1
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Yu Q, Wang Y, Yi G, Yang W, Chen K, Tan X, Zhang X, Xu Z, Yang Z, Peng Y. BDNF is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and is associated with brain metastasis. Immunology 2023; 168:320-330. [PMID: 36151890 DOI: 10.1111/imm.13581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Brain metastases are a common complication of a wide range of human malignancies, particularly lung adenocarcinoma (LUAD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and has been shown to promote LUAD tumorigenesis. However, its function in the tumour immune microenvironment (TIME) remains largely unexplored, especially in complex brain tissue environments. In this study, BDNF was found to be particularly increased in patients with advanced tumour stage, lymphatic metastasis, and distant metastasis, indicating a correlation with LUAD progression. We characterized the prognostic value of BDNF and defined BDNF as an unfavourable prognostic indicator through a common driver gene-independent mechanism in LUAD. Furthermore, patients with increased BDNF levels in primary LUAD might have a higher risk of developing brain metastasis (BM), and central nervous system (CNS) metastasis showed an elevated expression of BDNF compared to their matched primary lesions. Additionally, we investigated the interaction between BDNF and infiltrating immune cells in both primary lesions and paired BM using multiplex immunostaining. The results showed that BDNF might drive an immunosuppressive tumour microenvironment (TME) by re-education of tumour-associated macrophages (TAMs) toward a pro-tumorigenic M2 phenotype, particularly in BM. Our findings demonstrate that BDNF serves as an independent potential prognostic marker and correlates with BM in LUAD. As it is closely related to TAM polarization, BDNF may be a promising immune-related biomarker and molecular target in patients with LUAD.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yitian Wang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangming Yi
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wendi Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kehong Chen
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiangwu Tan
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenzhou Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Peng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ricci A, Salvucci C, Castelli S, Carraturo A, de Vitis C, D’Ascanio M. Adenocarcinomas of the Lung and Neurotrophin System: A Review. Biomedicines 2022; 10:biomedicines10102531. [PMID: 36289793 PMCID: PMC9598928 DOI: 10.3390/biomedicines10102531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Neurotrophins (NTs) represent a group of growth factors with pleiotropic activities at the central nervous system level. The prototype of these molecules is represented by the nerve growth factor (NGF), but other factors with similar functions have been identified, including the brain derived-growth factor (BDNF), the neurotrophin 3 (NT-3), and NT-4/5. These growth factors act by binding specific low (p75) and high-affinity tyrosine kinase (TrkA, TrkB, and TrkC) receptors. More recently, these growth factors have shown effects outside the nervous system in different organs, particularly in the lungs. These molecules are involved in the natural development of the lungs, and their homeostasis. However, they are also important in different pathological conditions, including lung cancer. The involvement of neurotrophins in lung cancer has been detailed most for non-small cell lung cancer (NSCLC), in particular adenocarcinoma. This review aimed to extensively analyze the current knowledge of NTs and lung cancer and clarify novel molecular mechanisms for diagnostic and therapeutic purposes. Several clinical trials on humans are ongoing using NT receptor antagonists in different cancer cell types for further therapeutic applications. The pharmacological intervention against NT signaling may be essential to directly counteract cancer cell biology, and also indirectly modulate it in an inhibitory way by affecting neurogenesis and/or angiogenesis with potential impacts on tumor growth and progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Michela D’Ascanio
- UOC Respiratory Disease, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
4
|
Qin H, Patel MR. The Challenge and Opportunity of NTRK Inhibitors in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:2916. [PMID: 35328336 PMCID: PMC8954929 DOI: 10.3390/ijms23062916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
With the development of targeted therapy, non-small cell lung cancer (NSCLC) patients could have more treatment choices if target mutation presents. The neurotrophic tropomyosin receptor kinase (NTRK) has a low prevalence in NSCLC, roughly around 0.5%. FDA had approved two first generation NTRK inhibitors, larotrectinib and entrectinib. Both medications have excellent CNS penetration. This manuscript will review available data on targeting NTRK fusions in NSCLC and mechanisms of drug resistance.
Collapse
Affiliation(s)
| | - Manish R. Patel
- Department of Hematology, Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Ghatak S, Mehrabi SF, Mehdawi LM, Satapathy SR, Sjölander A. Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers. Int J Mol Sci 2022; 23:ijms23020793. [PMID: 35054980 PMCID: PMC8776147 DOI: 10.3390/ijms23020793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The current TNM (Tumor, Node, and Metastasis) classification approach is suboptimal in determining the prognosis of CRC patients. The prognosis for CRC is affected by a variety of features that are present at the initial diagnosis. Herein, we performed a systematic exploration and established a novel five-panel gene signature as a prognostic and early diagnosis biomarker after performing differential gene expression analyses in five independent in silico CRCs cohort and independently validating it in one clinical cohort, using immunohistochemistry. Four genes (BDNF, PTGS2, GSK3B, and CTNNB1) were significantly upregulated and one gene (HPGD) was significantly downregulated in primary tumor tissues compared with adjacent normal tissues throughout all the five in silico datasets. The univariate CoxPH analysis yielded a five-gene signature that accurately predicted overall survival (OS) and recurrence-free survival (RFS) in the in silico training (AUC = 0.73 and 0.69, respectively) and one independent in silico validation cohort (AUC = 0.69 and 0.74, respectively). This five-gene signature demonstrated significant associations with poor OS in independent clinical validation cohorts of colon cancer (CC) patients (AUC = 0.82). Intriguingly, a risk stratification model comprising of the five-gene signature together with TNM stage and gender status achieved an even superior AUC of 0.89 in the clinical cohorts. On the other hand, the circulating mRNA expression of the upregulated four-gene signature achieved a robust AUC = 0.83 with high sensitivity and specificity as a diagnosis marker in plasma from CRC patients. We have identified a novel, five-gene signature as an independent predictor of OS, which in combination with TNM stage and gender offers an easy-to-translate and facile assay for the personalized risk-assessment in CRC patients.
Collapse
|
6
|
Guzel T, Mech K, Iwanowska M, Wroński M, Słodkowski M. Brain derived neurotrophic factor declines after complete curative resection in gastrointestinal cancer. PeerJ 2021; 9:e11718. [PMID: 34395067 PMCID: PMC8327966 DOI: 10.7717/peerj.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is a neurotrophin involved in neural and metabolic diseases, but it is also one of the crucial factors in cancer development and metastases. In the current study, we investigated serum BDNF concentrations in patients that underwent surgical treatment for colorectal cancer or pancreatic cancer. Methods Serum BDNF concentrations were measured with standard enzyme-linked immunosorbent assays, before and on the third day after the operation, in 50 consecutive patients with colorectal cancer and 25 patients with pancreatic cancer (tumours in the head of pancreas). We compared pre- and postoperative BDNF levels, according to the subsequent TNM stage, histologic stage, lymph node involvement, neuro- or angio-invasion, and resection range. Results In the pancreatic cancer group, BDNF concentrations fell significantly postoperatively (p = 0.011). In patients that underwent resections, BDNF concentrations fell (p = 0.0098), but not in patients that did not undergo resections (i.e., laparotomy alone). There were significant pre- and postoperative differences in BDNF levels among patients with (p = 0.021) and without (p = 0.034) distant metastases. Significant reductions in BDNF were observed postoperatively in patients with small tumours (i.e., below the median size; p = 0.023), in patients with negative angio- or lymphatic invasion (p = 0.028, p = 0.011, respectively), and in patients with lymph node ratios above 0.17 (p = 0.043). In the colon cancer group, the serum BDNF concentrations significantly fell postoperatively in the entire group (p = 0.0076) and in subgroups of patients with or without resections (p = 0.034, p = 0.0179, respectively). Significant before-after differences were found in subgroups with angioinvasions (p = 0.050) and in those without neuroinvasions (p = 0.049). Considering the TNM stages, the postoperative BDNF concentration fell in groups with (p = 0.0218) and without (p = 0.034) distant metastases and in patients with tumours below the median size (p = 0.018). Conclusion Our results suggested that BDNF might play an important role in gastrointestinal cancer development. BDNF levels were correlated with tumour volume, and with neuro-, angio- and lymphatic invasions. In pancreatic cancer, BDNF concentrations varied according to the surgical procedure and they fell significantly after tumour resections. Thus, BDNF may serve as a potential marker of complete resections in underdiagnosed patients. However, this hypothesis requires further investigation. In contrast, no differences according to the procedure was made in patients with colon cancer.
Collapse
Affiliation(s)
- Tomasz Guzel
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Iwanowska
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wroński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Luo Y, Qu K, Kuai L, Ru Y, Huang K, Yan X, Xing M. Epigenetics in psoriasis: perspective of DNA methylation. Mol Genet Genomics 2021; 296:1027-1040. [PMID: 34137900 DOI: 10.1007/s00438-021-01804-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes (KCs). Onset of psoriasis is related to genetic, immune and environmental factors. The environment can interact with the genome through epigenetic modifications, including DNA methylation, and this modification is involved in the pathogenesis of psoriasis. In addition to a skin disease, psoriasis is also considered a systemic disease. We reviewed the current literature of psoriatic DNA methylation for studies from several aspects on the DNA methylation distribution patterns in different tissues/cells, single-nucleotide polymorphisms, and candidate disease genes and identified target genes regulated by DNA methylation that have been directly/indirectly validated. This review contributes to a comprehensive understanding of the important a role that DNA methylation plays in psoriasis from a holistic perspective and will promote the implementation of DNA methylation in diagnostic and therapeutic strategies for psoriatic patients.
Collapse
Affiliation(s)
- Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Keke Huang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| |
Collapse
|
8
|
Rebuzzi SE, Zullo L, Rossi G, Grassi M, Murianni V, Tagliamento M, Prelaj A, Coco S, Longo L, Dal Bello MG, Alama A, Dellepiane C, Bennicelli E, Malapelle U, Genova C. Novel Emerging Molecular Targets in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22052625. [PMID: 33807876 PMCID: PMC7961376 DOI: 10.3390/ijms22052625] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the scenario of systemic treatment for advanced non-small cell lung cancer (NSCLC) patients, one of the most relevant breakthroughs is represented by targeted therapies. Throughout the last years, inhibitors of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 (ROS1), and V-raf murine sarcoma viral oncogene homolog B (BRAF) have been approved and are currently used in clinical practice. However, other promising molecular drivers are rapidly emerging as therapeutic targets. This review aims to cover the molecular alterations with a potential clinical impact in NSCLC, including amplifications or mutations of the mesenchymal–epithelial transition factor (MET), fusions of rearranged during transfection (RET), rearrangements of the neurotrophic tyrosine kinase (NTRK) genes, mutations of the Kirsten rat sarcoma viral oncogene (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), as well as amplifications or mutations of human epidermal growth factor receptor 2 (HER2). Additionally, we summarized the current status of targeted agents under investigation for such alterations. This revision of the current literature on emerging molecular targets is needed as the evolving knowledge on novel actionable oncogenic drivers and targeted agents is expected to increase the proportion of patients who will benefit from tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- Correspondence:
| | - Lodovica Zullo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Giovanni Rossi
- Medical Oncology Department, Ospedale Padre Antero Micone, 16153 Genoa, Italy;
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Roma 151, 07100 Sassari, Italy
| | - Massimiliano Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.G.); (V.M.)
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Luca Longo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Maria Giovanna Dal Bello
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Chiara Dellepiane
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Elisa Bennicelli
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.Z.); (S.C.); (L.L.); (M.G.D.B.); (A.A.); (C.D.); (E.B.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy;
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy; (M.T.); (C.G.)
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
9
|
Kondo Y, Hirabayashi K, Carreras J, Tsukinoki K, Ota Y, Okami K, Nakamura N. The significance of tyrosine kinase receptor B and brain-derived neurotrophic factor expression in salivary duct carcinoma. Ann Diagn Pathol 2020; 50:151673. [PMID: 33248386 DOI: 10.1016/j.anndiagpath.2020.151673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Salivary duct carcinoma (SDC) is a high-grade salivary gland neoplasm. It may occur de novo or secondarily from pleomorphic adenoma (ex-PA), with secondary development accounting for more than 50% of the cases. In recent years, the expression of tyrosine kinase receptor B (TrkB), which is in the same family as HER2, has been confirmed in various types of carcinomas. However, there are a few studies on SDC. In order to examine the expression and role of TrkB in SDC, we investigated it. Immunohistochemistry was used to detect the expression of TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) in 20 patients with SDC. The mRNA levels of TrkB, BDNF, and NT-4 were analyzed using quantitative polymerase chain reaction. TrkB was negative in 10 cases and positive in 10 cases, BDNF was negative in 11 cases and positive in 9 cases, and NT-4 was positive in all cases. There was a high number of TrkB-positive cases in the pT4 group and The H-score of TrkB was also significantly higher in the stage III and IV groups. There was a high number of BDNF-positive cases in the ex-PA group and Histo-score of BDNF had a trend of high expression in ex-PA. There were no significant differences or correlations in mRNA expression. Our results suggest that TrkB may be involved in SDC tumor growth.
Collapse
Affiliation(s)
- Yusuke Kondo
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Tsukinoki
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Yoshihide Ota
- Department of Oral and Maxillofacial Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kenji Okami
- Department of Otolaryngology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
10
|
Serafim Junior V, Fernandes GMDM, Oliveira-Cucolo JGD, Pavarino EC, Goloni-Bertollo EM. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020; 136:155270. [PMID: 32911446 DOI: 10.1016/j.cyto.2020.155270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The tropomyosin-related kinase B (TrkB) receptor is a member of the neurotrophic tyrosine kinase receptors family and, together with the brain-derived neurotrophic factor (BDNF), plays an important role in the development of breast cancer, lung cancer, neuroblastoma, colorectal cancer, leukemia, cervical cancer, gallbladder cancer, gastric cancer, kidney cancer, Ewing's sarcoma, esophageal cancer, and head and neck cancer. Overexpression of these two factors has been associated with increased processes involved in carcinogenesis, such as invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, metastasis, cell proliferation, resistance to apoptosis, resistance to cell death due to loss of adhesion (anoikis), activation of cell proliferation pathways, regulation of tumor suppressor genes, and drug resistance, and is related to advanced clinical stage. Inhibition of the TrkB/BDNF axis using drugs in phase 1 studies, approved drugs, and small interfering RNA (siRNA) are promising strategies for the treatment of various malignant tumors in addition to increasing the sensitivity of cells resistant to chemotherapy, improving the effectiveness of drugs without increasing toxicity. Another factor related to poor cancer prognosis is the presence of cancer stem cells, having effects similar to the high expression of the TrkB/BDNF axis, on cancer. This review aimed to show the role of the TrkB/BDNF axis in several types of cancer, its possible use as a prognostic biomarker, the effects of inhibiting this axis, and its role in the cancer stem cells.
Collapse
Affiliation(s)
- Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Zheng B, Chen T. MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma. Open Life Sci 2020; 15:274-283. [PMID: 33817216 PMCID: PMC7874546 DOI: 10.1515/biol-2020-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| | - Tao Chen
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| |
Collapse
|
12
|
Zito Marino F, Pagliuca F, Ronchi A, Cozzolino I, Montella M, Berretta M, Errico ME, Donofrio V, Bianco R, Franco R. NTRK Fusions, from the Diagnostic Algorithm to Innovative Treatment in the Era of Precision Medicine. Int J Mol Sci 2020; 21:3718. [PMID: 32466202 PMCID: PMC7279365 DOI: 10.3390/ijms21103718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
In the era of precision medicine, the identification of several predictive biomarkers and the development of innovative therapies have dramatically increased the request of tests to identify specific targets on cytological or histological samples, revolutionizing the management of the tumoral biomaterials. The Food and Drug Administration (FDA) has recently approved a selective neurotrophic tyrosine receptor kinase (NTRK) inhibitor, larotrectinib. Contemporarily, the development of multi-kinase inhibitors with activity in tumors carrying TRK fusions is ongoing. Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes result in constitutive activation and aberrant expression of TRK kinases in numerous cancer types. In this context, the identification of tumors harboring TRK fusions is crucial. Several methods of detection are currently available. We revise the advantages and disadvantages of different techniques used for identifying TRK alterations, including immunohistochemistry, fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, and next generation sequencing-based approaches. Finally, we propose a diagnostic algorithm based on histology and the relative frequency of TRK fusions in each specific tumor, considering also the economic feasibility in the clinical practice.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Marco Montella
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Massimiliano Berretta
- Department of Medical Oncology, Istituto Nazionale Tumori (IRCCS), Centro di Riferimento Oncologico di Aviano, Via Franco Gallini 2, 33081 Aviano (PN) Italy;
| | - Maria Elena Errico
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children’s Hospital, Via Posillipo, 80123 Naples, Italy; (M.E.E.); (V.D.)
| | - Vittoria Donofrio
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children’s Hospital, Via Posillipo, 80123 Naples, Italy; (M.E.E.); (V.D.)
| | - Roberto Bianco
- Oncology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini, 80131 Naples, Italy;
| | - Renato Franco
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| |
Collapse
|
13
|
Saeki K, Onishi H, Koga S, Ichimiya S, Nakayama K, Oyama Y, Kawamoto M, Sakihama K, Yamamoto T, Matsuda R, Miyasaka Y, Nakamura M, Oda Y. FAM115C could be a novel tumor suppressor associated with prolonged survival in pancreatic cancer patients. J Cancer 2020; 11:2289-2302. [PMID: 32127956 PMCID: PMC7052938 DOI: 10.7150/jca.38399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023] Open
Abstract
Hypoxia is a characteristic feature of the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC). We have recently explored new targeting molecules and pathways in PDAC cells under hypoxic conditions. In this study, we performed a microarray experiment to analyze the genes up-regulated in PDAC cell lines under hypoxia compared to normoxia, and identified human family with sequence similarity 115, member C (FAM115C) as a candidate gene for further study. Our data showed that FAM115C was overexpressed in PDAC cell lines under hypoxia, and FAM115C inhibition promoted PDAC cell migration and invasion in vitro. FAM115C inhibition did not affect tumor cell proliferation in PDAC. Immunohistochemically, FAM115C expression was observed ubiquitously in normal pancreas, pancreatic intraepithelial neoplasia (PanIN) and PDAC tissue, and it was located mainly in the nucleus but also in the cytoplasm of cells. In qPCR analysis, high expression of FAM115C was correlated with better prognosis in patients with PDAC. Our findings suggest that FAM115C could be a novel tumor suppressor associated with prolonged survival in patients with PDAC.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Oyama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Kawamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
CD271 is a negative prognostic factor and essential for cell proliferation in lung squamous cell carcinoma. J Transl Med 2019; 99:1349-1362. [PMID: 31019292 DOI: 10.1038/s41374-019-0246-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Squamous cell carcinoma is a major type of cancer in the lung. While several therapeutic target molecules for lung adenocarcinoma have been identified, little is known about lung squamous cell carcinoma (LSCC). We recently reported that CD271 (p75 neurotrophin receptor) serves as a marker for tumor initiation and is a key regulator of cell proliferation in hypopharyngeal squamous cell carcinoma. In this study, we found that CD271 was also expressed in squamous cell carcinoma, but not in adenocarcinoma, of several tissues, including the lung, and the expression of CD271 was associated with a poor prognosis in LSCC. To examine CD271's role in LSCC, we established xenograft cell lines from LSCC patients. Within the sorted live LSCC cell population, the CD271high cells were primarily cycling through the G2/M phase, while the CD271low cells were mostly in the G0 phase. CD271 knockdown in the LSCC cells completely suppressed their proliferation and tumor-formation capability, and increased their cell-cycle arrest in the G0 phase. In the CD271-knockdown cells, ERK-phosphorylation was decreased, while no change was observed in the IκBα-phosphorylation, p65-phosphorylation, or Akt-phosphorylation. Treatment with the MEK inhibitor U0126 decreased the LSCC cells' proliferation capability. Microarray analysis revealed that CD271 knockdown attenuated the RAS-related pathways. The knockdown of TrkB, which forms a heterodimer with CD271 and accelerates its downstream signaling, partially inhibited the LSCC cell proliferation. These results indicated that LSCC exclusively depends on CD271 for cell proliferation, in part through ERK-signaling activation, and CD271 is a promising target for LSCC therapy.
Collapse
|
15
|
Zhou Y, Sinha S, Schwartz JL, Adami GR. A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer 2019; 19:607. [PMID: 31221127 PMCID: PMC6587277 DOI: 10.1186/s12885-019-5789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/17/2023] Open
Abstract
Background The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling. Electronic supplementary material The online version of this article (10.1186/s12885-019-5789-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalu Zhou
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Saurabh Sinha
- Department of Computer Science and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL, USA
| | - Joel L Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Guy R Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Abe T, Kohashi K, Takemoto J, Kinoshita F, Eto M, Oda Y. Clinicopathological Significance and Antitumor Effect of MPHOSPH1 in Testicular Germ Cell Tumor. J Cancer 2018; 9:4440-4448. [PMID: 30519350 PMCID: PMC6277652 DOI: 10.7150/jca.25279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/18/2018] [Indexed: 11/26/2022] Open
Abstract
MPHOSPH1, which is one of the kinesin superfamily proteins, has been reported to play an essential role in the carcinogenesis and progression of several kinds of cancers. MPHOSPH1 has also been suggested to be involved in STAT3 phosphorylation in hepatocellular carcinoma. However, the biological behavior of MPHOSPH1 in testicular germ cell tumors (TGCTs) is unclear at present. The purposes of this study were to investigate the correlation between the expression of MPHOSPH1 and clinicopathological factors and to examine the efficacy of MPHOSPH1 target therapy in TGCTs. We investigated 75 formalin-fixed paraffin-embedded TGCT samples, containing a total of 86 germ cell tumor components, by immunohistochemistry and 12 frozen samples by Western blotting. Moreover, we carried out in vitro studies to clarify the antitumor effect of MPHOSPH1 knockdown in embryonal carcinoma cell lines, NEC8 and NEC14, using small interference RNA (siRNA). A significantly high expression of MPHOSPH1 was recognized in embryonal carcinoma and yolk sac tumor components compared to the seminoma component (p<0.001, respectively). Clinically, non-seminoma cases are known to have worse prognosis than pure-seminoma cases. Interestingly, high MPHOSPH1 expression was associated with distant metastasis (p=0.001), and thus with advanced-stage disease in this study. High expression of MPHOSPH1 interacted with high expression of phosphorylated STAT3 (p=0.01). The in vitro experiments demonstrated that MPHOSPH1 interruption by siRNA resulted in a significant reduction of cell migration, invasion, proliferation and colony formation in both embryonal carcinoma cell lines (p<0.001, respectively). In conclusion, MPHOSPH1 may be a potential treatment option for TGCTs, and its expression may be a novel biomarker of poor prognosis.
Collapse
Affiliation(s)
- Tatsuro Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junkichi Takemoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumio Kinoshita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Li W, Lu Y, Yu X, Yong M, Ma D, Gao Q. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem 2018; 120:6361-6369. [PMID: 30304550 DOI: 10.1002/jcb.27923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OC) is a lethal disease diagnosed at advanced stages due to the lack of specific biomarkers. Tyrosine receptor kinase B (TrkB), which has recently been found to be related to OC progression, represents a promising potential biomarker for OC diagnosis and prognosis. The discovery of circulating exosomes as biomarkers for various diseases led us to explore exosomal TrkB in OC. Our previous study proved that the expression of TrkB was elevated in OC tissues. In this study, we focused on the detection of exosomal TrkB in OC. Exosomes were first gathered from three different OC cell lines' conditioned medium, serum samples of patients with OC as well as xenograft mice serum by serial centrifugation method. Then, we identified exosomes by transmission electron microscopy, NanoSight analysis, and expression of typical exosomal protein markers. The existence of TrkB in exosomes was measured by Western blot analysis, and the expression was detected by enzyme-linked immunosorbent assay. In this study, we demonstrated that exosomes could derive from OC cell lines, serum from OC xenograft nude mice, and clinical patients. Our study shows that serum exosomal TrkB may be considered a minimally invasive biomarker for OC.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunhui Lu
- Department of Obstetrics and Gynecology, Dalian Medical University Affiliated Dalian Obstetrics and Gynecology Hospital, Dalian, China
| | - Xiaohui Yu
- Department of Obstetrics and Gynecology, Dalian Medical University Affiliated Dalian Obstetrics and Gynecology Hospital, Dalian, China
| | - Minjie Yong
- Department of Obstetrics and Gynecology, Ningxia Obstetrics and Gynecology Hospital, Yinchuan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Gao M, Si X. Rapamycin ameliorates psoriasis by regulating the expression and methylation levels of tropomyosin via ERK1/2 and mTOR pathways in vitro and in vivo. Exp Dermatol 2018; 27:1112-1119. [PMID: 30019485 DOI: 10.1111/exd.13745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022]
Abstract
Psoriasis is a chronic inflammatory disease, affecting more than millions of people in the world. Recently, the mTOR inhibitor rapamycin (RAPA) was reported to be involved in the pathogenesis of psoriasis. However, the underlying mechanism remains unclear. Haematoxylin and eosin staining was used to examine the effects of RAPA on inflammatory level of lesional tissues from patients with psoriasis and animal models. Quantitative real-time PCR, immunohistochemistry and western blot assay were performed to assess the effects of RAPA on tropomyosins (TPMs) expression in patients with psoriasis, cell models and animal models. Phalloidin staining was used to assess the RAPA effects on cell skeleton. The effects of RAPA on cell proliferation and cell cycle were detected by CCK-8 assay, EdU staining and flow cytometry. Methylation status of TPMs was analysed by methylation-specific PCR. The expression of TPM1 and TPM2 was significantly downregulated, while their methylation level was obviously higher in the lesional tissues, cell models and animal models of psoriasis. After treated with RAPA, the expression and methylation levels of TPMs were all restored in the cell models and animal models of psoriasis. RAPA inhibited cell proliferation and decreased the ratio of S phase cell in Hacat or human epidermal keratinocytes cell models of psoriasis. Finally, the activated ERK1/2 and mTOR pathways in the cell model and animal model of psoriasis were suppressed by the treatment of RAPA. RAPA could be used as an effective agent for the treatment of psoriasis by decreasing the methylation level of TPM1 and TPM2 via inhibiting the ERK1/2 and mTOR signalling pathways.
Collapse
Affiliation(s)
- Minhong Gao
- Department of Dermatology, Qianfoshan Hospital affiliated of Shangdong University, Jinan, China
| | - Xiaoqing Si
- Department of Dermatology, Qianfoshan Hospital affiliated of Shangdong University, Jinan, China
| |
Collapse
|
19
|
Kimura S, Harada T, Ijichi K, Tanaka K, Liu R, Shibahara D, Kawano Y, Otsubo K, Yoneshima Y, Iwama E, Nakanishi Y, Okamoto I. Expression of brain-derived neurotrophic factor and its receptor TrkB is associated with poor prognosis and a malignant phenotype in small cell lung cancer. Lung Cancer 2018; 120:98-107. [PMID: 29748024 DOI: 10.1016/j.lungcan.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES TrkB is a receptor for brain-derived neurotrophic factor (BDNF) and is highly expressed in various cancers, with BDNF-TrkB signaling having been implicated in tumor progression and metastasis. The role of the BDNF-TrkB system in small cell lung cancer (SCLC), a neuroendocrine cancer, has remained unclear, however. We examined BDNF and TrkB expression in SCLC patients as well as the function of BDNF-TrkB signaling in SCLC cell lines. MATERIALS AND METHODS BDNF and TrkB expression in tumor specimens of 58 SCLC patients and 20 non-small cell lung cancer (NSCLC) patients was examined by immunohistochemistry and was scored on the basis of the distribution and intensity of staining. TrkB-overexpressing SCLC (SBC5TrkB) cells were established by retrovirus transduction and were examined for the effects of BDNF on intracellular signaling, cell proliferation, and cell migration in vitro. RESULTS The staining score for TrkB in NSCLC and SCLC specimens was 2.80 ± 0.19 and 3.60 ± 0.15, respectively, whereas that for BDNF was 1.95 ± 0.32 and 2.76 ± 0.14, respectively. High levels of both TrkB and BDNF expression in SCLC tumors were significantly associated with poor overall survival in multivariate analysis (hazard ratio = 1.821, P = 0.036). BDNF activated AKT and ERK signaling pathways in and promoted the migration of SBC5TrkB cells, and these effects were attenuated by the pan-Trk inhibitor GNF-5837. GNF-5837 also inhibited the proliferation of SBC5TrkB cells in the presence of BDNF. CONCLUSION Coexpression of BDNF and TrkB was associated with poor prognosis in SCLC patients, and BDNF promoted the migration of TrkB-overexpressing SCLC cells. TrkB is thus a potential therapeutic target for SCLC.
Collapse
Affiliation(s)
- Shinichi Kimura
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Harada
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Japan Community Healthcare Organization Kyushu Hospital, Kitakyushu, Japan.
| | - Kayo Ijichi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Renpeng Liu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Shibahara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Kawano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Otsubo
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
New targets bring hope in squamous cell lung cancer: neurotrophic tyrosine kinase gene fusions. J Transl Med 2017; 97:1268-1270. [PMID: 29085074 DOI: 10.1038/labinvest.2017.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurotrophic tyrosine kinase genes encode for the Trk-family proteins TrkA, TrkB, and TrkC, which have an important role in the development of the nervous system; however, they have been identified as oncogenic fusions in solid tumors (NTK-1, NTRK-2, and NTRK-3) and are associated with poor survival in lung cancer. These three new fusions can be detected by fluorescent in situ hybridization or next-generation sequencing in less than 5% of the lung tumors. There are several ongoing clinical trials of NTRK oncogenes in lung cancer and other tumors. The agents entrectinib (RXDX-101), a multi-kinase small molecule inhibitor that selectively inhibits NTRK1, NTRK2, and NTRK3, ROS1 and ALK, and LOXO-101, an ATP-competitive pan-NTRK inhibitor, have shown responses in patients with lung cancer with an acceptable toxicity profile. Although these oncogenic fusions are not very prevalent, the high prevalence of lung cancer makes these findings very relevant and suggests the feasibility of these oncogenes as targets in lung cancer. New data from Ozono and collaborators presented in this issue suggest that BDNF/TrkB signal promotes proliferating migratory and invasive phenotypes and cellular plasticity in squamous cell carcinoma (SCC) of the lung but that it also represents a druggable target that may bring hope to squamous lung cancer patients.
Collapse
|