAS, Hospital Josep Trueta/Hospital Santa Caterina, Girona/Salt, Spain
- Department of Medical Sciences, University of Girona (UdG), Girona, Spain
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Lluís Ramió I Torrentà
- Department of Medical Sciences, University of Girona (UdG), Girona, Spain
- Neurology Service, ICS/IAS, Hospital Josep Trueta/Hospital Santa Caterina, Girona/Salt, Neurodegeneration and Neuroinflammacion Group (IDIBGI), Girona/Salt, Spain
| | - David Genís
- Neurodegeneration and Neuroinflammacion Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| |
Collapse
|
25
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
26
|
Moratilla A, Martín D, Cadenas-Martín M, Stokking M, Quesada MA, Arnalich F, De Miguel MP. Hypoxia Increases the Efficiencies of Cellular Reprogramming and Oncogenic Transformation in Human Blood Cell Subpopulations In Vitro and In Vivo. Cells 2024; 13:971. [PMID: 38891103 PMCID: PMC11172288 DOI: 10.3390/cells13110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with chronic hypoxia show a higher tumor incidence; however, no primary common cause has been recognized. Given the similarities between cellular reprogramming and oncogenic transformation, we directly compared these processes in human cells subjected to hypoxia. Mouse embryonic fibroblasts were employed as controls to compare transfection and reprogramming efficiency; human adipose-derived mesenchymal stem cells were employed as controls in human cells. Easily obtainable human peripheral blood mononuclear cells (PBMCs) were chosen to establish a standard protocol to compare cell reprogramming (into induced pluripotent stem cells (iPSCs)) and oncogenic focus formation efficiency. Cell reprogramming was achieved for all three cell types, generating actual pluripotent cells capable for differentiating into the three germ layers. The efficiencies of the cell reprogramming and oncogenic transformation were similar. Hypoxia slightly increased the reprogramming efficiency in all the cell types but with no statistical significance for PBMCs. Various PBMC types can respond to hypoxia differently; lymphocytes and monocytes were, therefore, reprogrammed separately, finding a significant difference between normoxia and hypoxia in monocytes in vitro. These differences were then searched for in vivo. The iPSCs and oncogenic foci were generated from healthy volunteers and patients with chronic obstructive pulmonary disease (COPD). Although higher iPSC generation efficiency in the patients with COPD was found for lymphocytes, this increase was not statistically significant for oncogenic foci. Remarkably, a higher statistically significant efficiency in COPD monocytes was demonstrated for both processes, suggesting that physiological hypoxia exerts an effect on cell reprogramming and oncogenic transformation in vivo in at least some cell types.
Collapse
Affiliation(s)
- Adrián Moratilla
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Diana Martín
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Marta Cadenas-Martín
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Martha Stokking
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Maria Angustias Quesada
- Internal Medicine Service, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (M.A.Q.); (F.A.)
| | - Francisco Arnalich
- Internal Medicine Service, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (M.A.Q.); (F.A.)
| | - Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| |
Collapse
|
27
|
Valencia AP, Pharaoh G, Brandao AF, Marcinek DJ. High-Resolution Fluorespirometry to Assess Dynamic Changes in Mitochondrial Membrane Potential in Human Immune Cells. J Vis Exp 2024:10.3791/66863. [PMID: 38856231 PMCID: PMC11257029 DOI: 10.3791/66863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.
Collapse
Affiliation(s)
- Ana P Valencia
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington;
| | | | - Arthur F Brandao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington
| | - David J Marcinek
- Department of Radiology, University of Washington; Department of Laboratory Medicine and Pathology, University of Washington;
| |
Collapse
|
28
|
Zhao Y, Ou M, Hao X, Zhu T. Metabolic change in monocytes and postoperative morbidity after major abdominal surgery in elderly patients: A prospective cohort study. Heliyon 2024; 10:e28137. [PMID: 38571614 PMCID: PMC10987940 DOI: 10.1016/j.heliyon.2024.e28137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Background Postoperative complications in aging patients remain a significant cause of increased costs, hospital length of stay, and patient distress. Although alterations in energy metabolism have been closely linked to aging process and surgery, it is still unclear whether metabolic changes during surgery is associated with postoperative complications in elderly patients. This study was conducted to investigate whether metabolic changes during surgery predicts postoperative complications in elderly patients. Methods We conducted a prospective single-center observational cohort study. 244 adults (aged ≥65 years) who were scheduled for elective major non-cardiac surgery were recruited. Blood samples for each patient were taken before and after surgery. All patients were randomly divided into two groups (122 in each group), then oxygen consumption rate (OCR) or extracellular acidification rate (ECAR) was measured on isolated monocytes in each group. Results 14 of 110 (12.7%) patients went through OCR measurement and 15 of 122 patients (12.3%) went through ECAR measurement experienced moderate to severe complications. Overall, there was an intensification of glycolysis in monocytes after surgery. Among all variables, only the change (preoperative -postoperative) of glycolytic reserve (GR)/glycolysis (G) and GR/non-glycolytic acidification (NG) were predictors of moderate to severe complications (AUC = 0.70; 95% CI, 0.56-0.81; P = 0.019 and AUC = 0.67; 95% CI, 0.55-0.80; P = 0.031). Decreased postoperative GR/G were associated with worse postoperative complications (RR = 9.08; 95% CI, 1.23-66.81; P = 0.024). Conclusions Compared with mitochondria function, the change of glycolytic function in monocyte was more valuable in predicting postoperative complications after major abdominal surgery. Our study gave us a new insight into identifying patients at high risk in aging patients.
Collapse
Affiliation(s)
| | | | - Xuechao Hao
- Department of Anesthesiology, and the Research Units of West China (2018RU012) - Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, and the Research Units of West China (2018RU012) - Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Westerlund E, Marelsson SE, Karlsson M, Sjövall F, Chamkha I, Åsander Frostner E, Lundgren J, Fellman V, Eklund EA, Steding-Ehrenborg K, Darin N, Paul G, Hansson MJ, Ehinger JK, Elmér E. Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibers. Heliyon 2024; 10:e26745. [PMID: 38439844 PMCID: PMC10909709 DOI: 10.1016/j.heliyon.2024.e26745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
There is a growing interest for the possibility of using peripheral blood cells (including platelets) as markers for mitochondrial function in less accessible tissues. Only a few studies have examined the correlation between respiration in blood and muscle tissue, with small sample sizes and conflicting results. This study investigated the correlation of mitochondrial respiration within and across tissues. Additional analyses were performed to elucidate which blood cell type would be most useful for assessing systemic mitochondrial function. There was a significant but weak within tissue correlation between platelets and peripheral blood mononuclear cells (PBMCs). Neither PBMCs nor platelet respiration correlated significantly with muscle respiration. Muscle fibers from a group of athletes had higher mass-specific respiration, due to higher mitochondrial content than non-athlete controls, but this finding was not replicated in either of the blood cell types. In a group of patients with primary mitochondrial diseases, there were significant differences in blood cell respiration compared to healthy controls, particularly in platelets. Platelet respiration generally correlated better with the citrate synthase activity of each sample, in comparison to PBMCs. In conclusion, this study does not support the theory that blood cells can be used as accurate biomarkers to detect minor alterations in muscle respiration. However, in some instances, pronounced mitochondrial abnormalities might be reflected across tissues and detectable in blood cells, with more promising findings for platelets than PBMCs.
Collapse
Affiliation(s)
- Emil Westerlund
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Emergency Department, Kungälv Hospital, Kungälv, Sweden
| | - Sigurður E. Marelsson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland
| | | | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Intensive- and Perioperative Care, Skåne University Hospital, Malmö, Sweden
| | - Imen Chamkha
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Johan Lundgren
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Vineta Fellman
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik A. Eklund
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Gesine Paul
- Translational Neurology Group and Wallenberg Center for Molecular Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Magnus J. Hansson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Buescher FM, Schmitz MT, Frett T, Kramme J, de Boni L, Elmenhorst EM, Mulder E, Moestl S, Heusser K, Frings-Meuthen P, Jordan J, Rittweger J, Pesta D. Effects of 30 days bed rest and exercise countermeasures on PBMC bioenergetics. Acta Physiol (Oxf) 2024; 240:e14102. [PMID: 38294173 DOI: 10.1111/apha.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
AIM Altered mitochondrial function across various tissues is a key determinant of spaceflight-induced physical deconditioning. In comparison to tissue biopsies, blood cell bioenergetics holds promise as a systemic and more readily accessible biomarker, which was evaluated during head-down tilt bed rest (HDTBR), an established ground-based analog for spaceflight-induced physiological changes in humans. More specifically, this study explored the effects of HDTBR and an exercise countermeasure on mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). METHODS We subjected 24 healthy participants to a strict 30-day HDTBR protocol. The control group (n = 12) underwent HDTBR only, while the countermeasure group (n = 12) engaged in regular supine cycling exercise followed by veno-occlusive thigh cuffs post-exercise for 6 h. We assessed routine blood parameters 14 days before bed rest, the respiratory capacity of PBMCs via high-resolution respirometry, and citrate synthase activity 2 days before and at day 30 of bed rest. We confirmed PBMC composition by flow cytometry. RESULTS The change of the PBMC maximal oxidative phosphorylation capacity (OXPHOS) amounted to an 11% increase in the countermeasure group, while it decreased by 10% in the control group (p = 0.04). The limitation of OXPHOS increased in control only while other respiratory states were not affected by either intervention. Correlation analysis revealed positive associations between white blood cells, lymphocytes, and basophils with PBMC bioenergetics in both groups. CONCLUSION This study reveals that a regular exercise countermeasure has a positive impact on PBMC mitochondrial function, confirming the potential application of blood cell bioenergetics for human spaceflight.
Collapse
Affiliation(s)
- F-M Buescher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - M T Schmitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - T Frett
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Kramme
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - L de Boni
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E M Elmenhorst
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E Mulder
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - S Moestl
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - K Heusser
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - P Frings-Meuthen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - J Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - D Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Kumar P, Oster RA, Assimos DG, Ness TJ, Mitchell T. Bioenergetic profiles of peripheral mononuclear cells and systemic inflammation in women with Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). PLoS One 2024; 19:e0298981. [PMID: 38359038 PMCID: PMC10868762 DOI: 10.1371/journal.pone.0298981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammation is thought to contribute to the etiology of interstitial cystitis/bladder pain syndrome (IC/BPS). It is well-known that disruption in metabolism in immune cells contributes to inflammation in several inflammatory diseases. The purpose of this study was to investigate whether cellular bioenergetics is altered in monocytes and lymphocytes from women with IC/BPS, and if these alterations correlate with systemic inflammatory markers. Age and BMI matched adult healthy women (HS; n = 18) and women with IC/BPS (n = 18) were included in the study. Blood was collected to assess cellular bioenergetics in monocytes and lymphocytes using a Seahorse XF96 Analyzer and plasma cytokine levels were measured using Meso Scale Discovery immunoassays. The correlation between bioenergetic parameters, cytokines, and demographics was determined using Pearson correlation coefficients. Means of the two groups were compared using the two-group t-test. Patients with IC/BPS had reduced monocyte oxygen consumption rates and glycolytic rates compared to healthy subjects. In contrast, lymphocytes from these patients had increased oxygen consumption rates and glycolytic rates. Several cytokines and chemokines including Interferon-gamma (IFN-ɣ), tumor necrosis factor alpha (TNF-ɑ), Interleukin-6 (IL-6), Interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) levels were significantly elevated in the plasma of patients with IC/BPS. However, Transforming growth factor (TGF-β) and Interleukin-10 (IL-10) levels were significantly decreased in IC/BPS patients compared to HS. In addition, Interferon gamma (IFN-ɣ), TNF-ɑ, IL-8, and TGF-β levels correlated with several bioenergetic parameters in monocytes or lymphocytes from healthy subjects. In contrast, TNF-ɑ and IL-8 correlated with bioenergetic parameters in monocytes from IC/BPS patients. Monocyte and lymphocyte cellular bioenergetics and plasma cytokine levels are different in patients with IC/PBS compared to HS. It appears that systemic inflammation is greater in this cohort which may negatively impact immune cell function. The relationship between cellular bioenergetics and inflammation in monocytes and lymphocytes could be important in understanding the pathogenesis of IC/PBS and warrants further investigation.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Robert A. Oster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Dean G. Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy J. Ness
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
32
|
Korepanov VA, Atabekov TA, Rebrova TY, Batalov RE, Afanasiev SA. Relationship between mitochondrial respiratory dysfunction of blood mononuclear cells and heart failure severity. J Geriatr Cardiol 2024; 21:130-134. [PMID: 38440343 PMCID: PMC10908581 DOI: 10.26599/1671-5411.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Affiliation(s)
- Viacheslav A. Korepanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tariel A. Atabekov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana Yu. Rebrova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Roman E. Batalov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey A. Afanasiev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
33
|
Maldarelli ME, Noto MJ. The emerging role for neutrophil mitochondrial metabolism in lung inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00036. [PMID: 38283697 PMCID: PMC10810349 DOI: 10.1097/in9.0000000000000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Recent advances shed light on the importance of mitochondrial metabolism in supporting essential neutrophil functions such as trafficking, NETosis, bacterial killing, and modulating inflammatory responses. Mitochondrial metabolism is now recognized to contribute to a number of lung diseases marked by neutrophilic inflammation, including bacterial pneumonia, acute lung injury, and chronic obstructive pulmonary disease. In this mini review, we provide an overview of neutrophil metabolism focusing on the role of mitochondrial programs, discuss select neutrophil effector functions that are directly influenced by mitochondrial metabolism, and present what is known about the role for mitochondrial metabolism in lung diseases marked by neutrophilic inflammation.
Collapse
Affiliation(s)
- Mary E. Maldarelli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael J. Noto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Yan R, Wang W, Yang W, Huang M, Xu W. Mitochondria-Related Candidate Genes and Diagnostic Model to Predict Late-Onset Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2024; 99:S299-S315. [PMID: 37334608 PMCID: PMC11091583 DOI: 10.3233/jad-230314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Background Late-onset Alzheimer's disease (LOAD) is the most common type of dementia, but its pathogenesis remains unclear, and there is a lack of simple and convenient early diagnostic markers to predict the occurrence. Objective Our study aimed to identify diagnostic candidate genes to predict LOAD by machine learning methods. Methods Three publicly available datasets from the Gene Expression Omnibus (GEO) database containing peripheral blood gene expression data for LOAD, mild cognitive impairment (MCI), and controls (CN) were downloaded. Differential expression analysis, the least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature elimination (SVM-RFE) were used to identify LOAD diagnostic candidate genes. These candidate genes were then validated in the validation group and clinical samples, and a LOAD prediction model was established. Results LASSO and SVM-RFE analyses identified 3 mitochondria-related genes (MRGs) as candidate genes, including NDUFA1, NDUFS5, and NDUFB3. In the verification of 3 MRGs, the AUC values showed that NDUFA1, NDUFS5 had better predictability. We also verified the candidate MRGs in MCI groups, the AUC values showed good performance. We then used NDUFA1, NDUFS5 and age to build a LOAD diagnostic model and AUC was 0.723. Results of qRT-PCR experiments with clinical blood samples showed that the three candidate genes were expressed significantly lower in the LOAD and MCI groups when compared to CN. Conclusion Two mitochondrial-related candidate genes, NDUFA1 and NDUFS5, were identified as diagnostic markers for LOAD and MCI. Combining these two candidate genes with age, a LOAD diagnostic prediction model was successfully constructed.
Collapse
Affiliation(s)
- Ran Yan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Ruijin Hospital, Zhoushan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC. Cold stored platelets in the management of bleeding: is it about bioenergetics? Platelets 2023; 34:2188969. [PMID: 36922733 DOI: 10.1080/09537104.2023.2188969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
When platelet concentrates (PCs) were first introduced in the 1960s as a blood component therapy, they were stored in the cold. As platelet transfusion became more important for the treatment of chemotherapy-induced thrombocytopenia, research into ways to increase supply intensified. During the late 1960s/early 1970s, it was demonstrated through radioactive labeling of platelets that room temperature platelets (RTP) had superior post-transfusion recovery and survival compared with cold-stored platelets (CSP). This led to a universal switch to room temperature storage, despite CSP demonstrating superior hemostatic effectiveness upon being transfused. There has been a global resurgence in studies into CSP over the last two decades, with an increase in the use of PC to treat acute bleeding within hospital and pre-hospital care. CSP demonstrate many benefits over RTP, including longer shelf life, decreased bacterial risk and easier logistics for transport, making PC accessible in areas where they have not previously been, such as the battlefield. In addition, CSP are reported to have greater hemostatic function than RTP and are thus potentially better for the treatment of bleeding. This review describes the history of CSP, the functional and metabolic assays used to assess the platelet storage lesion in PC and the current research, benefits and limitations of CSP. We also discuss whether the application of new technology for studying mitochondrial and glycolytic function in PC could provide enhanced understanding of platelet metabolism during storage and thus contribute to the continued improvements in the manufacturing and storage of PC.
Collapse
Affiliation(s)
- Chloe E George
- Component Development & Research, Welsh Blood Service, Talbot Green, Llantrisant, UK
| | - Christine V Saunders
- Component Development & Research, Welsh Blood Service, Talbot Green, Llantrisant, UK
| | - Alex Morrison
- Scottish National Blood Transfusion Service, Jack Copland Centre, Research Avenue North, Heriot-Watt University, Edinburgh, UK
| | - Tom Scorer
- Centre of Defence Pathology, Royal Centre of Defence Medicine, Birmingham, UK and
| | - Sarah Jones
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Nina C Dempsey
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
36
|
Flora GD, Nayak MK, Ghatge M, Chauhan AK. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovasc Res 2023; 119:2497-2507. [PMID: 37706546 PMCID: PMC10676458 DOI: 10.1093/cvr/cvad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Current antithrombotic therapies used in clinical settings target either the coagulation pathways or platelet activation receptors (P2Y12 or GPIIb/IIIa), as well as the cyclooxygenase (COX) enzyme through aspirin. However, they are associated with bleeding risk and are not suitable for long-term use. Thus, novel strategies which provide broad protection against platelet activation with minimal bleeding risks are required. Regardless of the nature of agonist stimulation, platelet activation is an energy-intensive and ATP-driven process characterized by metabolic switching toward a high rate of aerobic glycolysis, relative to oxidative phosphorylation (OXPHOS). Consequently, there has been considerable interest in recent years in investigating whether targeting metabolic pathways in platelets, especially aerobic glycolysis and OXPHOS, can modulate their activation, thereby preventing thrombosis. This review briefly discusses the choices of metabolic substrates available to platelets that drive their metabolic flexibility. We have comprehensively elucidated the relevance of aerobic glycolysis in facilitating platelet activation and the underlying molecular mechanisms that trigger this switch from OXPHOS. We have provided a detailed account of the antiplatelet effects of targeting vital metabolic checkpoints such as pyruvate dehydrogenase kinases (PDKs) and pyruvate kinase M2 (PKM2) that preferentially drive the pyruvate flux to aerobic glycolysis. Furthermore, we discuss the role of fatty acids and glutamine oxidation in mitochondria and their subsequent role in driving OXPHOS and platelet activation. While the approach of targeting metabolic regulatory mechanisms in platelets to prevent their activation is still in a nascent stage, accumulating evidence highlights its beneficial effects as a potentially novel antithrombotic strategy.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Hickman E, Rebuli ME, Robinette C, Jaspers I. Understanding the Relationship Between Neutrophil Function and Demographic Variables. RESEARCH SQUARE 2023:rs.3.rs-3622445. [PMID: 38045266 PMCID: PMC10690322 DOI: 10.21203/rs.3.rs-3622445/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Neutrophils play a crucial role in the body's defense against respiratory pathogens, and dysregulation is linked to airway diseases. The study presented here explores the association between demographic factors (age, BMI, and sex) and functional phenotypes (oxidative burst and bioenergetics) of neutrophils. We measured PMA-stimulated oxidative burst (Seahorse XF) and phagocytosis (pHrodo red S. aureus ) of human peripheral blood neutrophils and determined whether there were significant demographic associations with cellular function. There were no significant associations between neutrophil oxidative burst bioenergetic parameters or phagocytosis and BMI or age. However, our data revealed sexual dimorphism in neutrophil phagocytosis, with males exhibiting significantly higher phagocytic capacity than females. Additionally, phagocytic capacity and bioenergetic parameters were correlated in males but not in females. The study indicates potential variations in neutrophil activation pathways between males and female and emphasizes the importance of considering sex as a biological variable in respiratory host defense research.
Collapse
|
38
|
Meyer JN, Pan WK, Ryde IT, Alexander T, Klein-Adams JC, Ndirangu DS, Falvo MJ. Bioenergetic function is decreased in peripheral blood mononuclear cells of veterans with Gulf War Illness. PLoS One 2023; 18:e0287412. [PMID: 37910447 PMCID: PMC10619881 DOI: 10.1371/journal.pone.0287412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Gulf War Illness (GWI) is a major health problem for approximately 250,000 Gulf War (GW) veterans, but the etiology of GWI is unclear. We hypothesized that mitochondrial dysfunction is an important contributor to GWI, based on the similarity of some GWI symptoms to those occurring in some mitochondrial diseases; the plausibility that certain pollutants to which GW veterans were exposed affect mitochondria; mitochondrial effects observed in studies in laboratory models of GWI; and previous evidence of mitochondrial outcomes in studies in GW veterans. A primary role of mitochondria is generation of energy via oxidative phosphorylation. However, direct assessment of mitochondrial respiration, reflecting oxidative phosphorylation, has not been carried out in veterans with GWI. In this case-control observational study, we tested multiple measures of mitochondrial function and integrity in a cohort of 114 GW veterans, 80 with and 34 without GWI as assessed by the Kansas definition. In circulating white blood cells, we analyzed multiple measures of mitochondrial respiration and extracellular acidification, a proxy for non-aerobic energy generation; mitochondrial DNA (mtDNA) copy number; mtDNA damage; and nuclear DNA damage. We also collected detailed survey data on demographics; deployment; self-reported exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents; and current biometrics, health and activity levels. We observed a 9% increase in mtDNA content in blood in veterans with GWI, but did not detect differences in DNA damage. Basal and ATP-linked oxygen consumption were respectively 42% and 47% higher in veterans without GWI, after adjustment for mtDNA amount. We did not find evidence for a compensatory increase in anaerobic energy generation: extracellular acidification was also lower in GWI (12% lower at baseline). A subset of 27 and 26 veterans returned for second and third visits, allowing us to measure stability of mitochondrial parameters over time. mtDNA CN, mtDNA damage, ATP-linked OCR, and spare respiratory capacity were moderately replicable over time, with intraclass correlation coefficients of 0.43, 0.44, 0.50, and 0.57, respectively. Other measures showed higher visit-to-visit variability. Many measurements showed lower replicability over time among veterans with GWI compared to veterans without GWI. Finally, we found a strong association between recalled exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents and GWI (p < 0.01, p < 0.01, and p < 0.0001, respectively). Our results demonstrate decreased mitochondrial respiratory function as well as decreased glycolytic activity, both of which are consistent with decreased energy availability, in peripheral blood mononuclear cells in veterans with GWI.
Collapse
Affiliation(s)
- Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - William K. Pan
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Thomas Alexander
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Jacquelyn C. Klein-Adams
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Duncan S. Ndirangu
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Michael J. Falvo
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States of America
| |
Collapse
|
39
|
Grichine A, Jacob S, Eckly A, Villaret J, Joubert C, Appaix F, Pezet M, Ribba AS, Denarier E, Mazzega J, Rinckel JY, Lafanechère L, Elena-Herrmann B, Rowley JW, Sadoul K. The fate of mitochondria during platelet activation. Blood Adv 2023; 7:6290-6302. [PMID: 37624769 PMCID: PMC10589785 DOI: 10.1182/bloodadvances.2023010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.
Collapse
Affiliation(s)
- Alexei Grichine
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Shancy Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Anita Eckly
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Joran Villaret
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Clotilde Joubert
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Florence Appaix
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- INSERM U1216, Commissariat à l'Energie Atomique, Grenoble Institute of Neuroscience, University Grenoble Alpes, Grenoble, France
| | - Jacques Mazzega
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jean-Yves Rinckel
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Laurence Lafanechère
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Bénédicte Elena-Herrmann
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Karin Sadoul
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
40
|
Espinosa G, Conejeros I, Rojas-Barón L, Hermosilla CR, Taubert A. Besnoitia besnoiti-induced neutrophil clustering and neutrophil extracellular trap formation depend on P2X1 purinergic receptor signaling. Front Immunol 2023; 14:1244068. [PMID: 37854595 PMCID: PMC10579820 DOI: 10.3389/fimmu.2023.1244068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Bovine besnoitiosis is a re-emerging cattle disease caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti. Neutrophil extracellular trap (NET) formation represents an efficient innate immune mechanism of polymorphonuclear neutrophils (PMN) against apicomplexan parasites, including B. besnoiti. PMN purinergic signaling was proposed as a critical factor for NET formation. One important purinergic ligand is ATP, which is recognized as a danger signal and released into the extracellular space acting as an autocrine/paracrine signaling molecule. ATP-driven effects on PMN via the nucleotide P2 receptor family include chemotaxis, reactive oxygen species (ROS) production, and NET formation. So far, data on both PMN ATP concentrations and the role of ATP as a key modulator of purinergic signaling in B. besnoiti tachyzoite-triggered bovine NETosis is scarce. Current data showed that B. besnoiti tachyzoite exposure to bovine PMN neither changed total PMN ATP nor extracellular ATP quantities even though it significantly triggered NET formation. Moreover, B. besnoiti tachyzoite-exposed PMN revealed enhanced oxygen consumption rates (OCR) as quantified by the Seahorse metabolic analyzer. Exogenous supplementation of ATP or non-hydrolizable ATP (ATPγS) led to increased extracellular acidification rates (ECAR) but failed to alter tachyzoite-induced oxidative responses (OCR) in exposed PMN. In addition, exogenous supplementation of ATPγS, but not of ATP, boosted B. besnoiti tachyzoite-induced anchored NET formation. Referring to purinergic signaling, B. besnoiti tachyzoite-triggered anchored NET formation revealed P2X1 purinergic as receptor-dependent since it was blocked by the P2X1 inhibitor NF449 at an IC50 of 1.27 µM. In contrast, antagonists of P2Y2, P2Y6, P2X4, and P2X7 purinergic receptors all failed to affect parasite-driven NETosis. As an interesting finding, we additionally observed that B. besnoiti tachyzoite exposure induced PMN clustering in a P2X1-dependent manner. Thus, we identified P2X1 purinergic receptor as a pivotal molecule for both B. besnoiti tachyzoite-induced PMN clustering and anchored NET formation.
Collapse
|
41
|
Tessema B, Haag J, Sack U, König B. The Determination of Mitochondrial Mass Is a Prerequisite for Accurate Assessment of Peripheral Blood Mononuclear Cells' Oxidative Metabolism. Int J Mol Sci 2023; 24:14824. [PMID: 37834272 PMCID: PMC10573504 DOI: 10.3390/ijms241914824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mitochondria are responsible for ATP synthesis through oxidative phosphorylation in cells. However, there are limited data on the influence of mitochondrial mass (MM) in the adequate assessment of cellular stress assay (CSA) results in human peripheral blood mononuclear cells (PBMCs). Therefore, the aim of this study was to determine MM in PBMCS and assess its influence on the results of CSA measurements. Blood samples were collected and sent to the laboratory for MM and CSA measurements during different seasons of the year. The mitochondrial mass was determined based on the mtDNA:nDNA ratio in PBMCs using quantitative real-time PCR (qRT-PCR). CSA was measured using Seahorse technology. The MM was significantly lower during summer and autumn compared to winter and spring (p < 0.0001). On the contrary, we found that the maximal respiration per mitochondrion (MP) was significantly higher in summer and autumn compared to winter and spring (p < 0.0001). The estimated effect of MM on mitochondrial performance was -0.002 pmol/min/mitochondrion (p < 0.0001) and a correlation coefficient (r) of -0.612. Similarly, MM was negatively correlated with maximal respiration (r = -0.12) and spare capacity (in % r = -0.05, in pmol/min r = -0.11). In conclusion, this study reveals that MM changes significantly with seasons and is negatively correlated with CSA parameters and MP. Our findings indicate that the mitochondrial mass is a key parameter for determination of mitochondrial fitness. Therefore, we recommend the determination of MM during the measurement of CSA parameters for the correct interpretation and assessment of mitochondrial function.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Janine Haag
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Platelet mitochondrial dysfunction is both caused by, as well as a source of oxidative stress. Oxidative stress is a key hallmark of metabolic disorders such as dyslipidemia and diabetes, which are known to have higher risks for thrombotic complications. RECENT FINDINGS Increasing evidence supports a critical role for platelet mitochondria beyond energy production and apoptosis. Mitochondria are key regulators of reactive oxygen species and procoagulant platelets, which both contribute to pathological thrombosis. Studies targeting platelet mitochondrial pathways have reported promising results suggesting antithrombotic effects with limited impact on hemostasis in animal models. SUMMARY Targeting platelet mitochondria holds promise for the reduction of thrombotic complications in patients with metabolic disorders. Future studies should aim at validating these preclinical findings and translate them to the clinic.
Collapse
Affiliation(s)
- Abigail Ajanel
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department Pathology, Division of Microbiology and Pathology, University of Utah, Salt Lake City, Utah
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department Pathology, Division of Microbiology and Pathology, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, Division of Hematology, University of Utah, Salt Lake City, Utah
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department of Neurology, Division of Vascular Neurology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
44
|
Wilkinson MS, Dunham-Snary KJ. Blood-based bioenergetics: a liquid biopsy of mitochondrial dysfunction in disease. Trends Endocrinol Metab 2023; 34:554-570. [PMID: 37414716 DOI: 10.1016/j.tem.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Mitochondria operate as hubs of cellular metabolism that execute important regulatory functions. Damaged/dysfunctional mitochondria are recognized as major pathogenic contributors to many common human diseases. Assessment of mitochondrial function relies upon invasive tissue biopsies; peripheral blood cells, specifically platelets, have emerged as an ideal candidate for mitochondrial function assessment. Accessibility and documented pathology-related dysfunction have prompted investigation into the role of platelets in disease, the contribution of platelet mitochondria to pathophysiology, and the capacity of platelets to reflect systemic mitochondrial health. Platelet mitochondrial bioenergetics are being investigated in neurodegenerative and cardiopulmonary diseases, infection, diabetes, and other (patho)physiological states such as aging and pregnancy. Early findings support the use of platelets as a biomarker for mitochondrial functional health.
Collapse
Affiliation(s)
- Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
45
|
Ghatge M, Nayak MK, Flora GD, Kumskova M, Jain A, Patel RB, Lin Z, Usachev YM, Chauhan AK. Mitochondrial calcium uniporter b deletion inhibits platelet function and reduces susceptibility to arterial thrombosis. J Thromb Haemost 2023; 21:2163-2174. [PMID: 37061131 DOI: 10.1016/j.jtha.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Mitochondrial calcium uniporter b (MCUb) is a negative regulator of the mitochondrial calcium uniporter (MCU) and is known to limit mitochondrial calcium ion (Ca2+) uptake. The role of MCUb in platelet function remains unclear. OBJECTIVES Utilizing MCUb-/- mice, we examined the role of MCUb in regulating platelet function and thrombosis. METHODS Platelet activation was evaluated in agonist-induced standardized in vitro assays. Susceptibility to arterial thrombosis was evaluated in FeCl3 injury-induced carotid artery and laser injury-induced mesenteric artery thrombosis models. The glycolytic proton efflux rate and oxygen consumption rate were measured to evaluate aerobic glycolysis. RESULTS Upon stimulation, MCUb-/- platelets exhibited reduced cytoplasmic Ca2+ responses concomitant with increased mitochondrial Ca2+ uptake. MCUb-/- platelets displayed reduced agonist-induced platelet aggregation and spreading on fibrinogen and decreased α and dense-granule secretion and clot retraction. MCUb-/- mice were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid and laser injury-induced mesenteric thrombosis models with unaltered tail bleeding time. In adoptive transfer experiments, thrombocytopenic hIL-4Rα/GPIbα-transgenic mice transfused with MCUb-/- platelets were less susceptible to FeCl3 injury-induced carotid thrombosis compared with hIL-4Rα/GPIbα-Tg mice transfused with wild type platelets, suggesting a platelet-specific role of MCUb in thrombosis. MCUb-/- stimulated platelets exhibited reduced glucose uptake, decreased glycolytic rate, and lowered pyruvate dehydrogenase phosphorylation, suggesting that mitochondrial Ca2+ mediates bioenergetic changes in platelets. CONCLUSION Our findings suggest that mitochondrial Ca2+ signaling and glucose oxidation are functionally linked in activated platelets and reveal a novel role of MCUb in platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA.
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Mariia Kumskova
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Aditi Jain
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
46
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
47
|
Gumpp AM, Behnke A, Ramo-Fernández L, Radermacher P, Gündel H, Ziegenhain U, Karabatsiakis A, Kolassa IT. Investigating mitochondrial bioenergetics in peripheral blood mononuclear cells of women with childhood maltreatment from post-parturition period to one-year follow-up. Psychol Med 2023; 53:3793-3804. [PMID: 35311632 PMCID: PMC10317795 DOI: 10.1017/s0033291722000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Childhood maltreatment (CM) exerts various long-lasting psychological and biological changes in affected individuals, with inflammation being an interconnecting element. Besides chronic low-grade inflammation, CM might also affect the energy production of cells by altering the function and density of mitochondria, i.e. the body's main energy suppliers. Here, we compared mitochondrial respiration and density in intact peripheral blood mononuclear cells (PBMC), from women with and without CM between two time points, i.e. at the highly inflammatory phase within 1 week after parturition (t0) and again after 1 year (t2). METHODS CM exposure was assessed with the Childhood Trauma Questionnaire. Whole blood was collected from n = 52 healthy women within the study 'My Childhood - Your Childhood' at both time points to isolate and cryopreserve PBMC. Thawed PBMC were used to measure mitochondrial respiration and density by high-resolution respirometry followed by spectrophotometric analyses of citrate-synthase activity. RESULTS Over time, quantitative respiratory parameters increased, while qualitative flux control ratios decreased, independently of CM. Women with CM showed higher mitochondrial respiration and density at t0, but not at t2. We found significant CM group × time interaction effects for ATP-turnover-related respiration and mitochondrial density. CONCLUSIONS This is the first study to longitudinally investigate mitochondrial bioenergetics in postpartum women with and without CM. Our results indicate that CM-related mitochondrial alterations reflect allostatic load, probably due to higher inflammatory states during parturition, which normalize later. However, later inflammatory states might moderate the vulnerability for a second-hit on the level of mitochondrial bioenergetics, at least in immune cells.
Collapse
Affiliation(s)
- Anja M. Gumpp
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Behnke
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Laura Ramo-Fernández
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Ute Ziegenhain
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Clinical Psychology, Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
48
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
50
|
Grudzinska FS, Jasper A, Sapey E, Thickett DR, Mauro C, Scott A, Barlow J. Real-time assessment of neutrophil metabolism and oxidative burst using extracellular flux analysis. Front Immunol 2023; 14:1083072. [PMID: 37180154 PMCID: PMC10166867 DOI: 10.3389/fimmu.2023.1083072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophil responses are critical during inflammatory and infective events, and neutrophil dysregulation has been associated with poor patient outcomes. Immunometabolism is a rapidly growing field that has provided insights into cellular functions in health and disease. Neutrophils are highly glycolytic when activated, with inhibition of glycolysis associated with functional deficits. There is currently very limited data available assessing metabolism in neutrophils. Extracellular flux (XF) analysis assesses real time oxygen consumption and the rate of proton efflux in cells. This technology allows for the automated addition of inhibitors and stimulants to visualise the effect on metabolism. We describe optimised protocols for an XFe96 XF Analyser to (i) probe glycolysis in neutrophils under basal and stimulated conditions, (ii) probe phorbol 12-myristate 13-acetate induced oxidative burst, and (iii) highlight challenges of using XF technology to examine mitochondrial function in neutrophils. We provide an overview of how to analyze XF data and identify pitfalls of probing neutrophil metabolism with XF analysis. In summary we describe robust methods for assessing glycolysis and oxidative burst in human neutrophils and discuss the challenges around using this technique to assess mitochondrial respiration. XF technology is a powerful platform with a user-friendly interface and data analysis templates, however we suggest caution when assessing neutrophil mitochondrial respiration.
Collapse
Affiliation(s)
- Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Alice Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- PIONEER Health Data Research- UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan Barlow
- Cellular Health and Metabolism Facility, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|