1
|
Sudharsan R, Kwok J, Swider M, Sumaroka A, Aguirre GD, Cideciyan AV, Beltran WA. Retinal prolactin isoform PRLΔE1 sustains rod disease in inherited retinal degenerations. Cell Death Dis 2024; 15:682. [PMID: 39294136 PMCID: PMC11410941 DOI: 10.1038/s41419-024-07070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
PRLΔE1, a retina-specific isoform of prolactin, is expressed in multiple and diverse forms of canine inherited retinal degeneration (IRD). We find that while PRLΔE1 expression in rods is not associated with the initial phase of disease characterized by acute photoreceptor cell death, it is associated with the protracted phase of slow cell loss. Restoration of photoreceptors to a healthy state by gene-specific replacement therapy of individual IRDs successfully suppresses PRLΔE1 expression. Moreover, short-term PRLΔE1 silencing using shRNA results in preservation of outer nuclear layer thickness, suggesting PRLΔE1 drives retinal disease. However, longer-term observations reveal off-target toxic effects of the PRLΔE1 shRNA, precluding determination of its full therapeutic potential. Future research efforts aimed at enhancing the safety and specificity of PRLΔE1-targeting strategies may identify a potential universal intervention strategy for sustaining photoreceptors during the prolonged phase of multiple IRDs.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jennifer Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Núñez-Amaro CD, López M, Adán-Castro E, Robles-Osorio ML, García-Franco R, García-Roa M, Villalpando-Gómez Y, Ramírez-Neria P, Pineiro N, Rubio-Mijangos JF, Sánchez J, Ramírez-Hernández G, Siqueiros-Márquez L, Díaz-Lezama N, López-Star E, Bertsch T, Marínez de la Escalera G, Triebel J, Clapp C. Levosulpiride for the treatment of diabetic macular oedema: a phase 2 randomized clinical trial. Eye (Lond) 2024; 38:520-528. [PMID: 37673971 PMCID: PMC10858020 DOI: 10.1038/s41433-023-02715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND/OBJECTIVE The prokinetic levosulpiride elevates vasoinhibin levels in the vitreous of patients with proliferative diabetic retinopathy (PDR) suggesting clinical benefits due to the anti-vasopermeability and anti-angiogenic properties of vasoinhibin. We investigated the biological activity of levosulpiride in centre-involving diabetic macular oedema (DME). PATIENTS/METHODS Prospective, randomized, double-blinded, dual-centre, phase 2 trial in patients with centre-involving DME orally treated with placebo (n = 17) or levosulpiride (n = 17) for 8 weeks or in patients with PDR undergoing elective pars plana vitrectomy and receiving placebo (n = 18) or levosulpiride (n = 18) orally for the 1 week before vitrectomy. RESULTS Levosulpiride improved changes from baseline in best-corrected visual acuity (p ≤ 0.037), central foveal thickness (CFT, p ≤ 0.013), and mean macular volume (MMV, p ≤ 0.002) at weeks 4, 6, and 8 compared to placebo. At 8 weeks, the proportion of eyes gaining ≥5 ETDRS letters at 4 m (41% vs. 28%), losing ≥21 μm in CFT (55% vs. 28%), and dropping ≥0.06 mm3 in MMV (65% vs. 29%) was higher after levosulpiride than placebo. The overall grading of visual and structural parameters improved with levosulpiride (p = 0.029). Levosulpiride reduced VEGF (p = 0.025) and PlGF (p = 0.008) levels in the vitreous of PDR patients. No significant adverse side-effects were detected. CONCLUSIONS Oral levosulpiride for 8 weeks improved visual and structural outcomes in patients with centre-involving DME by mechanisms that may include intraocular upregulation of vasoinhibin and downregulation of VEGF and PlGF. Larger clinical trials evaluating long-term efficacy and safety are warranted.
Collapse
Affiliation(s)
- Carlos D Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, México
| | - Mariana López
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | | | | | | - Nayeli Pineiro
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | | | - Jorge Sánchez
- Instituto de la Retina del Bajío (INDEREB), Querétaro, México
| | - Gabriela Ramírez-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Lourdes Siqueiros-Márquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
4
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
5
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Adán-Castro E, Siqueiros-Márquez L, Ramírez-Hernández G, Díaz-Lezama N, Ruíz-Herrera X, Núñez FF, Núñez-Amaro CD, Robles-Osorio ML, Bertsch T, Triebel J, Martínez de la Escalera G, Clapp C. Sulpiride-induced hyperprolactinaemia increases retinal vasoinhibin and protects against diabetic retinopathy in rats. J Neuroendocrinol 2022; 34:e13091. [PMID: 35078262 DOI: 10.1111/jne.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Excessive vasopermeability and angiogenesis compromise vision in diabetic macular oedema (DME) and diabetic retinopathy (DR). Vasoinhibin is a fragment of the hormone prolactin (PRL) that inhibits diabetes-induced retinal hypervasopermeability and ischaemia-induced retinal angiogenesis in rodents. Hyperprolactinaemia generated by the dopamine D2 receptor antagonist, levosulpiride, is associated with higher levels of vasoinhibin in the vitreous of patients with DR, implying a beneficial outcome due to vasoinhibin-mediated inhibition of retinal vascular alterations. Here, we tested whether hyperprolactinaemia induced by racemic sulpiride increases intraocular vasoinhibin levels and inhibits retinal hypervasopermeability in diabetic rats. Diabetes was generated with streptozotocin and, 4 weeks later, rats were treated for 2 weeks with sulpiride or osmotic minipumps delivering PRL. ELISA, Western blot, and Evans blue assay were used to evaluate serum PRL, retinal vasoinhibin, and retinal vasopermeability, respectively. Hyperprolactinaemia in response to sulpiride or exogenous PRL was associated with increased levels of vasoinhibin in the retina and reduced retinal hypervasopermeability. Furthermore, sulpiride decreased retinal haemorrhages in response to the intravitreal administration of vascular endothelial growth factor (VEGF). Neither sulpiride nor exogenous PRL modified blood glucose levels or bodyweight. We conclude that sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular conversion of endogenous PRL to vasoinhibin. These findings support the therapeutic potential of sulpiride and its levorotatory enantiomer, levosulpiride, against DME and DR.
Collapse
Affiliation(s)
- Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Xarubet Ruíz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Francisco Freinet Núñez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Carlos D Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
7
|
Triebel J, Bertsch T, Clapp C. Prolactin and vasoinhibin are endogenous players in diabetic retinopathy revisited. Front Endocrinol (Lausanne) 2022; 13:994898. [PMID: 36157442 PMCID: PMC9500238 DOI: 10.3389/fendo.2022.994898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes for visual loss in adults. Nearly half of the world's population with diabetes has some degree of DR, and DME is a major cause of visual impairment in these patients. Severe vision loss occurs because of tractional retinal detachment due to retinal neovascularization, but the most common cause of moderate vision loss occurs in DME where excessive vascular permeability leads to the exudation and accumulation of extracellular fluid and proteins in the macula. Metabolic control stands as an effective mean for controlling retinal vascular alterations in some but not all patients with diabetes, and the search of other modifiable factors affecting the risk for diabetic microvascular complications is warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have emerged as endogenous regulators of retinal blood vessels. PRL acquires antiangiogenic and anti-vasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of ocular organs and, upon disruption, promotes retinal vascular alterations characteristic of DR and DME. Evidence is linking PRL (and other pituitary hormones) and vasoinhibin to DR and recent preclinical and clinical evidence supports their translation into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
8
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Changes in 24 h Rhythmicity of Spontaneous Locomotor Activity in the Triple Transgenic Mouse for Alzheimer's Disease (3xTg-AD) in a Jet Lag Protocol: Correlations with Retinal Sensitivity. J Circadian Rhythms 2021; 19:7. [PMID: 34163535 PMCID: PMC8194968 DOI: 10.5334/jcr.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer’s disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively). The 3xTg-AD mice at 3 months presented differences in phase angle and acrophase, and differentially increased activity after advances more than after delays. At 13 months, a shortening of the free-running period in constant darkness was also noted. 3xTg-AD mice showed a significant increase (123%) in global activity at 8 to 13 months and in nighttime activity (153%) at 13 months. In the advance protocol (ADV), 3xTg-AD mice displayed a significant increase in global activity (171%) at 8 and 13 months. The differences in masking effect were evident at 8 months. To assess a possible retinal dysfunction that could interfere with photic entrainment as part of the neurodegenerative process, we compared electroretinogram recordings. The results showed early deterioration in the retinal response to light flashes in mesopic conditions, observed in the B-wave latency and amplitude. Thus, our study presents new behavioral and pathological characteristics of 3xTg-AD mice and reveals the usefulness of non-invasive tools in early diagnosis.
Collapse
|
10
|
Short prolactin isoforms are expressed in photoreceptors of canine retinas undergoing retinal degeneration. Sci Rep 2021; 11:460. [PMID: 33432105 PMCID: PMC7801730 DOI: 10.1038/s41598-020-80691-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Prolactin (PRL) hormone functions as a pleiotropic cytokine with a protective role in the retina. We recently identified by transcriptome profiling that PRL is one of the most highly upregulated mRNAs in the retinas of mutant rcd1 (PDE6B) and xlpra2 (RPGR) dogs at advanced stages of photoreceptor disease. In the present study, we have identified the expression of a short PRL isoform that lacks exon 1 in canine retinas and analyzed the time-course of expression and localization of this isoform in the retinas of these two models. Using laser capture microdissection to isolate RNA from each of the retinal cellular layers, we found by qPCR that this short PRL isoform is expressed in photoreceptors of degenerating retinas. We confirmed by in situ hybridization that its expression is localized to the outer nuclear layer and begins shortly after the onset of disease at the time of peak photoreceptor cell death in both models. PRL protein was also detected only in mutant dog retinas. Our results call for further investigations into the role of this novel PRL isoform in retinal degeneration.
Collapse
|
11
|
Ortiz G, Ledesma-Colunga MG, Wu Z, García-Rodrigo JF, Adan N, Martínez de la Escalera G, Clapp C. Vasoinhibin reduces joint inflammation, bone loss, and the angiogenesis and vasopermeability of the pannus in murine antigen-induced arthritis. J Transl Med 2020; 100:1068-1079. [PMID: 32341517 DOI: 10.1038/s41374-020-0432-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Increased permeability and growth (angiogenesis) of blood vessels play a key role in joint swelling and pannus formation in inflammatory arthritis, a family of diseases influenced by reproductive hormones. The hormone prolactin (PRL) protects against joint inflammation, pannus formation, and bone destruction in adjuvant-induced arthritis and these effects may involve its proteolytic conversion to vasoinhibin, a PRL fragment that inhibits angiogenesis and vasopermeability. Here, we show that the intra-articular injection of an adeno-associated virus type-2 (AAV2) vector encoding vasoinhibin reduced joint inflammation, the hyperplasia, vascular density, and vasopermeability of the pannus, and the loss of bone in mice subjected to antigen-induced arthritis. In agreement, the AAV2 vasoinhibin vector reduced the expression of proinflammatory cytokines (interleukin-1β, interleukin-6), an endothelial cell marker (platelet endothelial cell-adhesion molecule 1), and proangiogenic molecules [vascular endothelial growth factor (VEGF), VEGF receptor 2, and hypoxia-inducible factor 1α] in the arthritic joint. Also, vasoinhibin reduced the synovial vasopermeability induced by the intra-articular injection of VEGF in healthy mice. Finally, vasoinhibin signals by blocking the phosphorylation/activation of endothelial nitric oxide synthase (eNOS) at Ser1179 and the AAV2 vasoinhibin vector inhibited the enhanced phosphorylation of eNOS Ser1179 in the arthritic joint. We conclude that vasoinhibin reduces joint inflammation and bone loss in arthritis by inhibiting pannus angiogenesis and vasopermeability via the blockage of VEGF-induced eNOS activation. These findings suggest the potential therapeutic benefit of AAV2-mediated vasoinhibin gene delivery in arthritis.
Collapse
Affiliation(s)
- Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Maria G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Zhijian Wu
- Ocular Gene Therapy Laboratory, Neurobiology, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Jose F García-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | - Norma Adan
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, 76230, México.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR), a leading cause of visual impairment in the developed country, is characterized by vascular lesions and neuronal damage of the retina. Treatment options for this condition are currently limited. The advent of therapy targeting vascular endothelial growth factor (VEGF) demonstrated significant benefits to patients with DR. However, this treatment is limited by its short half-life and requirement for frequent invasive intravitreal injections. In addition, many patients failed to achieve clinically significant improvement in visual function. Gene therapy has the potential to provide an alternative treatment for DR with distinct advantages, such as longer therapeutic effect, less injection frequency, ability to intervene at disease onset, and potentially fewer side effects. RECENT FINDINGS Strategies for gene therapy in DR, stemming from the current understanding of the disease pathogenesis, focus on the inhibition of neovascularization and protection of neurovascular degeneration in the retina. Studies with promising results have mainly focussed on animal models due to efficacy and safety concerns, despite a number of successful preclinical studies using adeno-associated virus-mediated transduction to treat both vascular dysfunction and neuronal degeneration. With the optimization of delivery vectors, transgene regulation, and outcome measure, gene therapy will potentially become available for patients with DR. This review provides an update on the current strategies utilized in DR gene therapy research. Several barriers to the clinical application of gene therapy for DR are highlighted, and future directions for this research are proposed.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Georgina Eloise Roberts
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia.
| |
Collapse
|
13
|
Carroll LS, Uehara H, Fang D, Choi S, Zhang X, Singh M, Sandhu Z, Cummins PM, Curtis TM, Stitt AW, Archer BJ, Ambati BK. Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:2494-2502. [PMID: 31185088 PMCID: PMC6559753 DOI: 10.1167/iovs.18-26182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine whether intravitreal angiopoietin-1 combined with the short coiled-coil domain of cartilage oligomeric matrix protein by adeno-associated viral serotype 2 (AAV2.COMP-Ang1) delivery following the onset of vascular damage could rescue or repair damaged vascular beds and attenuate neuronal atrophy and dysfunction in the retinas of aged diabetic mice. Methods AAV2.COMP-Ang1 was bilaterally injected into the vitreous of 6-month-old male Ins2Akita mice. Age-matched controls consisted of uninjected C57BL/6J and Ins2Akita males, and of Ins2Akita males injected with PBS or AAV2.REPORTER (AcGFP or LacZ). Retinal thickness and visual acuity were measured in vivo at baseline and at the 10.5-month endpoint. Ex vivo vascular parameters were measured from retinal flat mounts, and Western blot was used to detect protein expression. Results All three Ins2Akita control groups showed significantly increased deep vascular density at 10.5 months compared to uninjected C57BL/6J retinas (as measured by vessel area, length, lacunarity, and number of junctions). In contrast, deep microvascular density of Ins2Akita retinas treated with AAV2.COMP-Ang1 was more similar to uninjected C57BL/6J retinas for all parameters. However, no significant improvement in retinal thinning or diabetic retinopathy-associated visual loss was found in treated diabetic retinas. Conclusions Deep retinal microvasculature of diabetic Ins2Akita eyes shows late stage changes consistent with disorganized vascular proliferation. We show that intravitreally injected AAV2.COMP-Ang1 blocks this increase in deep microvascularity, even when administered subsequent to development of the first detectable vascular defects. However, improving vascular normalization did not attenuate neuroretinal degeneration or loss of visual acuity. Therefore, additional interventions are required to address neurodegenerative changes that are already underway.
Collapse
Affiliation(s)
- Lara S Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Hironori Uehara
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Daniel Fang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Xiaohui Zhang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Malkit Singh
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Zoya Sandhu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Bonnie J Archer
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Balamurali K Ambati
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Perez-Ortiz AC, Peralta-Ildefonso MJ, Lira-Romero E, Moya-Albor E, Brieva J, Ramirez-Sanchez I, Clapp C, Luna-Angulo A, Rendon A, Adan-Castro E, Ramírez-Hernández G, Díaz-Lezama N, Coral-Vázquez RM, Estrada-Mena FJ. Lack of Delta-Sarcoglycan ( Sgcd) Results in Retinal Degeneration. Int J Mol Sci 2019; 20:ijms20215480. [PMID: 31689918 PMCID: PMC6862322 DOI: 10.3390/ijms20215480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss and severe blindness among the elderly population. Recently, we reported on the association of the SGCD gene (encoding for δ-sarcoglycan) polymorphisms with AMD. However, the functional consequence of Sgcd alterations in retinal degeneration is not known. Herein, we characterized changes in the retina of the Sgcd knocked-out mouse (KO, Sgcd-/-). At baseline, we analyzed the retina structure of three-month-old wild-type (WT, Sgcd+/+) and Sgcd-/- mice by hematoxylin and eosin (H&E) staining, assessed the Sgcd-protein complex (α-, β-, γ-, and ε-sarcoglycan, and sarcospan) by immunofluorescence (IF) and Western blot (WB), and performed electroretinography. Compared to the WT, Sgcd-/- mice are five times more likely to have retinal ruptures. Additionally, all the retinal layers are significantly thinner, more so in the inner plexiform layer (IPL). In addition, the number of nuclei in the KO versus the WT is ever so slightly increased. WT mice express Sgcd-protein partners in specific retinal layers, and as expected, KO mice have decreased or no protein expression, with a significant increase in the α subunit. At three months of age, there were no significant differences in the scotopic electroretinographic responses, regarding both a- and b-waves. According to our data, Sgcd-/- has a phenotype that is compatible with retinal degeneration.
Collapse
Affiliation(s)
- Andric C Perez-Ortiz
- Massachusetts General Hospital, Division of Surgery, 55 Fruit St, Boston, MA 02214, USA.
- Laboratory of Epidemiology and Public Health, Yale University School of Public Health, 60 College St, New Haven, CT 06510, USA.
| | - Martha J Peralta-Ildefonso
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
- Laboratorio de Biología Molecular, Universidad Panamericana, Escuela de Medicina, Donatello 59 Insurgentes Mixcoac Benito Juárez, 03920 Ciudad de México, Mexico.
| | - Esmeralda Lira-Romero
- Laboratorio de Biología Molecular, Universidad Panamericana, Escuela de Medicina, Donatello 59 Insurgentes Mixcoac Benito Juárez, 03920 Ciudad de México, Mexico.
| | - Ernesto Moya-Albor
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, 03920 Ciudad de México, Mexico.
| | - Jorge Brieva
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, 03920 Ciudad de México, Mexico.
| | - Israel Ramirez-Sanchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Carmen Clapp
- Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México (UNAM), 76230 Querétaro, Mexico.
| | - Alexandra Luna-Angulo
- Departamento de Neurociencias, Instituto Nacional de rehabilitación, México-Xochimilco, No.289. Arenal de Guadalupe, 14389 Ciudad de México, Mexico.
| | - Alvaro Rendon
- Institut De La Vision, Sorbonne Universites, F-75012 Paris, France.
| | - Elva Adan-Castro
- Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México (UNAM), 76230 Querétaro, Mexico.
| | - Gabriela Ramírez-Hernández
- Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México (UNAM), 76230 Querétaro, Mexico.
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| | - Ramón M Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 Ciudad de México, Mexico.
| | - Francisco J Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Escuela de Medicina, Donatello 59 Insurgentes Mixcoac Benito Juárez, 03920 Ciudad de México, Mexico.
| |
Collapse
|
15
|
Clapp C, Diaz-Lezama N, Adan-Castro E, Ramirez-Hernandez G, Moreno-Carranza B, Sarti AC, Falzoni S, Solini A, Di Virgilio F. Pharmacological blockade of the P2X7 receptor reverses retinal damage in a rat model of type 1 diabetes. Acta Diabetol 2019; 56:1031-1036. [PMID: 30982154 DOI: 10.1007/s00592-019-01343-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
Abstract
AIMS Retinopathy is a leading cause of vision impairment in diabetes. Its pathogenesis involves inflammation, pathological angiogenesis, neuronal and glial dysfunction. The purinergic P2X7 receptor (P2X7R) has a leading role in inflammation and angiogenesis. Potent and selective P2X7R blockers have been synthesized and tested in Phase I/II clinical studies. We hypothesize that P2X7R blockade will ameliorate diabetes-related pathological retinal changes. METHODS Streptozotocin (STZ)-treated rats were intraperitoneally inoculated with either of two small molecule P2X7R receptor inhibitors, A740003 and AZ10606120, and after blood glucose levels increased to above 400 mg/dL, retinae were analyzed for P2X7R expression, vascular permeability, VEGF, and IL-6 expression. RESULTS STZ administration caused a near fourfold increase in blood glucose, a large increase in retinal microvasculature permeability, as well as in retinal P2X7R, VEGF, and IL-6 expression. P2X7R blockade fully reversed retinal vascular permeability increase, VEGF accumulation, and IL-6 expression, with no effect on blood glucose. CONCLUSION P2X7R blockade might be promising strategy for the treatment of microvascular changes observed in the early phases of diabetic retinopathy.
Collapse
Affiliation(s)
- Carmen Clapp
- Institute of Neurobiology, National University of Mexico [UNAM], Querétaro, Mexico
| | - Nundehui Diaz-Lezama
- Institute of Neurobiology, National University of Mexico [UNAM], Querétaro, Mexico
| | - Elva Adan-Castro
- Institute of Neurobiology, National University of Mexico [UNAM], Querétaro, Mexico
| | | | | | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
16
|
Naderi A, Zahed R, Aghajanpour L, Amoli FA, Lashay A. Long term features of diabetic retinopathy in streptozotocin-induced diabetic Wistar rats. Exp Eye Res 2019; 184:213-220. [PMID: 31028750 DOI: 10.1016/j.exer.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
Diabetic retinopathy is a complication of diabetes and a leading cause of vision loss among working-age adults. To assess whether the Wistar rat with Streptozotocin (STZ)-induced diabetes is a suitable animal model of human proliferative diabetic retinopathy we evaluated the vascular changes to assess the diabetic retinopathy (DR) stages in this model. After two weeks of intraperitoneal STZ (55 mg/kg) injection in male Wistar rats (270-300 g), they were considered diabetic with persistent blood glucose levels ≥ 16.65 mmol/L. The diabetic and control rats were investigated after 1, 3, 6 and 9 months by electroretinography, Evans blue assay, dextran fluorescence retinal angiography, and retinal histopathological studies. Retinal vascular permeability in the diabetic groups increased significantly in all diabetic groups. The amplitude of a- and b-waves decreased significantly in all diabetic groups compared with the age-matched control groups. The latent time of a-waves in the diabetic groups was delayed at 3 months of diabetes and this delay remained relatively constant till 9 months following the onset of diabetes. Although the latent time of b-wave in the diabetic groups increased slightly, a significant difference was found right at 9 months of diabetes. Vascular density and branching point numbers significantly decreased in the diabetic eyes at 3 and 6 months while they increased at 9 months, which was not significant. Intraretinal hemorrhage and ischemic changes were detected in the half of diabetic rats after 6 months and considered as preproliferative stage of diabetic retinopathy. Although preproliferative changes were detected in all diabetic rats at 9 months, half of them showed vitreous neovascularization attached to retina and retinal folds which can be considered as proliferative stage of DR. Intraretinal hemorrhage, extensive leakage of fluorescein, retinal folds, and vitreous neovascularization were the most prominent findings of severe and proliferative diabetic retinopathy in a fraction of the STZ-induced diabetic rats which were comparable to that of the human patients. STZ-induced diabetic rats can be considered to be a potentially useful model for studies on pathogenesis and treatment of diabetic retinopathy in human.
Collapse
Affiliation(s)
- Asieh Naderi
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Zahed
- Department of Emergency Medicine, Imam Khomeini Hospital Complex, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Leila Aghajanpour
- Stem Cell Preparation Unit, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fahimeh Asadi Amoli
- Department of Pathology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Lashay
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol 2019; 47:521-536. [PMID: 30345694 DOI: 10.1111/ceo.13416] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
Voretigene neparvovec-rzyl was recently approved for the treatment of Leber congenital amaurosis, and the use of gene therapy for eye disease is attracting even greater interest. The eye has immune privileged status, is easily accessible, requires a reduced dosage of therapy due to its size and is highly compartmentalized, significantly reducing systemic spread. Adeno-associated virus (AAV), with its low pathogenicity, prolonged expression profile and ability to transduce multiple cell types, has become the leading gene therapy vector. Target diseases have moved beyond currently untreatable inherited dystrophies to common, partially treatable acquired conditions such as exudative age-related macular degeneration and glaucoma, but use of the technology in these conditions imposes added obligations for caution in vector design. This review discusses the current status of AAV gene therapy trials in genetic and acquired ocular diseases, and explores new scientific developments, which could help ensure effective and safe use of the therapy in the future.
Collapse
Affiliation(s)
- Charmaine A Ramlogan-Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia.,Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Slawomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Bijay Dhungel
- Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Jason C Steel
- Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| |
Collapse
|
18
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Lee SH, Yang JY, Madrakhimov S, Park HY, Park K, Park TK. Adeno-Associated Viral Vector 2 and 9 Transduction Is Enhanced in Streptozotocin-Induced Diabetic Mouse Retina. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:55-66. [PMID: 30666309 PMCID: PMC6330514 DOI: 10.1016/j.omtm.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are currently the most popular vector platform technology for ocular gene therapy. While transduction efficiency and tropism of intravitreally administered AAV has been fairly well established in various retinal conditions, its transduction pattern in diabetic retinas has not previously been characterized. Here, we describe the transduction efficiencies of four different AAV serotypes, AAV2, 5, 8, and 9, in streptozotocin (STZ)-induced diabetic mouse retinas after intravitreal injections, which differed according to the duration of diabetic induction. STZ was intraperitoneally injected into C57/B6 diabetic mice subjected to unilateral intravitreal injection of AAV2, AAV5, AAV8, and AAV9 packaged with EGFP. Significantly enhanced AAV2 and AAV9 transduction was observed in 2-month-old diabetic mouse retinas compared to the 2-week-old diabetic mouse retinas and nondiabetic, vector uninjected or injected retinas. Intravitreal injection of AAV5 or AAV8 serotype in 2-month- and 2-week-old diabetic mouse retinas did not show any significant vector transduction enhancement compared to the nondiabetic control retinas. The tropism of AAV2 and AAV9 in diabetic mouse retinas differed. AAV2 was transduced into various retinal cells, including Müller cells, microglia, retinal ganglion cells (RGCs), bipolar cells, horizontal cells, and amacrine cells, whereas AAV9 was effectively transduced only into RGC and horizontal cells. The expression levels of receptors and co-receptors for AAV2 and AAV9 were significantly increased in 2-month-old diabetic mouse retinas. The results of our study demonstrated that AAV2 and AAV9 may be the vector of choice in treating diabetic retinopathy (DR) with gene therapy, and DR-related retinal changes may improve AAV vector transduction efficiency.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Jin Young Yang
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sanjar Madrakhimov
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ha Yan Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Chungbuk 28150, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| |
Collapse
|
20
|
Transduction Patterns of Adeno-associated Viral Vectors in a Laser-Induced Choroidal Neovascularization Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:90-98. [PMID: 29766021 PMCID: PMC5948198 DOI: 10.1016/j.omtm.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) vector is a promising platform technology for ocular gene therapy. Recently clinical successes to treat choroidal neovascularization (CNV) in wet type age-related macular degeneration have been reported. However, because pathologic conditions of the retina may alter the tropism of viral vectors, it is necessary to evaluate the transduction efficiency of different serotypes of AAV vectors in the retinas with CNVs. Here, we show the patterns and efficacy of transduction of AAV2, -5, and -8 vectors in a laser-induced CNV mouse model. C57BL/6J mice were subjected to unilateral laser photocoagulation on the right eye to induce CNV 5 days prior to intravitreal injection of AAV2, -5, and -8 capsids expressing EGFP. Transduction was increased around CNV lesions for all AAV capsid types, and AAV2 resulted in the highest transduction efficiency. In the absence of CNV, the AAV2 vector transduced ganglion and inner nuclear layer (INL) cells, and AAV5 and AAV8 transduced only a small proportion of cells in the retinal ganglion cell layer. CNV increased AAV2 vector expression throughout the retina and in and around CNVs; the transduced cells included retinal ganglion cells, Müller cells, cells from the INL and outer nuclear layer (ONL), photoreceptors, and retinal pigment epithelium (RPE) cells. Inflammatory cells and endothelial cells in CNVs were also transduced by AAV2. AAV5 and AAV8 were transduced in retinal ganglion, Müller, INL, ONL, and RPE cells in a localized pattern, and only endothelial cells at the surface of CNV lesions showed EGFP expression. Taken together, CNV formation resulted in enhanced transduction of AAV2, -5, and -8, and AAV2 exhibited the highest transduction efficiency in cells in CNV lesions.
Collapse
|
21
|
Robles-Osorio ML, García-Franco R, Núñez-Amaro CD, Mira-Lorenzo X, Ramírez-Neria P, Hernández W, López-Star E, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Basis and Design of a Randomized Clinical Trial to Evaluate the Effect of Levosulpiride on Retinal Alterations in Patients With Diabetic Retinopathy and Diabetic Macular Edema. Front Endocrinol (Lausanne) 2018; 9:242. [PMID: 29896154 PMCID: PMC5986911 DOI: 10.3389/fendo.2018.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) and diabetic macular edema (DME) are potentially blinding, microvascular retinal diseases in people with diabetes mellitus. Preclinical studies support a protective role of the hormone prolactin (PRL) due to its ocular incorporation and conversion to vasoinhibins, a family of PRL fragments that inhibit ischemia-induced retinal angiogenesis and diabetes-derived retinal vasopermeability. Here, we describe the protocol of an ongoing clinical trial investigating a new therapy for DR and DME based on elevating the circulating levels of PRL with the prokinetic, dopamine D2 receptor blocker, levosulpiride. METHODS It is a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME, non-proliferative DR (NPDR), proliferative DR (PDR) requiring vitrectomy, and DME plus standard intravitreal therapy with the antiangiogenic agent, ranibizumab. Patients are randomized to receive placebo (lactose pill, orally TID) or levosulpiride (75 mg/day orally TID) for 8 weeks (DME and NPDR), 1 week (the period before vitrectomy in PDR), or 12 weeks (DME plus ranibizumab). In all cases the study medication is taken on top of standard therapy for diabetes, blood pressure control, or other medical conditions. Primary endpoints in groups 1 and 2 (DME: placebo and levosulpiride), groups 3 and 4 (NPDR: placebo and levosulpiride), and groups 7 and 8 (DME plus ranibizumab: placebo and levosulpiride) are changes from baseline in visual acuity, retinal thickness assessed by optical coherence tomography, and retinal microvascular abnormalities evaluated by fundus biomicroscopy and fluorescein angiography. Changes in serum PRL levels and of PRL and vasoinhibins levels in the vitreous between groups 5 and 6 (PDR undergoing vitrectomy: placebo and levosulpiride) serve as proof of principle that PRL enters the eye to counteract disease progression. Secondary endpoints are changes during the follow-up of health and metabolic parameters (blood pressure, glycated hemoglobin, and serum levels of glucose and creatinine). A total of 120 patients are being recruited. DISCUSSION This trial will provide important knowledge on the potential benefits and safety of elevating circulating and intraocular PRL levels with levosulpiride in patients with DR and DME. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Ethics Committees of the National University of Mexico (UNAM) and the Instituto Mexicano de Oftalmología, I.A.P. Dissemination will include submission to peer-reviewed scientific journals and presentation at congresses. CLINICAL TRIAL REGISTRATION Registered at www.ClinicalTrials.gov, ID: NCT03161652 on May 18, 2017.
Collapse
Affiliation(s)
| | | | - Carlos D. Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, Mexico
| | | | | | - Wendy Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| |
Collapse
|
22
|
Dual contribution of TRPV4 antagonism in the regulatory effect of vasoinhibins on blood-retinal barrier permeability: diabetic milieu makes a difference. Sci Rep 2017; 7:13094. [PMID: 29026201 PMCID: PMC5638810 DOI: 10.1038/s41598-017-13621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2017] [Indexed: 01/05/2023] Open
Abstract
Breakdown of the blood-retinal barrier (BRB), as occurs in diabetic retinopathy and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing vision loss. Vasoinhibins are N-terminal fragments of prolactin that prevent BRB breakdown during diabetes. They modulate the expression of some transient receptor potential (TRP) family members, yet their role in regulating the TRP vanilloid subtype 4 (TRPV4) remains unknown. TRPV4 is a calcium-permeable channel involved in barrier permeability, which blockade has been shown to prevent and resolve pulmonary edema. We found TRPV4 expression in the endothelium and retinal pigment epithelium (RPE) components of the BRB, and that TRPV4-selective antagonists (RN-1734 and GSK2193874) resolve BRB breakdown in diabetic rats. Using human RPE (ARPE-19) cell monolayers and endothelial cell systems, we further observed that (i) GSK2193874 does not seem to contribute to the regulation of BRB and RPE permeability by vasoinhibins under diabetic or hyperglycemic-mimicking conditions, but that (ii) vasoinhibins can block TRPV4 to maintain BRB and endothelial permeability. Our results provide important insights into the pathogenesis of diabetic retinopathy that will further guide us toward rationally-guided new therapies: synergistic combination of selective TRPV4 blockers and vasoinhibins can be proposed to mitigate diabetes-evoked BRB breakdown.
Collapse
|