1
|
Shao Q, Wang Z, Li Y, Tang X, Li Z, Xia H, Wu Q, Chang R, Wu C, Meng T, Fan Y, Huang Y, Yang Y. Taurine Prevents Impairments in Skin Barrier Function and Dermal Collagen Synthesis Triggered by Sleep Deprivation-Induced Estrogen Circadian Rhythm Disruption. Cells 2025; 14:727. [PMID: 40422230 DOI: 10.3390/cells14100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women's skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical taurine supplementation promotes the expression of tight junction (TJ)-related proteins and enhances collagen production, effectively restoring skin homeostasis in sleep-deprived female mice. Mechanistically, taurine upregulates the expression of TMEM38B, a gene encoding the TRIC-B trimeric cation channel, resulting in increased intracellular calcium ion levels. This, in turn, promotes the upregulation of TJ-related proteins, such as ZO-1, occludin, and claudin-11 in epidermal cells, while also enhancing the expression of type III collagen in fibroblasts, thus restoring skin homeostasis. These findings suggest that taurine may serve as an alternative to estradiol, effectively improving skin homeostasis disrupted by sleep deprivation while mitigating the potential risks associated with exogenous estrogen supplementation. Collectively, these results provide preliminary insights into the protective mechanisms of taurine against sleep deprivation-induced skin impairments and establish a foundation for its potential application in treating skin conditions related to estrogen imbalances, such as skin aging in menopausal women.
Collapse
Affiliation(s)
- Qi Shao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qihong Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ruxue Chang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chunna Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Meng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yufei Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
| | - Yan Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
| |
Collapse
|
2
|
Redmond CJ, Steiner SN, Cohen E, Johnson CN, Özlü N, Coulombe PA. Keratin 15 promotes a progenitor cell state in basal keratinocytes of skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640633. [PMID: 40060679 PMCID: PMC11888442 DOI: 10.1101/2025.02.27.640633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
The type I intermediate filament proteins keratin 14 (K14) and keratin 15 (K15) are common to all complex epithelia. K14 is highly expressed by progenitor keratinocytes, in which it provides essential mechanical integrity and gates keratinocyte entry into differentiation by sequestering YAP1, a transcriptional effector of Hippo signaling, to the cytoplasm. K15 has long been used as a marker of hair bulge stem cells though its specific role in skin epithelia is unknown. Here we show that the lack of two biochemical determinants, a cysteine residue within the stutter motif of the central rod domain and a 14-3-3 binding site in the N-terminal head domain, renders K15 unable to effectively sequester YAP1 in the cytoplasm. We combine insight obtained from cell culture and transgenic mouse models with computational analyses of transcriptomics data and propose a model in which the K15:K14 ratio promotes a progenitor state and antagonizes differentiation in keratinocytes of the epidermis.
Collapse
|
3
|
Liu H. Effect of Skin Barrier on Atopic Dermatitis. Dermatitis 2025; 36:37-45. [PMID: 38738291 DOI: 10.1089/derm.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The skin acts as the body's primary physical and immune barrier, maintaining the skin microbiome and providing a physical, chemical, and immune barrier. A disrupted skin barrier plays a critical role in the onset and advancement of inflammatory skin conditions such as atopic dermatitis (AD) and contact dermatitis. This narrative review outlines the relationship between AD and skin barrier function in preparation for the search for possible markers for the treatment of AD.
Collapse
Affiliation(s)
- Hanye Liu
- From the Beihua University, Jilin, China
| |
Collapse
|
4
|
Pironon N, Welfringer-Morin A, Leclerc-Mercier S, Bourrat E, Hovnanian A. Epidermolysis Bullosa Simplex due to a Novel BPAG1-e Homozygous Pathogenic Variant Revealed by Bullous Scabies. Acta Derm Venereol 2024; 104:adv40691. [PMID: 39670436 DOI: 10.2340/actadv.v104.40691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 12/14/2024] Open
Affiliation(s)
- Nathalie Pironon
- Laboratory of genetic skin diseases, Université Paris Cité, Inserm, UMR 1163, Institut Imagine, Paris, France
| | | | | | - Emmanuelle Bourrat
- Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, France; Centre de référence maladies rares MAGEC Nord Site Saint-Louis, Hôpital Saint-Louis, Paris, France
| | - Alain Hovnanian
- Université Paris Cité, Inserm, UMR 1163, Institut Imagine, Laboratory of genetic skin diseases, Paris, France; Department of Genomic Medicine of Rare Diseases, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
5
|
Li L, Liu Y, Chang R, Ye T, Li Z, Huang R, Wang Z, Deng J, Xia H, Yang Y, Huang Y. Dermal Injection of Recombinant Filaggrin-2 Ameliorates UVB-Induced Epidermal Barrier Dysfunction and Photoaging. Antioxidants (Basel) 2024; 13:1002. [PMID: 39199247 PMCID: PMC11351670 DOI: 10.3390/antiox13081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
The epidermal barrier is vital for protecting the skin from environmental stressors and ultraviolet (UV) radiation. Filaggrin-2 (FLG2), a critical protein in the stratum corneum, plays a significant role in maintaining skin barrier homeostasis. However, the precise role of FLG2 in mitigating the adverse effects of UV-induced barrier disruption and photoaging remains poorly understood. In this study, we revealed that UVB exposure resulted in a decreased expression of FLG2 in HaCaT keratinocytes, which correlated with a compromised barrier function. The administration of recombinant filaggrin-2 (rFLG2) enhanced keratinocyte differentiation, bolstered barrier integrity, and offered protection against apoptosis and oxidative stress induced by UVB irradiation. Furthermore, in a UV-induced photodamage murine model, the dermal injection of rFLG2 facilitated the enhanced restoration of the epidermal barrier, decreased oxidative stress and inflammation, and mitigated the collagen degradation that is typical of photoaging. Collectively, our findings suggested that targeting FLG2 could be a strategic approach to prevent and treat skin barrier dysfunction and combat the aging effects associated with photoaging. rFLG2 emerges as a potentially viable therapy for maintaining skin health and preventing skin aging processes amplified by photodamage.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Ruxue Chang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China; (Z.L.); (H.X.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Huan Xia
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China; (Z.L.); (H.X.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (Y.L.); (R.C.); (T.Y.); (R.H.); (Z.W.); (J.D.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
6
|
Honsho M, Mawatari S, Fujino T. Transient Ca2+ entry by plasmalogen-mediated activation of receptor potential cation channel promotes AMPK activity. Front Mol Biosci 2022; 9:1008626. [PMID: 36406270 PMCID: PMC9672372 DOI: 10.3389/fmolb.2022.1008626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Ethanolamine-containing alkenyl ether glycerophospholipids, plasmalogens, are major cell membrane components of mammalian cells that activate membrane protein receptors such as ion transporters and G-protein coupled receptors. However, the mechanism by which plasmalogens modulate receptor function is unknown. Here, we found that exogenously added plasmalogens activate transient receptor potential cation channel subfamily C member 4 (TRPC4) to increase Ca2+ influx, followed by calcium/calmodulin-dependent protein kinase 2-mediated phosphorylation of AMP-activated protein kinase (AMPK). Upon topical application of plasmalogens to the skin of mice, AMPK activation was observed in TRPC4-expressing hair bulbs and hair follicles. Here, TRPC4 was co-localized with the leucine-rich repeat containing G protein-coupled receptor 5, a marker of hair-follicle stem cells, leading to hair growth. Collectively, this study indicates that plasmalogens could function as gate openers for TRPC4, followed by activating AMPK, which likely accelerates hair growth in mice.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Masanori Honsho,
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Fukuoka, Japan
| | | |
Collapse
|
7
|
Riedl JA, Riddle M, Xia L, Eide C, Boull C, Ebens CL, Tolar J. Interrogation of RDEB Epidermal Allografts after BMT Reveals Coexpression of Collagen VII and Keratin 15 with Proinflammatory Immune Cells and Fibroblasts. J Invest Dermatol 2022; 142:2424-2434. [PMID: 35304249 PMCID: PMC9391265 DOI: 10.1016/j.jid.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating genodermatosis characterized by dysfunctional collagen VII protein resulting in epithelial blistering of the skin, mucosa, and gastrointestinal tract. There is no cure for RDEB, but improvement of clinical phenotype has been achieved with bone marrow transplantation and subsequent epidermal allografting from the bone marrow transplant donor. Epidermal allografting of these patients has decreased wound surface area for up to 3 years after treatment. This study aimed to determine the phenotype of the epidermal allograft cells responsible for durable persistence of wound healing and skin integrity. We found that epidermal allografts provide basal keratinocytes coexpressing collagen VII and basal stem cell marker keratin 15. Characterization of RDEB full-thickness skin biopsies with single-cell RNA sequencing uncovered proinflammatory immune and fibroblast phenotypes potentially driven by the local environment of RDEB skin. This is further highlighted by the presence of a myofibroblast population, which has not been described in healthy control human skin. Finally, we found inflammatory fibroblasts expressing profibrotic gene POSTN, which may have implications in the development of squamous cell carcinoma, a common, lethal complication of RDEB that lacks curative treatment. In conclusion, this study provides insights into and targets for future RDEB studies and treatments.
Collapse
Affiliation(s)
- Julia A Riedl
- Medical Scientist Training Program (MD/PhD), Medical School, University of Minnesota, Minneapolis, Minnesota, USA; Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Megan Riddle
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lily Xia
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christina Boull
- Division of Pediatric Dermatology, Department of Dermatology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Jakub Tolar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Hewitt BJ, Batt JM, Shelton RM, Cooper PR, Landini G, Lucas RA, Wiench MD, Milward MR. A 3D Printed Device for In Vitro Generation of Stratified Epithelia at the Air-Liquid Interface. Tissue Eng Part C Methods 2022; 28:599-609. [PMID: 36047814 DOI: 10.1089/ten.tec.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Air-liquid interface (ALI) cultures are used to produce stratified epithelial tissues in vitro, notably for the production of oral mucosal equivalents. Currently, there are few purpose-built devices which aim to enhance the ease and reproducibility of generating such tissue. Most ALI cultures utilise stainless steel grids or cell culture inserts to elevate the matrix or scaffold to the surface of the culture media. Here, a novel buoyant epithelial culture device (BECD) was designed to both contain a fibroblast-seeded collagen hydrogel and float in culture media, thereby automatically maintaining the ALI without further user intervention. BECDs aim to mitigate several issues associated with ALI culture; reducing the chance of media flooding the epithelial layer from physical disturbance, reducing technique-sensitivity for less experienced users, and improving the reproducibility of the epithelia generated. H400 oral squamous cell carcinoma cells cultured in BECDs for 7, 14 and 21 days showed continuous increase in epithelial tissue thickness with expected localisation of epithelial differentiation markers: cytokeratin 5, involucrin and E-cadherin. Fused filament fabrication 3D printing with polypropylene used in BECD production allows for rapid turnover and design iteration, presenting a versatile, adaptable and useful tool for application in in vitro cell culture.
Collapse
Affiliation(s)
- Benjamin John Hewitt
- University of Birmingham, School of Dentistry, 5 Mill Pool Way, Birmingham, B5 7EG, Birmingham, United Kingdom of Great Britain and Northern Ireland, B15 2TT;
| | - Joanna M Batt
- University of Birmingham, School of Dentistry, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| | - Richard Michael Shelton
- University of Birmingham School of Dentistry, Dentistry, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago Division of Health Sciences, Dunedin, New Zealand;
| | - Gabriel Landini
- University of Birmingham School of Dentistry, School of Dentistry, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| | - Robert A Lucas
- GlaxoSmithKline Consumer Healthcare, Weybridge, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Malgorzata D Wiench
- University of Birmingham School of Dentistry, Dentistry, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland.,University of Birmingham Institute of Cancer and Genomic Sciences, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| | - Michael R Milward
- University of Birmingham School of Dentistry, Dentistry, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
9
|
Liu A, Long Y, Li J, Gu L, Karim A, Wang X, Gibson ALF. Accelerated complete human skin architecture restoration after wounding by nanogenerator-driven electrostimulation. J Nanobiotechnology 2021; 19:280. [PMID: 34544434 PMCID: PMC8454068 DOI: 10.1186/s12951-021-01036-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrostimulation (ES) therapy for wound healing is limited in clinical use due to barriers such as cumbersome equipment and intermittent delivery of therapy. METHODS We adapted a human skin xenograft model that can be used to directly examine the nanogenerator-driven ES (NG-ES) effects on human skin in vivo-an essential translational step toward clinical application of the NG-ES technique for wound healing. RESULTS We show that NG-ES leads to rapid wound closure with complete restoration of normal skin architecture within 7 days compared to more than 30 days in the literature. NG-ES accelerates the inflammatory phase of wound healing with more rapid resolution of neutrophils and macrophages and enhances wound bed perfusion with more robust neovascularization. CONCLUSION Our results support the translational evaluation and optimization of the NG-ES technology to deliver convenient, efficient wound healing therapy for use in human wounds.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Long Gu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aos Karim
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, 53792, USA.
| |
Collapse
|
10
|
Armstrong C, Cassimeris L, Da Silva Santos C, Micoogullari Y, Wagner B, Babasyan S, Brooks S, Galantino-Homer H. The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus. PLoS One 2019; 14:e0219234. [PMID: 31550264 PMCID: PMC6759161 DOI: 10.1371/journal.pone.0219234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 01/30/2023] Open
Abstract
The equine hoof inner epithelium is folded into primary and secondary epidermal lamellae which increase the dermo-epidermal junction surface area of the hoof and can be affected by laminitis, a common disease of equids. Two keratin proteins (K), K42 and K124, are the most abundant keratins in the hoof lamellar tissue of Equus caballus. We hypothesize that these keratins are lamellar tissue-specific and could serve as differentiation- and disease-specific markers. Our objective was to characterize the expression of K42 and K124 in equine stratified epithelia and to generate monoclonal antibodies against K42 and K124. By RT-PCR analysis, keratin gene (KRT) KRT42 and KRT124 expression was present in lamellar tissue, but not cornea, haired skin, or hoof coronet. In situ hybridization studies showed that KRT124 localized to the suprabasal and, to a lesser extent, basal cells of the lamellae, was absent from haired skin and hoof coronet, and abruptly transitions from KRT124-negative coronet to KRT124-positive proximal lamellae. A monoclonal antibody generated against full-length recombinant equine K42 detected a lamellar keratin of the appropriate size, but also cross-reacted with other epidermal keratins. Three monoclonal antibodies generated against N- and C-terminal K124 peptides detected a band of the appropriate size in lamellar tissue and did not cross-react with proteins from haired skin, corneal limbus, hoof coronet, tongue, glabrous skin, oral mucosa, or chestnut on immunoblots. K124 localized to lamellar cells by indirect immunofluorescence. This is the first study to demonstrate the localization and expression of a hoof lamellar-specific keratin, K124, and to validate anti-K124 monoclonal antibodies.
Collapse
Affiliation(s)
- Caitlin Armstrong
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Claire Da Silva Santos
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yagmur Micoogullari
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Samantha Brooks
- Department of Animal Sciences and University of Florida Genetics institute, University of Florida, Gainesville, Florida, United States of America
| | - Hannah Galantino-Homer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tomasello L, Coppola A, Pitrone M, Failla V, Cillino S, Pizzolanti G, Giordano C. PFN1 and integrin-β1/mTOR axis involvement in cornea differentiation of fibroblast limbal stem cells. J Cell Mol Med 2019; 23:7210-7221. [PMID: 31513338 PMCID: PMC6815913 DOI: 10.1111/jcmm.14438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ex vivo limbal stem cell transplantation is the main therapeutic approach to address a complete and functional re-epithelialization in corneal blindness, the second most common eye disorder. Although important key points were defined, the molecular mechanisms involved in the epithelial phenotype determination are unclear. Our previous studies have demonstrated the pluripotency and immune-modulatory of fibroblast limbal stem cells (f-LSCs), isolated from the corneal limbus. We defined a proteomic profile especially enriched in wound healing and cytoskeleton-remodelling proteins, including Profilin-1 (PFN1). In this study we postulate that pfn-1 knock down promotes epithelial lineage by inhibiting the integrin-β1(CD29)/mTOR pathway and subsequent NANOG down-expression. We showed that it is possible modulate pfn1 expression levels by treating f-LSCs with Resveratrol (RSV), a natural compound: pfn1 decline is accompanied with up-regulation of the specific differentiation epithelial genes pax6 (paired-box 6), sox17 (sex determining region Y-box 17) and ΔNp63-α (p63 splice variant), consistent with drop-down of the principle stem gene levels. These results contribute to understand the molecular biology of corneal epithelium development and suggest that pfn1 is a potential molecular target for the treatment of corneal blindness based on epithelial cell dysfunction.
Collapse
Affiliation(s)
- Laura Tomasello
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Valentina Failla
- Department of Ophthalmology, University of Palermo, Palermo, Italy
| | | | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| | - Carla Giordano
- Laboratory of Regenerative Medicine "Aldo Galluzzo", Section of Endocrinology, Diabetology and Metabolism, Department of Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (ProMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Zhang M, Wang X, Guo F, Jia Q, Liu N, Chen Y, Yan Y, Huang M, Tang H, Deng Y, Huang S, Zhou Z, Zhang L, Zhang L. Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Am J Cancer Res 2019; 9:5065-5084. [PMID: 31410202 PMCID: PMC6691388 DOI: 10.7150/thno.34014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Rationale: Cdc42 is a Rho GTPase that regulates diverse cellular functions. Here, we used genetic techniques to investigate the role of Cdc42 in epidermal development and epidermal barrier formation. Methods: Keratinocyte-restricted Cdc42 knockout mice were generated with the Cre-LoxP system under the keratin 14 (K14) promoter. The skin and other tissues were collected from mutant and wild-type mice, and their cellular, molecular, morphological, and physiological features were analyzed. Results: Loss of Cdc42 in the epidermis in vivo resulted in neonatal lethality and impairment of epidermal barrier formation. Cdc42 deficiency led to the loss of epidermal stem cells. The absence of Cdc42 led to increased thickening of the epidermis, which was associated with increased proliferation and reduced apoptosis of keratinocytes. In addition, Cdc42 deficiency damaged tight junctions, adherens junctions and desmosomes. RNA sequencing results showed that the most significantly altered genes were enriched by the terms of “keratinization” and “cornified envelope” (CE). Among the differentially expressed genes in the CE term, several members of the small proline-rich protein (SPRR) family were upregulated. Further study revealed that there may be a Cdc42-SPRR pathway, which may correlate with epidermal barrier function. Conclusions: Our study indicates that Cdc42 is essential for epidermal development and epidermal barrier formation. Defects in Cdc42-SPRR signaling may be associated with skin barrier dysfunction and a variety of skin diseases.
Collapse
|
13
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
14
|
The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins. Sci Rep 2019; 9:1943. [PMID: 30760780 PMCID: PMC6374370 DOI: 10.1038/s41598-018-38163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell.
Collapse
|
15
|
Jørgensen E, Lazzarini G, Pirone A, Jacobsen S, Miragliotta V. Normal microscopic anatomy of equine body and limb skin: A morphological and immunohistochemical study. Ann Anat 2018; 218:205-212. [PMID: 29730469 DOI: 10.1016/j.aanat.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Information on microscopic anatomy of equine skin is sparse. In horses, limb wounds often become chronic and/or non-healing whereas body wounds heal normally. These dissimilarities in healing patterns might be a product of different phenotypic characteristics of body and limb skin. The objective of this study was to investigate microscopic anatomy, epidermal thickness, keratinocyte proliferation and differentiation as well as the presence of mast cells in normal equine skin of body and limb. MATERIALS AND METHODS The study involved body and limb skin biopsies from six horses. Histological characteristics of the epidermis were assessed and epithelial thickness measured. Immunohistochemistry was performed to investigate epidermal differentiation patterns of cytokeratin (CK) 10, CK14, CK16, loricrin, and peroxisome proliferator-activated receptor alpha (PPAR-α), epidermal proliferation (Ki-67 immunostaining), and mast cells distribution in the skin. RESULTS The epidermis was significantly thicker in the limb skin compared to body skin (p<0.01). Epidermal proliferation and CK distribution did not show differences in the two anatomical areas. Loricrin presence was focally found in the spinous layer in four out of six limb skin samples but not in body skin samples. Tryptase positive mast cells were detected in the dermis and their density (cell/mm2) was not different between body and limb. DISCUSSION AND CONCLUSION Here we report for the first time about the normal distribution of CK10, CK14, CK16, PPAR-α, and loricrin in equine limb and body skin as well as about epidermal proliferation rate and mast cell count. It will be relevant to investigate the distribution of the investigated epithelial differentiation markers and the role of mast cells during equine wound healing and/or other skin diseases.
Collapse
Affiliation(s)
- Elin Jørgensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Alle 5, DK-2630 Taastrup, Denmark
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Alle 5, DK-2630 Taastrup, Denmark
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| |
Collapse
|
16
|
Genome-wide analysis suggests a differential microRNA signature associated with normal and diabetic human corneal limbus. Sci Rep 2017; 7:3448. [PMID: 28615632 PMCID: PMC5471258 DOI: 10.1038/s41598-017-03449-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Small non-coding RNAs, in particular microRNAs (miRNAs), regulate fine-tuning of gene expression and can impact a wide range of biological processes. However, their roles in normal and diseased limbal epithelial stem cells (LESC) remain unknown. Using deep sequencing analysis, we investigated miRNA expression profiles in central and limbal regions of normal and diabetic human corneas. We identified differentially expressed miRNAs in limbus vs. central cornea in normal and diabetic (DM) corneas including both type 1 (T1DM/IDDM) and type 2 (T2DM/NIDDM) diabetes. Some miRNAs such as miR-10b that was upregulated in limbus vs. central cornea and in diabetic vs. normal limbus also showed significant increase in T1DM vs. T2DM limbus. Overexpression of miR-10b increased Ki-67 staining in human organ-cultured corneas and proliferation rate in cultured corneal epithelial cells. MiR-10b transfected human organ-cultured corneas showed downregulation of PAX6 and DKK1 and upregulation of keratin 17 protein expression levels. In summary, we report for the first time differential miRNA signatures of T1DM and T2DM corneal limbus harboring LESC and show that miR-10b could be involved in the LESC maintenance and/or their early differentiation. Furthermore, miR-10b upregulation may be an important mechanism of corneal diabetic alterations especially in the T1DM patients.
Collapse
|
17
|
Abramo F, Pirone A, Lenzi C, Vannozzi I, della Valle MF, Miragliotta V. Establishment of a 2-week canine skin organ culture model and its pharmacological modulation by epidermal growth factor and dexamethasone. Ann Anat 2016; 207:109-17. [DOI: 10.1016/j.aanat.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
|
18
|
A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury. EBioMedicine 2016; 9:314-323. [PMID: 27333029 PMCID: PMC4972546 DOI: 10.1016/j.ebiom.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7) demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity. Persistence of HPV infection in epithelial premalignancy is not fully understood. HPV16 E7 expression in skin induces expression of “stress” keratin. “Stress” keratin induction is also observed in human actinic keratosis. Induction of “stress” keratins persists after skin grafting of E7-expressing skin. Disruption of E7-Retinoblastoma binding abrogates keratin misregulation.
“Stress” keratins modify local immunity and epithelial cell function and differentiation. Thus, identification and validation of a suitable mouse model to study the influence of stress keratin expression normally and during tumor development is important. Mice that transgenically express high-risk HPV16 E7 oncoprotein in the skin (K14E7) presents with epithelial hyperplasia and is used for modeling HPV-associated pre-cancer. We show that “stress” keratins are induced in the K14E7 epithelium, similar to skin from patients with actinic keratosis. Thus the K14E7 mouse should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local immunity.
Collapse
|
19
|
Schmelzer E, Over P, Gridelli B, Gerlach JC. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. J Med Biol Eng 2016; 36:153-167. [PMID: 27231463 PMCID: PMC4853461 DOI: 10.1007/s40846-016-0118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023]
Abstract
Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA
| | - Patrick Over
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA
| | - Bruno Gridelli
- University of Pittsburgh Medical Center, Pittsburgh, PA USA ; Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Jörg C Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA ; Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Tsai PC, Zhang Z, Florek C, Michniak-Kohn BB. Constructing Human Skin Equivalents on Porcine Acellular Peritoneum Extracellular Matrix forIn VitroIrritation Testing. Tissue Eng Part A 2016; 22:111-22. [DOI: 10.1089/ten.tea.2015.0209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Pei-Chin Tsai
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Zheng Zhang
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | | | - Bozena B. Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
21
|
Yunusbaeva MM, Yunusbaev BB, Valiev RR, Khammatova AA, Khusnutdinova EK. Широкое многообразие кератинов человека. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-5-42-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
А review presents systematic data about the diversity of human keratins. The results of numerous studies concerning the structure and functions of keratins, their distribution in various cells and tissues were summarized. The role of these proteins in the development of human hereditary diseases, as well as modern approaches in use keratins in immunohistochemistry and perspectives of their further studies are discussed.
Collapse
|
22
|
In vitro keratinocyte expansion for cell transplantation therapy is associated with differentiation and loss of basal layer derived progenitor population. Differentiation 2015; 89:137-45. [DOI: 10.1016/j.diff.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/27/2015] [Accepted: 05/19/2015] [Indexed: 01/04/2023]
|
23
|
Abstract
PURPOSE In some human fetuses undergoing prenatal spina bifida repair, the skin defect is too large for primary closure. The aim of this study was to engineer an autologous fetal skin analogue suitable for in utero skin reconstruction during spina bifida repair. METHODS Keratinocytes (KC) and fibroblasts (FB) isolated from skin biopsies of 90-day-old sheep fetuses were cultured. Thereafter, plastically compressed collagen hydrogels and fibrin gels containing FB were prepared. KC were seeded onto these dermal constructs and allowed to proliferate using different culture media. Constructs were analyzed histologically and by immunohistochemistry and compared to normal ovine fetal skin. RESULTS Development of a stratified epidermis covering the entire surface of the collagen gel was observed. The number of KC layers and degree of organization was dependent on the cell culture media used. The collagen hydrogels exhibited a strong tendency to shrink after eight to ten days of culture in vitro. On fibrin gels, we did not observe the formation of a physiologically organized epidermis. CONCLUSION Collagen-gel-based ovine fetal cell-derived skin analogues with near normal anatomy can be engineered in vitro and may be suitable for autologous fetal transplantation.
Collapse
|
24
|
CD271 mediates stem cells to early progeny transition in human epidermis. J Invest Dermatol 2014; 135:786-795. [PMID: 25330297 DOI: 10.1038/jid.2014.454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 11/08/2022]
Abstract
CD271 is the low-affinity neurotrophin (p75NTR) receptor that belongs to the tumor necrosis factor receptor superfamily. Because in human epidermis, CD271 is predominantly expressed in transit-amplifying (TA) cells, we evaluated the role of this receptor in keratinocyte differentiation and in the transition from keratinocyte stem cells (KSCs) to progeny. Calcium induced an upregulation of CD271 in subconfluent keratinocytes, which was prevented by CD271 small interfering RNA. Furthermore, CD271 overexpression provoked the switch of KSCs to TA cells, whereas silencing CD271 induced TA cells to revert to a KSC phenotype, as shown by the expression of β1-integrin and by the increased clonogenic ability. CD271(+) keratinocytes sorted from freshly isolated TA cells expressed more survivin and keratin 15 (K15) compared with CD271(-) cells and displayed a higher proliferative capacity. Early differentiation markers and K15 were more expressed in the skin equivalent generated from CD271(+) TA than from those derived from CD271(-) TA cells. By contrast, late differentiation markers were more expressed in skin equivalents from CD271(-) than in reconstructs from CD271(+) TA cells. Finally, skin equivalents originated from CD271(-) TA cells displayed a psoriatic phenotype. These results indicate that CD271 is critical for keratinocyte differentiation and regulates the transition from KSCs to TA cells.
Collapse
|
25
|
Tan KKB, Salgado G, Connolly JE, Chan JKY, Lane EB. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction. Stem Cell Reports 2014; 3:324-38. [PMID: 25254345 PMCID: PMC4175556 DOI: 10.1016/j.stemcr.2014.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023] Open
Abstract
Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting. Properties of fetal and adult keratinocytes are compared in tissue culture and grafts Fetal skin cells can be engrafted and show stable human-to-mouse skin regeneration Fetal keratinocytes are stem cell rich and need no differentiation before grafting Fetal keratinocytes are able to suppress proliferation of stimulated T cells in vitro
Collapse
Affiliation(s)
- Kenneth K B Tan
- A(∗)STAR Institute of Medical Biology, Immunos, Singapore 138648, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117597, Singapore
| | - Giorgiana Salgado
- A(∗)STAR Institute of Medical Biology, Immunos, Singapore 138648, Singapore
| | - John E Connolly
- Singapore Immunology Network, A(∗)STAR, Immunos, Singapore 138648, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore 119228, Singapore.
| | - E Birgitte Lane
- A(∗)STAR Institute of Medical Biology, Immunos, Singapore 138648, Singapore.
| |
Collapse
|
26
|
Sugiyama H, Yamato M, Nishida K, Okano T. Evidence of the survival of ectopically transplanted oral mucosal epithelial stem cells after repeated wounding of cornea. Mol Ther 2014; 22:1544-1555. [PMID: 24769908 DOI: 10.1038/mt.2014.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/15/2014] [Indexed: 12/19/2022] Open
Abstract
Tissue engineering has become an essential tool in the development of regenerative medicine. We have developed cell sheet-based techniques for use in regenerative medicine that have already been successfully used in clinical applications. Native corneal epithelium is produced from limbal stem cells located in the transition zone between the cornea and the bulbar conjunctiva. Limbal stem cell deficiency (LSCD) is a severe defect of the limbal stem cells leading to vision loss due to conjunctival epithelial invasion and neovascularization. Rabbit LSCD models were treated with transplantable autologous oral mucosal epithelial cell (OEC) sheets fabricated on temperature-responsive cell culture surfaces, after which, the ocular surfaces were clear and smooth with no observable defects. The central part of the reconstructed ocular surface was scraped and wounded, after which proliferating epithelial cells covered the scraped area within a few days. The ocular surfaces were clear and smooth even after repeated scrapings and consisted of only OECs or heterogeneously mixed with corneal epithelial cells. This study demonstrates that transplanted cell sheets containing oral mucosal epithelial stem cells could reconstruct the ocular surface to maintain cornea homeostasis; moreover, they provide an ideal microenvironment to support the proliferation of remaining native limbal stem cells.
Collapse
Affiliation(s)
- Hiroaki Sugiyama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
27
|
Skin Fragility and Impaired Desmosomal Adhesion in Mice Lacking All Keratins. J Invest Dermatol 2014; 134:1012-1022. [DOI: 10.1038/jid.2013.416] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
|
28
|
Bose A, Teh MT, Mackenzie IC, Waseem A. Keratin k15 as a biomarker of epidermal stem cells. Int J Mol Sci 2013; 14:19385-98. [PMID: 24071939 PMCID: PMC3821562 DOI: 10.3390/ijms141019385] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/21/2023] Open
Abstract
Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.
| | | | | | | |
Collapse
|
29
|
Yamaura K, Shigemori A, Suwa E, Ueno K. Expression of the histamine H4 receptor in dermal and articular tissues. Life Sci 2012; 92:108-13. [PMID: 23154242 DOI: 10.1016/j.lfs.2012.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Histamine H(4) receptor was identified in 2000 and is the most recently identified of the four histamine receptors. It is expressed primarily in immune cells and is involved in physiologic functions related to inflammation and allergy. Recently, the H(4) receptor was highlighted as a promising therapeutic target in atopic dermatitis, asthma, and chronic arthritis. In fact, some H(4) receptor antagonists have reached clinical trials for the treatment of asthma, atopic dermatitis, and allergic rhinitis. Based on an initial assessment of distribution, the H(4) receptor has been referred to as the histamine receptor of the hematopoietic system. However, the H(4) receptor has also been implicated in the regulation of other non-hematopoietic systems. Here, we review the expression and function of the H(4) receptor with a focus on dermal and articular tissues. In skin, the H(4) receptor is expressed in both the epidermis and dermis, with stronger receptor expression in the epidermis. In articular tissue, H(4) receptor expression has been detected in synovial cells. Chondrocytes, a major cell sources for cartilage tissue engineering, also express the H(4) receptor. Further understanding of the functions of H(4) receptors in non-hematopoietic cells might lead to novel treatments for diseases with unmet needs.
Collapse
Affiliation(s)
- Katsunori Yamaura
- Department of Geriatric Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | | | | | | |
Collapse
|
30
|
Bose A, Teh MT, Hutchison IL, Wan H, Leigh IM, Waseem A. Two mechanisms regulate keratin K15 expression in keratinocytes: role of PKC/AP-1 and FOXM1 mediated signalling. PLoS One 2012; 7:e38599. [PMID: 22761689 PMCID: PMC3384677 DOI: 10.1371/journal.pone.0038599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023] Open
Abstract
Background Keratin 15 (K15) is a type I keratin that is used as a marker of stem cells. Its expression is restricted to the basal layer of stratified epithelia, and the bulge in hair follicles. However, in certain clinical situations including oral lichen planus, K15 is induced in suprabasal layers, which is inconsistent with the role of a stem cell marker. This study provides insights into the mechanisms of K15 expression in the basal and differentiating keratinocytes. Methodology/Principal Findings Human keratinocytes were differentiated by three different methods; suspension in methylcellulose, high cell density and treatment with phorbol ester. The expression of mRNA was determined by quantitative PCR and protein by western blotting and immunostaining. Keratinocytes in suspension suppressed β1-integrin expression, induced differentiation-specific markers and K15, whereas FOXM1 (a cell cycle regulated protein) and K14 were downregulated. Rescuing β1-integrin by either fibronectin or the arginine-glycine-aspartate peptide suppressed K15 but induced K14 and FOXM1 expression. Specific inhibition of PKCδ, by siRNA, and AP-1 transcription factor, by TAM67 (dominant negative c-Jun), suppressed K15 expression, suggesting that PKC/AP-1 pathway plays a role in the differentiation-specific expression of K15. The basal cell-specific K15 expression may involve FOXM1 because ectopic expression of the latter is known to induce K15. Using chromatin immunoprecipitation, we have identified a single FOXM1 binding motif in the K15 promoter. Conclusions/Significance The data suggests that K15 is induced during terminal differentiation mediated by the down regulation of β1-integrin. However, this cannot be the mechanism of basal/stem cell-specific K15 expression in stratified epithelia, because basal keratinocytes do not undergo terminal differentiation. We propose that there are two mechanisms regulating K15 expression in stratified epithelia; differentiation-specific involving PKC/AP-1 pathway, and basal-specific mediated by FOXM1, and therefore the use of K15 expression as a marker of stem cells must be viewed with caution.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Iain L. Hutchison
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Irene M. Leigh
- Division of Cancer, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Abstract
The intermediate filament keratin 15 (K15) is present in variable amounts in various stratified epithelia, but has also been reported to be a stem cell marker in the hair follicle. Using peptide specific antibodies, we evaluated the temporal and spatial distribution pattern of K15 expression/localization during normal epidermal development and initiation of hair follicle formation, and in the injured mature epidermis (e.g., during acute injury and repair and in tumorigenesis). During development, K15 expression is first localized to a subset of epidermal basal cells and the overlying periderm at E12.5, but its expression is seen throughout the basal layer by E15.5 and beyond. In hair follicle morphogenesis, initial peg formation occurs in a K15-null area at E14.5 and as peg elongation proceeds through to the mature hair follicle, K15 expression follows the leading edge with positive cells restricted to the outer root sheath. In an epidermal injury model, K15 is first up-regulated and associated with both the basal and suprabasal layers of the interfollicular epidermis then expression becomes sporadic and down-regulated before a basal layer-specific association is re-established in the repaired epidermis. During tumorigenesis, K15 is first mis-expressed, and is ultimately down-regulated. Our data suggest that K15 protein expression may reflect not only expression in a stem or progenitor cell subpopulation, but also reflects the activity and responsiveness of basal-like cells to loss of homeostasis of the epidermal differentiation program. Thus, the data suggest caution in using K15 alone to delineate epidermal stem cells, and underscore the need for further investigation of K15 and other markers in epidermal cell subpopulations.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, 501 Smyth Road-CCW5226, Ottawa, Ontario K1Y 8L6, Canada.
| | | | | |
Collapse
|
32
|
Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 2012; 132:763-75. [PMID: 22277943 PMCID: PMC3279600 DOI: 10.1038/jid.2011.450] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a rare genetic condition typified by superficial bullous lesions following incident frictional trauma to the skin. Most cases of EBS are due to dominantly acting mutations in keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins that copolymerize to form a pancytoplasmic network of 10 nm filaments in basal keratinocytes of epidermis and related epithelia. Defects in K5-K14 filament network architecture cause basal keratinocytes to become fragile, and account for their rupture upon exposure to mechanical trauma. The discovery of the etiology and pathophysiology of EBS was intimately linked to the quest for an understanding of the properties and function of keratin filaments in skin epithelia. Since then, continued cross-fertilization between basic science efforts and clinical endeavors has highlighted several additional functional roles for keratin proteins in the skin, suggested new avenues for effective therapies for keratin-based diseases, and expanded our understanding of the remarkable properties of the skin as an organ system.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
33
|
Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G. Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 2012; 7:e29999. [PMID: 22383956 PMCID: PMC3283611 DOI: 10.1371/journal.pone.0029999] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2(ep-/-) mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2(-/-)) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. METHODOLOGY/PRINCIPAL FINDINGS Full thickness excisional wound healing experiments were performed on Ctip2(L2/L2) and Ctip2(ep-/-) animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2(ep-/-) mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. CONCLUSIONS/SIGNIFICANCE Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure.
Collapse
Affiliation(s)
- Xiaobo Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Shreya Bhattacharya
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Gaurav Bajaj
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Gunjan Guha
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Zhixing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Hyo-Sang Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Centre, Oregon State University, Corvallis, Oregon, United States of America
| | - Arup Kumar Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Science Centre, Oregon State University, Corvallis, Oregon, United States of America
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, United States of America
- Molecular and Cell Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
34
|
Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F, Luginbühl J, Schiestl C, Meuli M, Reichmann E. Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C Methods 2012; 18:464-74. [PMID: 22195768 DOI: 10.1089/ten.tec.2011.0561] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biological functionality, but their mechanical weakness and their tendency to contract and degrade does not allow producing clinically applicable transplants of larger sizes. We show here that plastically compressed collagen type I hydrogels can be produced in clinically relevant sizes (7×7 cm), and can be safely and conveniently handled by the surgeon. Most importantly, these dermo-epidermal skin substitutes mature into a near normal skin that can successfully reconstitute full-thickness skin defects in an animal model.
Collapse
Affiliation(s)
- Erik Braziulis
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tumbar T. Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Rev Rep 2012; 8:10.1007/s12015-012-9348-9. [PMID: 22290419 PMCID: PMC4103971 DOI: 10.1007/s12015-012-9348-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse epithelial skin stem cells constitute an important model system for understanding the dynamics of stem cell emergence and behavior in an intact vertebrate tissue. Recent published work defined discrete populations of epithelial stem cells in the adult skin epithelium, which reside in the hair follicle bulge and germ, isthmus, sebaceous gland and inter-follicular epidermis. Adult epidermal and hair follicle stem cells seem to adopt mostly symmetric or unidirectional fate decisions of either one of two possible fates: (1) differentiate and be lost from the tissue or (2) expand symmetrically to self-renew. Asymmetric divisions appear to be mostly implicated in differentiation and stratification of the epidermis. While mechanisms of adult stem cell homeostasis begin to be unraveled, the embryonic origin of the adult epithelial skin stem cells is poorly understood. Recent studies reported Sox9, Lgr6, and Runx1 expression in subpopulations of cells in the embryonic hair placode. These subpopulations seem to act as precursors of different classes of adult epithelial stem cells. In particular, Runx1 regulates a Wnt-mediated cross-talk between the nascent adult-type hair follicle stem cells and their environment, which is essential for timely stem cell emergence, proper maturation, long-term differentiation potential, and maintenance. The new data begin to define the basic dynamics and regulatory pathways governing the ontogeny of adult epithelial stem cells.
Collapse
Affiliation(s)
- Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA,
| |
Collapse
|
36
|
Qi H, Zheng X, Yuan X, Pflugfelder SC, Li DQ. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol 2010; 225:180-5. [PMID: 20458737 DOI: 10.1002/jcp.22215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the conjunctival fornix appears to contain the greatest proportion of stem cells, it is likely that pockets of conjunctival epithelial stem cells may also exist throughout the conjunctival epithelium. This study was to investigate the potential localization of putative stem/progenitor cells in the human bulbar conjunctival epithelium by evaluating 6 keratins and 13 molecules that have been previously proposed stem cell associated or differentiation markers. We found that cornea specific cytokeratin (CK) 3 was not expressed by the bulbar conjunctival epithelial cells. In contrast, CK4 and CK7 were expressed by the superficial cells of bulbar conjunctival epithelium. CK14 and CK15 were confined to the basal cell layer. CK19 was strongly expressed by all layers of the bulbar conjunctival epithelium. The expression patterns of molecular markers in the basal cells of human bulbar conjunctival epithelium were found to be similar to the corneal epithelium. Basal conjunctival epithelial cells strongly expressed stem cell associated markers, including ABCG2, p63, nerve growth factor (NGF) with its receptors tyrosine kinase receptor A (TrkA) and neurotrophin low-affinity receptor p75NTR, glial cell-derived neurotrophic factor (GDNF) with its receptor GDNF family receptor alpha 1 (GFRalpha-1), integrin beta1, alpha-enolase, and epidermal growth factor receptor (EGFR). The differentiation associated markers nestin, E-cadherin and involucrin were not expressed by these cells. These findings indicate that the basal cells of bulbar conjunctival epithelium shares a similar expression pattern of stem cell associated markers to the corneal epithelium, but has a unique pattern of differentiation associated cytokeratin expression.
Collapse
Affiliation(s)
- Hong Qi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
37
|
Lin CB, Hu Y, Rossetti D, Chen N, David C, Slominski A, Seiberg M. Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development. J Dermatol Sci 2010; 59:91-7. [DOI: 10.1016/j.jdermsci.2010.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/06/2010] [Accepted: 06/14/2010] [Indexed: 02/07/2023]
|
38
|
Biedermann T, Pontiggia L, Böttcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E. Human Eccrine Sweat Gland Cells Can Reconstitute a Stratified Epidermis. J Invest Dermatol 2010; 130:1996-2009. [DOI: 10.1038/jid.2010.83] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
40
|
Choi YH, Kim MG, Ahn DH, Cho SJ, Hong SH, Lee JY, Lee JW, Kim HS. Immunohistochemical Expression of Stem Cell Markers during the Wound Healing Process of Cutaneous Burn. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2010. [DOI: 10.4174/jkss.2010.79.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Young Hee Choi
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min Gyu Kim
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Dong-Hyun Ahn
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Seong Jin Cho
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Soo Hee Hong
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jae-Yong Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jin Won Lee
- Department of Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hae Sung Kim
- Department of Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
41
|
Abstract
Throughout adult life, the epidermis and the hair follicle undergo a perpetual cycle of growth, regression and rest. Stem cells in the epidermis not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. These stem cells lie within specific niches in the hair follicle and the epidermis. The availability of monoclonal antibodies that can be used on formalin-fixed paraffin-embedded tissue has greatly facilitated the use of this methodology as an adjunct to uncovering stem cell niches. In this review, we attempt to provide an overview of the potential markers available to identify and study stem cells in an effort to providing a better understanding of the pathogenesis of skin diseases including disorders of hair loss and malignancies. The potential uses of these markers in prognosis and in expanding the therapeutic options in several disorders will also be addressed.
Collapse
Affiliation(s)
- O Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | |
Collapse
|
42
|
Markers to Evaluate the Quality and Self-Renewing Potential of Engineered Human Skin Substitutes In Vitro and after Transplantation. J Invest Dermatol 2009; 129:480-90. [DOI: 10.1038/jid.2008.254] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
44
|
Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 2007; 86:731-46. [PMID: 17292509 DOI: 10.1016/j.ejcb.2006.12.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/09/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022] Open
Abstract
In vitro generated skin models find growing interest as promising tools in basic research and clinical application in regenerative medicine. Here, we present further details of an improved long-term skin equivalent (SE) enabling mechanistic studies on skin reconstruction and epidermal function. Growth conditions of fibroblasts in a 3D scaffold were analysed to optimise the dermal microenvironment by providing an authentic dermal matrix for regular tissue reconstruction and function of cocultured keratinocytes. These SEs demonstrate sustained epidermal viability - over 12 weeks - with regular differentiation as substantiated by in vivo-like patterns of all differentiation products, exemplified here by the cornified envelope components loricrin and repetin. The continuous expression of all major tight junction components in the granular layer, shown here for ZO-1 in coherence with the presence of epidermal barrier lipids, and ultrastructural accumulation of lamellar bodies, collectively indicate proper epidermal barrier structures. Remarkably, cocultured keratinocytes exerted an ongoing proliferation-stimulating effect on fibroblasts colonising the scaffold comparable to a cocktail of fibroblast growth factors. Consequently, precultivation of dermal equivalents (DEs) in basal or growth factor-enriched media had only minor effects on the quality of epidermal regeneration in cocultures. As to the role of fibroblast numbers, complete absence of dermal cells resulted in atrophic epithelia but the effect of cell numbers as low as 5 x 10(4)cells/cm(2) on epidermal tissue quality equalled that of the standard density (2 x 10(5)cells/cm(2)). Surprisingly, precultivation of fibroblasts in the DEs for 7 days (standard) showed no better effect on epidermal tissue reformation as compared to 2 days whereas a precultivation period of 14 days resulted in atrophic epidermal and dermal tissue development. These data demonstrate, (i) the strict dependence of epidermal tissue regeneration on the presence of fibroblasts, (ii) the mutual keratinocyte-fibroblast interactions for cell proliferation and organogenesis, and (iii) the importance of the proper microenvironment for epidermal tissue function and supposedly for establishment of a stem cell niche in vitro.
Collapse
Affiliation(s)
- Karsten Boehnke
- Division of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC DEVELOPMENTAL BIOLOGY 2007; 7:105. [PMID: 17880691 PMCID: PMC2110892 DOI: 10.1186/1471-213x-7-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/19/2007] [Indexed: 01/22/2023]
Abstract
BACKGROUND The Neuregulin family of ligands and their receptors, the Erbb tyrosine kinases, have important roles in epidermal and mammary gland development as well as during carcinogenesis. Previously, we demonstrated that Neuregulin3 (Nrg3) is a specification signal for mammary placode formation in mice. Nrg3 is a growth factor, which binds and activates Erbb4, a receptor tyrosine kinase that regulates cell proliferation and differentiation. To understand the role of Neuregulin3 in epidermal morphogenesis, we have developed a transgenic mouse model that expresses Nrg3 throughout the basal layer (progenitor/stem cell compartment) of mouse epidermis and the outer root sheath of developing hair follicles. RESULTS Transgenic females formed supernumerary nipples and mammary glands along and adjacent to the mammary line providing strong evidence that Nrg3 has a role in the initiation of mammary placodes along the body axis. In addition, alterations in morphogenesis and differentiation of other epidermal appendages were observed, including the hair follicles. The transgenic epidermis is hyperplastic with excessive sebaceous differentiation and shows striking similarities to mouse models in which c-Myc is activated in the basal layer including decreased expression levels of the adhesion receptors, alpha6-integrin and beta1-integrin. CONCLUSION These results indicate that the epidermis is sensitive to Nrg3 signaling, and that this growth factor can regulate cell fate of pluripotent epidermal cell populations including that of the mammary gland. Nrg3 appears to act, in part, by inducing c-Myc, altering the proliferation and adhesion properties of the basal epidermis, and may promote exit from the stem cell compartment. The results we describe provide significant insight into how growth factors, such as Nrg3, regulate epidermal homeostasis by influencing the balance between stem cell renewal, lineage selection and differentiation.
Collapse
Affiliation(s)
- Heena Panchal
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Olivia Wansbury
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Suzanne Parry
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Beatrice Howard
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
46
|
Akgül B, Ghali L, Davies D, Pfister H, Leigh IM, Storey A. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007; 16:590-9. [PMID: 17576239 PMCID: PMC2423465 DOI: 10.1111/j.1600-0625.2007.00569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses (HPV) have been associated with the development of non-melanoma skin cancer (NMSC) but the molecular mechanisms of the role of the virus in NMSC development are not clearly understood. Abnormal epithelial differentiation seen in malignant transformation of keratinocytes is associated with changes in keratin expression. The purpose of this study was to investigate the phenotype of primary human adult keratinocytes expressing early genes of HPV8 with specific reference to their differentiation and cell cycle profile to determine whether early genes of HPV8 lead to changes that are consistent with transformation. The expression of HPV8 early genes either individually or simultaneously caused distinct changes in the keratinocyte morphology and induced an abnormal keratin expression pattern, that included simple epithelial (K8, K18, K19), hyperproliferation-specific (K6, K16), basal-specific (K14, K15) and differentiation-specific (K1, K10) keratins. Our results indicate that expression of HPV8 early genes disrupts the normal keratin expression pattern in vitro. Expression of HPV8-E7 alone caused polyploidy that was associated with decreased expression of p21 and pRb. Expression of individual genes or in combination differentially influenced cell morphology and cell cycle distribution which might be important in HPV8-induced keratinocyte transformation.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Tazawa I, Shimizu-Nishikawa K, Yoshizato K. A novel Xenopus laevis larval keratin gene, xlk2: its gene structure and expression during regeneration and metamorphosis of limb and tail. ACTA ACUST UNITED AC 2006; 1759:216-24. [PMID: 16822559 DOI: 10.1016/j.bbaexp.2006.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/17/2006] [Accepted: 05/09/2006] [Indexed: 11/22/2022]
Abstract
A novel cytokeratin (CK) gene, xlk2, was cloned from a cDNA library prepared from regenerating limbs of Xenopus larvae. The deduced amino acid sequence indicated that its product, XLK2, is a 48 kDa type I (acidic) CK and has a high similarity to CK13, 15, and 19 with the highest homology (58%) to mouse CK15. The gene of xlk2 exclusively expressed in basal cells of the bi-layered larval epidermis, but not in other cells in larvae and not in other periods of life. Its expression was down-regulated during spontaneous and thyroid hormone-induced metamorphosis. The basal cells of the apical epidermal cap (AEC) formed on the regenerate of larval limbs terminated the expression of xlk2, whereas those of the adjacent normal epidermis continued to express it. The AEC-basal cells did not re-express the gene in the regenerate. In contrast, the basal cells of the tail regenerate also once terminated the expression of xlk2, but was able to re-express xlk2 later, supporting a notion that the "de-differentiated" basal cells of the tail epidermal regenerate re-differentiate into larval normal epidermal cells.
Collapse
Affiliation(s)
- Ichiro Tazawa
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
48
|
Massoumi R, Podda M, Fässler R, Paus R. Cylindroma as Tumor of Hair Follicle Origin. J Invest Dermatol 2006; 126:1182-4. [PMID: 16484982 DOI: 10.1038/sj.jid.5700218] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Usui ML, Underwood RA, Mansbridge JN, Muffley LA, Carter WG, Olerud JE. Morphological evidence for the role of suprabasal keratinocytes in wound reepithelialization. Wound Repair Regen 2006; 13:468-79. [PMID: 16176455 DOI: 10.1111/j.1067-1927.2005.00067.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process by which wounds reepithelialize remains controversial. Two models have been proposed to describe reepithelialization: the "sliding" model and the "rolling" model. In the "sliding" model, basal keratinocytes are the principal cells responsible for migration and wound closure. In this model, basal and suprabasal keratinocytes remain strongly attached to leading edge basal keratinocytes and are then passively dragged along as a sheet. The "rolling" model postulates that basal keratinocytes remain strongly attached to the basement membrane zone while suprabasal keratinocytes at the wound margin are activated to roll into the wound site. The purpose of this study was to determine which populations of keratinocytes are actively involved in reepithelialization. We evaluated expression of keratins K14, K15, K10, K2e, and K16 as well as the proliferation marker Ki67 in the migrating tongue of normal human incisional 1-hour to 28-day wounds and normal human 3 mm diameter excisional 1- to 7-day wounds. Our results show dramatic changes in phenotype and protein expression of keratins K10, K2e, K14, K15, and K16 in suprabasal keratinocytes in response to injury. We conclude that this large population of suprabasal keratinocytes actively participates in wound closure.
Collapse
Affiliation(s)
- Marcia L Usui
- Department of Medicine (Dermatology), University of Washington, Seattle, Washington 98195-6524, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Reichelt J, Breiden B, Sandhoff K, Magin TM. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur J Cell Biol 2005; 83:747-59. [PMID: 15679119 DOI: 10.1078/0171-9335-00429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we present strong evidence that the targeted deletion of keratin 10 (K10) alters sebocyte differentiation in mice, mediated by an increased proliferation and differentiation of cells located in the periphery of the glands. This was not accompanied by the induction of the proliferation-associated keratins K6, K16 and K17. Sebaceous gland cells of K10-/- mice showed an accelerated turnover and secreted more sebum including wax esters, triglycerides, and cholesterol esters. The levels of the major epidermal lipids ceramides and cholesterol were also increased, whereas glycosylceramides and sphingomyelin were decreased which was not based on altered sphingolipid biosynthesis. The amount of Cer(OS), covalently bound to the cornified envelope, remained unchanged, as well as the amount of loricrin and involucrin. In agreement with the unaltered expression of beta-catenin and its targets cyclin D1 and c-Myc, we conclude that the altered composition of the suprabasal intermediate filament cytoskeleton in K10-/- mice increased the differentiation of epidermal stem cells towards the sebocyte lineage.
Collapse
Affiliation(s)
- Julia Reichelt
- Institut für Physiologische Chemie, Universität Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|