1
|
Li X, Huang Z, Zhu L, Lai W, Li Y, Chen H, Liu D, Huang J, Zhou D, Li Y, Weng W, Xu H, Xu L, Luo Z, Fang J. The potential role of RNA sequencing in diagnosing unexplained insensitivity to conventional chemotherapy in pediatric patients with B-cell acute lymphoblastic leukemia. BMC Med Genomics 2024; 17:149. [PMID: 38811988 PMCID: PMC11137891 DOI: 10.1186/s12920-024-01892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is a highly heterogeneous disease. According to large-scale RNA sequencing (RNA-seq) data, B-ALL patients can be divided into more than 10 subgroups. However, many genomic defects associated with resistance mechanisms have not yet been identified. As an individual clinical tool for molecular diagnostic risk classification, RNA-seq and gene expression pattern-based therapy could be potential upcoming strategies. In this study, we retrospectively analyzed the RNA-seq gene expression profiles of 45 children whose molecular diagnostic classifications were inconsistent with the response to chemotherapy. The relationship between the transcriptome and chemotherapy response was analyzed. Fusion gene identification was conducted for the included patients who did not have known high-risk associated fusion genes or gene mutations. The most frequently detected fusion gene pair in the high-risk group was the DHRSX duplication, which is a novel finding. Fusions involving ABL1, LMNB2, NFATC1, PAX5, and TTYH3 at onset were more frequently detected in the high-risk group, while fusions involving LFNG, TTYH3, and NFATC1 were frequently detected in the relapse group. According to the pathways involved, the underlying drug resistance mechanism is related to DNA methylation, autophagy, and protein metabolism. Overall, the implementation of an RNA-seq diagnostic system will identify activated markers associated with chemotherapy response, and guide future treatment adjustments.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Zaoli Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Liwen Zhu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Weixin Lai
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Yunyao Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Han Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dunhua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Yang Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Wenjun Weng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Honggui Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Luhong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China.
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| |
Collapse
|
2
|
Loo S, Roberts AW, Anstee NS, Kennedy GA, He S, Schwarer AP, Enjeti AK, D’Rozario J, Marlton P, Bilmon IA, Taper J, Cull G, Tiley C, Verner E, Hahn U, Hiwase DK, Iland HJ, Murphy N, Ramanathan S, Reynolds J, Ong DM, Tiong IS, Wall M, Murray M, Rawling T, Leadbetter J, Rowley L, Latimer M, Yuen S, Ting SB, Fong CY, Morris K, Bajel A, Seymour JF, Levis MJ, Wei AH. Sorafenib plus intensive chemotherapy in newly diagnosed FLT3-ITD AML: a randomized, placebo-controlled study by the ALLG. Blood 2023; 142:1960-1971. [PMID: 37647654 PMCID: PMC10733823 DOI: 10.1182/blood.2023020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
Sorafenib maintenance improves outcomes after hematopoietic cell transplant (HCT) for patients with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) acute myeloid leukemia (AML). Although promising outcomes have been reported for sorafenib plus intensive chemotherapy, randomized data are limited. This placebo-controlled, phase 2 study (ACTRN12611001112954) randomized 102 patients (aged 18-65 years) 2:1 to sorafenib vs placebo (days 4-10) combined with intensive induction: idarubicin 12 mg/m2 on days 1 to 3 plus either cytarabine 1.5 g/m2 twice daily on days 1, 3, 5, and 7 (18-55 years) or 100 mg/m2 on days 1 to 7 (56-65 years), followed by consolidation and maintenance therapy for 12 months (post-HCT excluded) in newly diagnosed patients with FLT3-ITD AML. Four patients were excluded in a modified intention-to-treat final analysis (3 not commencing therapy and 1 was FLT3-ITD negative). Rates of complete remission (CR)/CR with incomplete hematologic recovery were high in both arms (sorafenib, 78%/9%; placebo, 70%/24%). With 49.1-months median follow-up, the primary end point of event-free survival (EFS) was not improved by sorafenib (2-year EFS 47.9% vs 45.4%; hazard ratio [HR], 0.87; 95% confidence interval [CI], 0.51-1.51; P = .61). Two-year overall survival (OS) was 67% in the sorafenib arm and 58% in the placebo arm (HR, 0.76; 95% CI, 0.42-1.39). For patients who received HCT in first remission, the 2-year OS rates were 84% and 67% in the sorafenib and placebo arms, respectively (HR, 0.45; 95% CI, 0.18-1.12; P = .08). In exploratory analyses, FLT3-ITD measurable residual disease (MRD) negative status (<0.001%) after induction was associated with improved 2-year OS (83% vs 60%; HR, 0.4; 95% CI, 0.17-0.93; P = .028). In conclusion, routine use of pretransplant sorafenib plus chemotherapy in unselected patients with FLT3-ITD AML is not supported by this study.
Collapse
Affiliation(s)
- Sun Loo
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
| | - Andrew W. Roberts
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
| | - Natasha S. Anstee
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
| | - Glen A. Kennedy
- Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Simon He
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
| | | | - Anoop K. Enjeti
- Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
| | | | - Paula Marlton
- Princess Alexandra Hospital and University of Queensland, Woolloongabba, QLD, Australia
| | - Ian A. Bilmon
- Department of Haematology, Westmead Hospital, Westmead, NSW, Australia
| | - John Taper
- Nepean Hospital Cancer Care Centre, Kingswood, NSW, Australia
| | - Gavin Cull
- Sir Charles Gairdner Hospital, University of Western Australia, Crawley, WA, Australia
| | | | - Emma Verner
- Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Uwe Hahn
- Department of Haematology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Devendra K. Hiwase
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Harry J. Iland
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Nick Murphy
- Royal Hobart Hospital, Hobart, TS, Australia
| | | | - John Reynolds
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Doen Ming Ong
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Ing Soo Tiong
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Meaghan Wall
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | | | | | - Leesa Rowley
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC, Australia
| | | | - Sam Yuen
- Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Stephen B. Ting
- Department of Haematology, Box Hill Hospital, Box Hill, VIC, Australia
| | - Chun Yew Fong
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
| | - Kirk Morris
- Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Ashish Bajel
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - John F. Seymour
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Andrew H. Wei
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Australasian Leukaemia and Lymphoma Group
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
- Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
- Department of Clinical Haematology, Austin Health, Heidelberg, VIC, Australia
- Department of Haematology, Box Hill Hospital, Box Hill, VIC, Australia
- Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
- Canberra Hospital, Garran, ACT, Australia
- Princess Alexandra Hospital and University of Queensland, Woolloongabba, QLD, Australia
- Department of Haematology, Westmead Hospital, Westmead, NSW, Australia
- Nepean Hospital Cancer Care Centre, Kingswood, NSW, Australia
- Sir Charles Gairdner Hospital, University of Western Australia, Crawley, WA, Australia
- Gosford Hospital, Gosford, NSW, Australia
- Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Haematology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
- Royal Hobart Hospital, Hobart, TS, Australia
- St George Hospital, Kogarah, NSW, Australia
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- University of Technology Sydney, Sydney, NSW, Australia
- WriteSource Medical Pty Ltd, Lane Cove, NSW, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC, Australia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
3
|
Swaminathan M, Aly MM, Khan AM, Share BA, Dhillon V, Lalo E, Ramos H, Akers KG, Kim S, Balasubramanian S. Efficacy analysis of different FLT3 inhibitors in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. EJHAEM 2023; 4:165-173. [PMID: 36819163 PMCID: PMC9928788 DOI: 10.1002/jha2.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Several FLT3 inhibitors(i) are available to treat relapsed/refractory (R/R) FLT3-internal tandem duplicated acute myeloid leukemia (AML). This study analyzes the efficacies of various FLT3i (types 1 and 2) tested in clinical trials in treating R/R AML and high-risk myelodysplastic syndromes (HR-MDS). PubMed and EMBASE databases were searched for single/double-arm phase I/II/III R/R AML or HR-MDS clinical trials published between 1/1/2000 and 6/1/2021. The outcomes studied were composite response rate (CRc) and overall response rate (ORR). Toxicities were compared based on the organ system. The 28 studies analyzed had 1927 patients. The pooled ORR and (CRc) for all FLT3i were 53% (95% CI, 43%-63%) and 34% (95% CI, 26%-44%). Pooled ORR and CRc were 37% (95% CI, 25%-51%) and 35% (95% CI, 21%-52%) for type 1 and 58% (95% CI, 43%-71%) and 38% (95% CI, 27%-50%) for type 2, respectively. Gastrointestinal (GI) and hematological toxicity occurred in 22% (95% CI, 19%-25.4%) and 74.6% (95% CI, 70%-79%) with type 1 and 13.9% (95% CI, 12%-16%) and 57.7% (95% CI, 54.6%-60.8%) with type 2 FLT3i. QTc prolongation occurred in 2.06% (95% CI, 1.03%-3.65%) with type 1 and 7% (95% CI, 5.3%-9%) with type 2 FLT3i. Type 2 FLT3i had less GI toxicity but more QTc prolongation. Prospective studies are needed to compare the efficacy of type 1 and 2 FLT3i.
Collapse
Affiliation(s)
- Mahesh Swaminathan
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Mai M. Aly
- Clinical Hematology UnitInternal Medicine DepartmentAssiut University HospitalAssiutEgypt
| | - Abdul Moiz Khan
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Bayan Al Share
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Vikram Dhillon
- Department of Internal MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Enxhi Lalo
- Wayne State University School of MedicineDetroitMichiganUSA
| | - Harry Ramos
- Wayne State University School of MedicineDetroitMichiganUSA
| | | | - Seongho Kim
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
- Biostatistics and Bioinformatics CoreKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Suresh Balasubramanian
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
- Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
4
|
Ge SS, Liu SB, Xue SL. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front Oncol 2022; 12:996438. [PMID: 36185253 PMCID: PMC9515417 DOI: 10.3389/fonc.2022.996438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
FLT3 mutations are one of the most common genetic alterations in acute myeloid leukemia (AML) and are identified in approximately one-third of newly diagnosed patients. Aberrant FLT3 receptor signaling has important implications for the biology and clinical management of AML. In recent years, targeting FLT3 has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and contributes to substantially prolonged survival. At the same time, wide application of next-generation sequencing (NGS) technology has revealed a series of non-canonical FLT3 mutations, including point mutations and small insertions/deletions. Some of these mutations may be able to influence downstream phosphorylation and sensitivity to FLT3 inhibitors, while the correlation with clinical outcomes remains unclear. Exploration of FLT3-targeted therapy has made substantial progress, but resistance to FLT3 inhibitors has become a pressing issue. The mechanisms underlying FLT3 inhibitor tolerance can be roughly divided into primary resistance and secondary resistance. Primary resistance is related to abnormalities in signaling factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves on-target mutations and off-target aberrations. To overcome this problem, novel agents such as FF-10101 have shown promising potential. Multitarget strategies directed at FLT3 and anomalous signaling factors simultaneously are in active clinical development and show promising results.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Zaafar D, Khalil HMA, Rasheed RA, Eltelbany RFA, Zaitone SA. Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway. PLoS One 2022; 17:e0271631. [PMID: 35944026 PMCID: PMC9362940 DOI: 10.1371/journal.pone.0271631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Sorafenib is an oral multi-kinase receptor inhibitor that targets various signaling pathways. It is used as the first line of treatment in advanced hepatocellular and renal cell carcinomas. Sorafenib was reported to induce cardiotoxicity due to myocyte necrosis. Hesperetin is a naturally occurring flavonoid with antioxidant and anti-inflammatory capabilities. This study investigated the putative protective effect of hesperetin against sorafenib-induced cardiotoxicity in mice through downregulation of NLRP3/TLR4 signaling and inhibition of apoptosis. Twenty-four male Swiss mice were distributed into four groups: untreated control, hesperetin (50 mg/kg/day, orally), sorafenib (100 mg/kg/day, orally), and combination (Hesperetin+Sorafenib). After a three-week treatment period, various biochemical parameters in cardiac tissues were assessed. TNF-α, IL-1β, and IL-6 levels were measured. Moreover, TLR4 and NLRP3 expressions were evaluated using Western blot analysis. Histopathological examination and immunohistochemical assessment of apoptotic activity were done. Compared with the sorafenib group, the combination group exhibited reduced TNF-α, IL-1β, IL-6 levels and lower NLRP3/TLR4 expressions. Histologically, the combination group showed improved myocardial histology and a marked decrease in collagen deposition. Immunohistochemical examination showed decreased caspase-3 and increased Bcl-2 expression. Before recommending hesperetin as an adjuvant, clinical studies are warranted for mitigating sorafenib cardiotoxicity.
Collapse
Affiliation(s)
- Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Information and Technology, Cairo, Egypt
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Vet. Medicine, Cairo University, Giza, Egypt
| | - Rabab Ahmed Rasheed
- Department of Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Rania Farag A. Eltelbany
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Information and Technology, Cairo, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
7
|
Perl AE, Hosono N, Montesinos P, Podoltsev N, Martinelli G, Panoskaltsis N, Recher C, Smith CC, Levis MJ, Strickland S, Röllig C, Groß-Langenhoff M, Chou WC, Lee JH, Yokoyama H, Hasabou N, Lu Q, Tiu RV, Altman JK. Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib. Blood Cancer J 2022; 12:84. [PMID: 35637252 PMCID: PMC9151663 DOI: 10.1038/s41408-022-00677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The fms-like tyrosine kinase 3 (FLT3) inhibitor gilteritinib is indicated for relapsed or refractory (R/R) FLT3-mutated acute myeloid leukemia (AML), based on its observed superior response and survival outcomes compared with salvage chemotherapy (SC). Frontline use of FLT3 tyrosine kinase inhibitors (TKIs) midostaurin and sorafenib may contribute to cross-resistance to single-agent gilteritinib in the R/R AML setting but has not been well characterized. To clarify the potential clinical impact of prior TKI use, we retrospectively compared clinical outcomes in patients with R/R FLT3-mutated AML in the CHRYSALIS and ADMIRAL trials who received prior midostaurin or sorafenib against those without prior FLT3 TKI exposure. Similarly high rates of composite complete remission (CRc) were observed in patients who received a FLT3 TKI before gilteritinib (CHRYSALIS, 42%; ADMIRAL, 52%) and those without prior FLT3 TKI therapy (CHRYSALIS, 43%; ADMIRAL, 55%). Among patients who received a prior FLT3 TKI in ADMIRAL, a higher CRc rate (52%) and trend toward longer median overall survival was observed in the gilteritinib arm versus the SC arm (CRc = 20%; overall survival, 5.1 months; HR = 0.602; 95% CI: 0.299, 1.210). Remission duration was shorter with prior FLT3 TKI exposure. These findings support gilteritinib for FLT3-mutated R/R AML after prior sorafenib or midostaurin.
Collapse
Affiliation(s)
- Alexander E Perl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Giovanni Martinelli
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" IRST S. r. l, Meldola, Italy
| | - Nicki Panoskaltsis
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Mark J Levis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Je-Hwan Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hisayuki Yokoyama
- Sendai Medical Center, National Hospital Organization, Sendai, Japan.,Tohoku University, National Hospital Organization, Sendai, Japan
| | | | | | | | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Chen X, Huang J, Xu N, Fan Z, Nie D, Huang F, Sun Q, Zhang X, Liang X, Shi P, Wang Z, Liu H, Xu J, Dai M, Yu G, Zhang Y, Sun J, Liu Q, Xuan L. A phase 2 study of sorafenib combined with conventional therapies in refractory central nervous system leukemia. Cancer 2022; 128:2138-2147. [PMID: 35315510 DOI: 10.1002/cncr.34182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Patients with refractory central nervous system leukemia (CNSL) have a dismal prognosis and lack effective therapy. Case reports have shown that sorafenib is effective against brain metastases, including leukemia. METHODS To explore the efficacy of sorafenib combined with conventional therapies for refractory CNSL, a phase 2 study was conducted. The primary end point was the complete remission rate (CRR) within 8 weeks of treatment. Secondary end points included the overall response rate (ORR), event-free survival (EFS), overall survival (OS), and adverse events (AEs). RESULTS Twenty-six patients with refractory CNSL were enrolled; they included 17 with isolated CNSL, 7 with hematological relapse, and 2 with another extramedullary relapse. After 8 weeks of treatment, 21 patients achieved complete remission, 2 achieved partial remission, and 3 achieved no remission for a CRR of 80.8% (95% CI, 62.1%-91.5%) and an ORR of 88.5% (95% CI, 71.0%-96.0%). Twenty patients survived, and 6 died. The 2-year EFS and OS rates were 75.0% (95% CI, 54.5%-88.3%) and 76.9% (95% CI, 54.2%-90.4%), respectively. Six patients experienced grade 3 or 4 treatment-related AEs, including moderate chronic graft-vs-host disease (n = 3), grade 3 or 4 acute graft-vs-host disease (n = 2), and grade 3 skin rash (n = 1). No treatment-related deaths occurred during the therapy of refractory CNSL. CONCLUSIONS Sorafenib combined with conventional therapies is effective and safe for refractory CNSL. LAY SUMMARY Sorafenib combined with conventional therapies is effective and safe for refractory central nervous system leukemia.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qixin Sun
- Department of Geriatrics, Hematology and Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinyou Zhang
- Department of Hematology, Shenzhen People's Hospital, Shenzhen, China
| | - Xinquan Liang
- Department of Hematology, First People's Hospital of Chenzhou, Chenzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Sun J, Ning S, Feng R, Li J, Wang T, Xing B, Zhu X, Zhao Y, Pei L, Liu H. Acute myeloid leukemia with cup-like blasts and FLT3-ITD and NPM1 mutations mimics features of acute promyelocytic leukemia: a case of durable remission after sorafenib and low-dose cytarabine. Anticancer Drugs 2022; 33:e813-e817. [PMID: 34459465 PMCID: PMC8670335 DOI: 10.1097/cad.0000000000001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Some previous researches raised the possibility of a novel acute myeloid leukemia (AML) entity presenting cup-like cytomorphology with mutations of both FLT3 and NPM1 or one of them. However, the clinical implications of this subtype remain unknown. We describe a 63-year-old patient belonging to this distinct AML subtype, who presented similar features of acute promyelocytic leukemia (APL) including nuclear morphology, negative for CD34 and HLA-DR, and abnormal coagulation. He had no response to both arsenic trioxide and CAG regimen (cytarabine, aclarubicin, and G-CSF). Given that the patient carried the FLT3-ITD mutation, we switched to a pilot treatment of FLT3 inhibitor sorafenib combined with low-dose cytarabine (LDAC). To date, the patient achieved durable complete remission over 58 months. These findings suggest that AML with cup-like blasts and FLT3-ITD and NPM1 mutations mimic APL, and the prognosis of this subtype may be improved by sorafenib combined with LDAC.
Collapse
Affiliation(s)
- Jie Sun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- Graduate School of Peking Union Medical College
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Baoli Xing
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, China
| | - Lei Pei
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- Graduate School of Peking Union Medical College
| |
Collapse
|
10
|
Schmidt F, Erlacher M, Niemeyer C, Reinhardt D, Klusmann JH. Leukoreductive response to the combination of sorafenib and chemotherapy in hyperleukocytosis of FLT3-ITD mutated pediatric AML. Front Pediatr 2022; 10:1046586. [PMID: 36440328 PMCID: PMC9681922 DOI: 10.3389/fped.2022.1046586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Twelve to 22% of pediatric acute myeloid leukemia (AML) patients present with hyperleukocytosis, which is one of the main risk factors of early death due to its clinical complications: leukostasis, causing pulmonary or central nervous system injuries, tumor lysis syndrome, and disseminated intravascular coagulation. Sorafenib is a multi-kinase inhibitor that blocks the Fms-Related Tyrosine Kinase 3 receptor (FLT3) in AML patients with a FLT3-internal tandem duplication (FLT3-ITD), leading to a reduction of proliferation. Here we report four de novo diagnosed or relapsed pediatric FLT3-ITD-positive AML patients with hyperleukocytosis, which were treated with sorafenib in combination with cytoreductive chemotherapy prior to the start of the induction phase. We observed a fast reduction of white blood cells in peripheral blood and bone marrow. This resulted in a rapid clinical stabilization of the patients. Adverse side effects-such as dermatologic toxicity, elevation of transaminases and hypertension-occurred but were mild and inductive chemotherapy could be started in parallel or subsequently. This implies sorafenib as a safe and effective treatment option in combination with chemotherapy during cytoreductive prephase for children with this life-threatening condition.
Collapse
Affiliation(s)
- Franziska Schmidt
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, Essen, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Incorporation of FLT3 Inhibitors Into the Treatment Regimens for FLT3 Mutated Acute Myeloid Leukemia. Cancer J 2022; 28:14-20. [DOI: 10.1097/ppo.0000000000000576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Novatcheva ED, Anouty Y, Saunders I, Mangan JK, Goodman AM. FMS-Like Tyrosine Kinase 3 Inhibitors for the Treatment of Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e161-e184. [PMID: 34649791 DOI: 10.1016/j.clml.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia of adults, with a five-year survival that remains poor (approximately 25%). Knowledge and understanding of AML genomics have expanded tremendously over the past decade and are now included in AML prognostication and treatment decisions. FMS-like tyrosine kinase 3 (FLT3) is a Class III receptor tyrosine kinase (RTK) expressed primarily in the cell membranes of early hematopoietic progenitor cells, found in 28% of all patients with AML. FLT3 is the second most frequent mutation in adult AML following Nuclear-cytoplasmic shuttling phosphoprotein (NPM1), which is found in 50% of cases.1 FLT3 inhibitors are promising new molecular therapeutics increasingly becoming standard of care for both newly diagnosed and relapsed/refractory FLT3 positive AML. This review will focus on the clinical trials/evidence, similarities, differences, clinical toxicities, and drug interactions relevant to treating clinicians as pertains to 5 FLT3-inhibitors: midostaurin, sorafenib, gilteritinib, crenolanib, and quizartinib.
Collapse
Affiliation(s)
| | - Yasmine Anouty
- Department of Pharmacy, University of California San Diego Health, La Jolla, CA
| | - Ila Saunders
- Department of Pharmacy, University of California San Diego Health, La Jolla, CA; UC San Diego Skaggs School of Pharmacy & Pharmaceutical Sciences, La Jolla, CA
| | - James K Mangan
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA
| | - Aaron M Goodman
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA.
| |
Collapse
|
13
|
Ma J, Ge Z. Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosn J Basic Med Sci 2021; 21:409-421. [PMID: 33577442 PMCID: PMC8292864 DOI: 10.17305/bjbms.2020.5485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the understanding of disease pathobiology, treatment for relapsed or refractory acute myeloid leukemia (R/R AML) remains challenging. The prognosis of R/R AML remains extremely poor despite chemotherapy and bone marrow transplants. Discoveries on recurrent and novel genetic mutations, such as FLT3-ITD and IDH1/IDH2, critical signaling pathways, and unique molecular markers expressed on the surface of leukemic cells have been under investigation for the management of R/R AML. Other than monoclonal antibodies, diabodies, and triabodies are new targeted therapies developed in recent years and will be the new direction of immunotherapy. Targeted agents combined intensive regimens can be viable options for salvage therapy and as bridges to allogeneic transplant. Future directions will focus on novel, efficient and targeted combinations, low-toxicity maintenance, and individualized precision strategies. Here, we review the major recent advances of targeted therapies in the treatment of R/R AML.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China; Department of Hematology, Xuzhou Central Hospital, Xuzhou, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
14
|
Hogan FL, Williams V, Knapper S. FLT3 Inhibition in Acute Myeloid Leukaemia - Current Knowledge and Future Prospects. Curr Cancer Drug Targets 2021; 20:513-531. [PMID: 32418523 DOI: 10.2174/1570163817666200518075820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in 30% of acute myeloid leukaemia (AML) patients at diagnosis and confer an adverse clinical prognosis. Mutated FLT3 has emerged as a viable therapeutic target and a number of FLT3-directed tyrosine kinase inhibitors have progressed through clinical development over the last 10-15 years. The last two years have seen United States Food and Drug Administration (US FDA) approvals of the multi-kinase inhibitor midostaurin for newly-diagnosed FLT3-mutated patients, when used in combination with intensive chemotherapy, and of the more FLT3-selective agent gilteritinib, used as monotherapy, for patients with relapsed or treatment-refractory FLT3-mutated AML. The 'second generation' agents, quizartinib and crenolanib, are also at advanced stages of clinical development. Significant challenges remain in negotiating a variety of potential acquired drug resistance mechanisms and in optimizing sequencing of FLT3 inhibitory drugs with existing and novel treatment approaches in different clinical settings, including frontline therapy, relapsed/refractory disease, and maintenance treatment. In this review, the biology of FLT3, the clinical challenge posed by FLT3-mutated AML, the developmental history of the key FLT3-inhibitory compounds, mechanisms of disease resistance, and the future outlook for this group of agents, including current and planned clinical trials, is discussed.
Collapse
Affiliation(s)
- Francesca L Hogan
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Victoria Williams
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Steven Knapper
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax. Blood Adv 2021; 5:711-724. [PMID: 33560385 DOI: 10.1182/bloodadvances.2020003429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro. An oral 3-drug "SAV" regimen (SOR plus the potent artemisinin-derived trioxane diphenylphosphate 838 dimeric analog [ART838] plus VEN) killed leukemia cell lines and primary cells in vitro. Leukemia cells cultured in ART838 had decreased induced myeloid leukemia cell differentiation protein (MCL1) levels and increased levels of DNA damage-inducible transcript 3 (DDIT3; GADD153) messenger RNA and its encoded CCATT/enhancer-binding protein homologous protein (CHOP), a key component of the integrated stress response. Thus, synergy of the SAV combination may involve combined targeting of MCL1 and BCL2 via discrete, tolerable mechanisms, and cellular levels of MCL1 and DDIT3/CHOP may serve as biomarkers for action of artemisinins and SAV. Finally, SAV treatment was tolerable and resulted in deep responses with extended survival in 2 acute myeloid leukemia (AML) cell line xenograft models, both harboring a mixed lineage leukemia gene rearrangement and an FMS-like receptor tyrosine kinase-3 internal tandem duplication, and inhibited growth in 2 AML primagraft models.
Collapse
|
16
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
17
|
Naveed H, Reglin C, Schubert T, Gao X, Arold ST, Maitland ML. Identifying Novel Drug Targets by iDTPnd: A Case Study of Kinase Inhibitors. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:986-997. [PMID: 33794377 PMCID: PMC9403029 DOI: 10.1016/j.gpb.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
Current FDA-approved kinase inhibitors cause diverse adverse effects, some of which are due to the mechanism-independent effects of these drugs. Identifying these mechanism-independent interactions could improve drug safety and support drug repurposing. Here, we develop iDTPnd (integrated Drug Target Predictor with negative dataset), a computational approach for large-scale discovery of novel targets for known drugs. For a given drug, we construct a positive structural signature as well as a negative structural signature that captures the weakly conserved structural features of drug-binding sites. To facilitate assessment of unintended targets, iDTPnd also provides a docking-based interaction score and its statistical significance. We confirm the interactions of sorafenib, imatinib, dasatinib, sunitinib, and pazopanib with their known targets at a sensitivity of 52% and a specificity of 55%. We also validate 10 predicted novel targets by using in vitro experiments. Our results suggest that proteins other than kinases, such as nuclear receptors, cytochrome P450, and MHC class I molecules, can also be physiologically relevant targets of kinase inhibitors. Our method is general and broadly applicable for the identification of protein–small molecule interactions, when sufficient drug–target 3D data are available. The code for constructing the structural signatures is available at https://sfb.kaust.edu.sa/Documents/iDTP.zip.
Collapse
Affiliation(s)
- Hammad Naveed
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA; Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan.
| | | | | | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, Thuwal 23955, Saudi Arabia
| | - Michael L Maitland
- Inova Center for Personalized Health and Schar Cancer Institute, Falls Church, VA 22042 USA,; University of Virginia Cancer Center, Annandale, Virginia 22003, USA
| |
Collapse
|
18
|
Wang ES, Baron J. Management of toxicities associated with targeted therapies for acute myeloid leukemia: when to push through and when to stop. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:57-66. [PMID: 33275692 PMCID: PMC7727512 DOI: 10.1182/hematology.2020000089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The recent advent of myriad targeted therapies for acute myeloid leukemia (AML) has led to new hope for our patients but has also introduced new challenges in managing the disease. For clinicians, the ability to treat AML in the outpatient setting with novel agents of equal or greater efficacy than 7+3 has been transformative. Despite the enthusiasm, however, the reality is that many patients are still frail and remain at risk for treatment-related complications. Translating the results of clinical trials into improved outcomes for these individuals requires an understanding of how best to manage the adverse effects of these agents. Which patients benefit most and what to watch for? When to stop therapy? Using illustrative case presentations, this review details the unique toxicities associated with each of the approved mutation-specific and nonspecific targeted drugs for AML. The goal of this review is to help clinicians determine the risk:benefit ratio in decision making for individual patients with AML.
Collapse
Affiliation(s)
| | - Jeffrey Baron
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
19
|
Tyrosine kinase inhibitors for acute myeloid leukemia: A step toward disease control? Blood Rev 2020; 44:100675. [DOI: 10.1016/j.blre.2020.100675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
|
20
|
Dumas PY, Bertoli S, Bérard E, Largeaud L, Bidet A, Delabesse E, Leguay T, Leroy H, Gadaud N, Rieu JB, Vial JP, Vergez F, Lechevalier N, Luquet I, Klein E, Sarry A, de Grande AC, Pigneux A, Récher C. Real-World Outcomes of Patients with Refractory or Relapsed FLT3-ITD Acute Myeloid Leukemia: A Toulouse-Bordeaux DATAML Registry Study. Cancers (Basel) 2020; 12:cancers12082044. [PMID: 32722211 PMCID: PMC7465142 DOI: 10.3390/cancers12082044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Two recent phase 3 trials showed that outcomes for relapsed/refractory (R/R) FLT3-mutated acute myeloid leukemia (AML) patients may be improved by a single-agent tyrosine kinase inhibitor (TKI) (i.e., quizartinib or gilteritinib). In the current study, we retrospectively investigated the characteristics and real-world outcomes of R/R FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) patients in the Toulouse-Bordeaux DATAML registry. In the study, we included 316 patients with FLT3-ITD AML that received intensive chemotherapy as a first-line treatment. The rate of complete remission (CR) or CR without hematological recovery (CRi) was 75.2%, and 160 patients were R/R after a first-line TKI-free treatment (n = 294). Within the subgroup of R/R patients that fulfilled the main criteria of the QUANTUM-R study, 48.9% received an intensive salvage regimen; none received hypomethylating agents or low-dose cytarabine. Among the R/R FLT3-ITD AML patients with CR1 durations < 6 months who received intensive TKI-free treatment, the rate of CR or CRi after salvage chemotherapy was 52.8%, and these results allowed a bridge to be transplanted in 39.6% of cases. Finally, in this QUANTUM-R standard arm-matched cohort, the median overall survival (OS) was 7.0 months and 1-, 3- and 5-year OS were 30.2%, 23.7% and 21.4%, respectively. To conclude, these real-world data show that the intensity of the second-line treatment likely affects response and transplantation rates. Furthermore, the results indicate that including patients with low-intensity regimens, such as low-dose cytarabine or hypomethylating agents, in the control arm of a phase 3 trial may be counterproductive and could compromise the results of the study.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Bordeaux, F-33000 Bordeaux, France; (T.L.); (H.L.); (A.-C.d.G.); (A.P.)
- Université de Bordeaux, 33076 Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, 33000 Bordeaux, France
- Correspondence: ; Tel.: +33-557-656-511; Fax: +33-557-656-514
| | - Sarah Bertoli
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (S.B.); (L.L.); (N.G.); (A.S.); (C.R.)
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France; (E.D.); (F.V.)
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, 31000 Toulouse, France
| | - Emilie Bérard
- Service d’Epidémiologie, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France;
- INSERM-Université de Toulouse III, UMR 1027, 31000 Toulouse, France
| | - Laetitia Largeaud
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (S.B.); (L.L.); (N.G.); (A.S.); (C.R.)
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France; (E.D.); (F.V.)
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, 31000 Toulouse, France
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (J.B.R.); (I.L.)
| | - Audrey Bidet
- Laboratoire d’Hématologie Biologique, CHU Bordeaux, F-33000 Bordeaux, France; (A.B.); (J.-P.V.); (N.L.); (E.K.)
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France; (E.D.); (F.V.)
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, 31000 Toulouse, France
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (J.B.R.); (I.L.)
| | - Thibaut Leguay
- Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Bordeaux, F-33000 Bordeaux, France; (T.L.); (H.L.); (A.-C.d.G.); (A.P.)
| | - Harmony Leroy
- Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Bordeaux, F-33000 Bordeaux, France; (T.L.); (H.L.); (A.-C.d.G.); (A.P.)
| | - Noémie Gadaud
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (S.B.); (L.L.); (N.G.); (A.S.); (C.R.)
| | - Jean Baptiste Rieu
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (J.B.R.); (I.L.)
| | - Jean-Philippe Vial
- Laboratoire d’Hématologie Biologique, CHU Bordeaux, F-33000 Bordeaux, France; (A.B.); (J.-P.V.); (N.L.); (E.K.)
| | - François Vergez
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France; (E.D.); (F.V.)
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, 31000 Toulouse, France
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (J.B.R.); (I.L.)
| | - Nicolas Lechevalier
- Laboratoire d’Hématologie Biologique, CHU Bordeaux, F-33000 Bordeaux, France; (A.B.); (J.-P.V.); (N.L.); (E.K.)
| | - Isabelle Luquet
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (J.B.R.); (I.L.)
| | - Emilie Klein
- Laboratoire d’Hématologie Biologique, CHU Bordeaux, F-33000 Bordeaux, France; (A.B.); (J.-P.V.); (N.L.); (E.K.)
| | - Audrey Sarry
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (S.B.); (L.L.); (N.G.); (A.S.); (C.R.)
| | - Anne-Charlotte de Grande
- Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Bordeaux, F-33000 Bordeaux, France; (T.L.); (H.L.); (A.-C.d.G.); (A.P.)
| | - Arnaud Pigneux
- Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Bordeaux, F-33000 Bordeaux, France; (T.L.); (H.L.); (A.-C.d.G.); (A.P.)
- Université de Bordeaux, 33076 Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, 33000 Bordeaux, France
| | - Christian Récher
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31000 Toulouse, France; (S.B.); (L.L.); (N.G.); (A.S.); (C.R.)
- Université Toulouse III Paul Sabatier, 31000 Toulouse, France; (E.D.); (F.V.)
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, 31000 Toulouse, France
| |
Collapse
|
21
|
Pratz KW, Rudek MA, Smith BD, Karp J, Gojo I, Dezern A, Jones RJ, Greer J, Gocke C, Baer MR, Duong VH, Rosner G, Zahurak M, Wright JJ, Emadi A, Levis M. A Prospective Study of Peritransplant Sorafenib for Patients with FLT3-ITD Acute Myeloid Leukemia Undergoing Allogeneic Transplantation. Biol Blood Marrow Transplant 2019; 26:300-306. [PMID: 31550496 DOI: 10.1016/j.bbmt.2019.09.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
FLT3-ITD-mutated acute myeloid leukemia (AML) remains a therapeutic challenge. FLT3 inhibition in the setting of minimal residual disease and a new immune system via allogeneic transplantation offers a promise of improved survival for these patients. We performed a prospective study of patients with FLT3-ITD AML undergoing allogeneic transplant that was conducted to evaluate the safety, tolerability, and outcome of sorafenib administered peritransplant. Sorafenib dosing was individualized, starting at 200 mg twice a day (BID), and titrated based on tolerability or toxicities until a tolerable dose was identified. Forty-four patients, with a median age of 52 years, undergoing allogeneic transplant were started on sorafenib in the peritransplant period (21 pretransplant). The median duration of post-transplant follow-up was 27.6 months (range, 5.2 to 60.4). Overall survival was 76% at both 24 and 36 months. Event-free survival at 24 and 36 months was 74% and 64%, respectively. Ten patients died in the post-transplant period, with 6 deaths due to relapsed leukemia and 4 from transplant-associated toxicity. Tolerable doses ranged from 200 mg every other day to 400 mg BID with similar exposure. Correlative studies evaluating FLT3 inhibition via a plasma inhibitory activity assay showed consistent inhibition of FLT3 at all tolerability-determined dosing levels. Sorafenib is well tolerated in the peritransplant setting irrespective of the conditioning intensity or the donor source. Our findings indicate that sorafenib dosing can be individualized in the post-transplantation setting according to patient tolerability. This approach results in effective in vivo FLT3 inhibition and yields encouraging survival results.
Collapse
Affiliation(s)
- Keith W Pratz
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.
| | - Michelle A Rudek
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - B Douglas Smith
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Judith Karp
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ivana Gojo
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Amy Dezern
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard J Jones
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Jackie Greer
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Vu H Duong
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Gary Rosner
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Marianna Zahurak
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - John J Wright
- IDB/CTEP/NCI, National Cancer Institute, Rockville, Maryland
| | - Ashkan Emadi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Mark Levis
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | |
Collapse
|
22
|
Inaba H, Panetta JC, Pounds SB, Wang L, Li L, Navid F, Federico SM, Eisenmann ED, Vasilyeva A, Wang YD, Shurtleff S, Pui CH, Gruber TA, Ribeiro RC, Rubnitz JE, Baker SD. Sorafenib Population Pharmacokinetics and Skin Toxicities in Children and Adolescents with Refractory/Relapsed Leukemia or Solid Tumor Malignancies. Clin Cancer Res 2019; 25:7320-7330. [PMID: 31455680 DOI: 10.1158/1078-0432.ccr-19-0470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To determine the pharmacokinetics and skin toxicity profile of sorafenib in children with refractory/relapsed malignancies. PATIENTS AND METHODS Sorafenib was administered concurrently or sequentially with clofarabine and cytarabine to patients with leukemia or with bevacizumab and cyclophosphamide to patients with solid tumor malignancies. The population pharmacokinetics (PPK) of sorafenib and its metabolites and skin toxicities were evaluated. RESULTS In PPK analysis, older age, bevacizumab and cyclophosphamide regimen, and higher creatinine were associated with decreased sorafenib apparent clearance (CL/f; P < 0.0001 for all), and concurrent clofarabine and cytarabine administration was associated with decreased sorafenib N-oxide CL/f (P = 7e-4). Higher bilirubin was associated with decreased sorafenib N-oxide and glucuronide CL/f (P = 1e-4). Concurrent use of organic anion-transporting polypeptide 1B1 inhibitors was associated with increased sorafenib and decreased sorafenib glucuronide CL/f (P < 0.003). In exposure-toxicity analysis, a shorter time to development of grade 2-3 hand-foot skin reaction (HFSR) was associated with concurrent (P = 0.0015) but not with sequential (P = 0.59) clofarabine and cytarabine administration, compared with bevacizumab and cyclophosphamide, and with higher steady-state concentrations of sorafenib (P = 0.0004) and sorafenib N-oxide (P = 0.0275). In the Bayes information criterion model selection, concurrent clofarabine and cytarabine administration, higher sorafenib steady-state concentrations, larger body surface area, and previous occurrence of rash appeared in the four best two-predictor models of HFSR. Pharmacokinetic simulations showed that once-daily and every-other-day sorafenib schedules would minimize exposure to sorafenib steady-state concentrations associated with HFSR. CONCLUSIONS Sorafenib skin toxicities can be affected by concurrent medications and sorafenib steady-state concentrations. The described PPK model can be used to refine exposure-response relations for alternative dosing strategies to minimize skin toxicity.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Wang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Fariba Navid
- Children's Hospital of Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Aksana Vasilyeva
- Cancer Center Administration, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanja A Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Short NJ, Kantarjian H, Ravandi F, Daver N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol 2019; 10:2040620719827310. [PMID: 30800259 PMCID: PMC6378516 DOI: 10.1177/2040620719827310] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in the fms-like tyrosine kinase 3 (FLT3) gene are detected in approximately one-third of patients with newly diagnosed acute myeloid leukemia (AML). These consist of the more common FLT3-internal tandem duplication (ITD) in approximately 20-25% of AML cases, and point mutations in the tyrosine kinase domain (TKD) in approximately 5-10%. FLT3 mutations, especially FLT3-ITD, are associated with proliferative disease, increased risk of relapse, and inferior overall survival when treated with conventional regimens. However, the recent development of well tolerated and active FLT3 inhibitors has significantly improved the outcomes of this aggressive subtype of AML. The multikinase inhibitor midostaurin was approved by the United States Food and Drug Administration (US FDA) in April 2017 for the frontline treatment of patients with FLT3-mutated (either ITD or TKD) AML in combination with induction chemotherapy, representing the first new drug approval in AML in nearly two decades. In November 2018, the US FDA also approved the second-generation FLT3 inhibitor gilteritinib as a single agent for patients with relapsed or refractory FLT3-mutated AML. Promising phase I and II efficacy data for quizartinib is likely to lead to a third regulatory approval in relapsed/refractory AML in the near future. However, despite the significant progress made in managing FLT3-mutated AML, many questions remain regarding the best approach to integrate these inhibitors into combination regimens, and also the optimal sequencing of different FLT3 inhibitors in various clinical settings. This review comprehensively examines the FLT3 inhibitors currently in clinical development, with an emphasis on their spectra of activity against different FLT3 mutations and other kinases, clinical safety and efficacy data, and their current and future roles in the management of AML. The mechanisms of resistance to FLT3 inhibitors and potential combination strategies to overcome such resistance pathways are also discussed.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
24
|
Yang M, Zhao J, Liu T, Yang X, Wei H, Xu W, Xiao J. Use of FLT3 inhibitors in acute myeloid leukemia remission induction or salvage therapy: systematic review and meta-analysis. Cancer Manag Res 2018; 10:2635-2652. [PMID: 30147364 PMCID: PMC6097505 DOI: 10.2147/cmar.s166387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Previous studies showed that FLT3 inhibitors played an important role in acute myeloid leukemia (AML) therapy. However, discrepancies remain regarding the association between FLT3 inhibitors use and prognosis of AML patients in clinical trials. Aim The aim of this study was to evaluate the effect of FLT3 inhibitors on the treatment of AML in a systematic review and meta-analysis. Materials and methods PubMed, Embase, and Cochrane Library databases were searched for studies published before August 2017 that used FLT3 inhibitors in AML. Fixed- and random-effect models were used, and between-study heterogeneity was assessed. Results A total of 26 studies fitting our inclusion and exclusion criteria were included. The FLT3 status of patients and main treatment outcomes including overall survival (OS), event-free survival (EFS), relapse-free survival (RFS), complete remission (CR), and overall response rate (ORR) after therapy were extracted. Five studies comparing addition of FLT3 inhibitors and placebo or blank control to chemotherapy were analyzed in Part I, showing improved OS (hazard ratio [HR]=0.86, 95% confidence interval [CI]=0.75–0.99, P=0.03) in the FLT3 inhibitor group but without a significant improvement on EFS (HR=0.86, 95% CI=0.62–1.21, P=0.39) and ORR (odds ratio [OR]=1.10, 95% CI=0.89–1.35, P=0.38). Twenty-one studies evaluating the benefit of using FLT3 inhibitors in different FLT3-type AML patients were analyzed in Part II, showing that FLT3–internal tandem duplication (ITD)-positive patients were more sensitive to FLT3 inhibitor treatment and achieved better CR (OR=1.89, 95% CI=1.06–3.37, P=0.03) and ORR (OR=3.07, 95% CI=2.13–4.43, P<0.001). Conclusion Our study showed that combined use of FLT3 inhibitors improved OS and that the FLT3 status of AML patients could affect their sensitivity to FLT3 inhibitors in terms of CR and ORR.
Collapse
Affiliation(s)
- Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Jian Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Tielong Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China, ;
| |
Collapse
|
25
|
Assi R, Ravandi F. FLT3 inhibitors in acute myeloid leukemia: Choosing the best when the optimal does not exist. Am J Hematol 2018; 93:553-563. [PMID: 29285788 DOI: 10.1002/ajh.25027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
Despite significant advances in deciphering the molecular and cytogenetic pathways governing acute myeloid leukemia, improvements in treatment strategies and clinical outcomes have been limited. The discovery of FLT3 pathway and its potential role in leukemogenesis has generated excitement in the field and has provided a potential target for drug development. Despite setbacks encountered with first-generation inhibitors, we are witnessing an outbreak of novel agents with potent activity and improved pharmacodynamics which continue to generate promising results. The disease, however, remains a challenge to both patients and physicians with rapid emergence of resistance and subsequent treatment failure. Multiple unanswered questions remain as to which are the optimal FLT3-inhibitors and which strategies and combinations are likely to overcome resistance. This review revisits the development of FLT3-inhibitors, the pathways incriminated in their failure and summarizes available molecularly-designed strategies to design better clinical trials.
Collapse
Affiliation(s)
- Rita Assi
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Farhad Ravandi
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
26
|
Ling Y, Zhang Z, Zhang H, Huang Z. Protein Kinase Inhibitors as Therapeutic Drugs in AML: Advances and Challenges. Curr Pharm Des 2018; 23:4303-4310. [PMID: 28671056 PMCID: PMC6302345 DOI: 10.2174/1381612823666170703164114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant blood disorder and the cure rate has been remarkably improved over the past decade. However, recurrent or refractory leu-kemia remains the major problem of the AML and no clearly effective therapy has been es-tablished so far. Traditional treatments such as chemotherapy and hematopoietic stem cell transplantation are both far dissatisfying the patients partly for their individual variety. Be-sides, conventional treatments usually have many side effects to result in poor prognosis. Therefore, an urgent need is necessary to update therapies of AML. To date, protein kinase inhibitors as new drugs offer hope for AML treatment and many of them are on clinical tri-als. Here, this review will provide a brief summary of protein kinase inhibitors investigated in AML thus far, mainly including tyrosine protein kinase inhibitors and serine/threonine kinase inhibitors. We also presented the sketch of signal pathways involving protein kinase inhibitors, as well as discussed the clinical applications and the challenges of inhibitors in AML treatment
Collapse
Affiliation(s)
- Yuan Ling
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zikang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
27
|
Liu T, Ivaturi V, Sabato P, Gobburu JVS, Greer JM, Wright JJ, Smith BD, Pratz KW, Rudek MA. Sorafenib Dose Recommendation in Acute Myeloid Leukemia Based on Exposure-FLT3 Relationship. Clin Transl Sci 2018; 11:435-443. [PMID: 29702736 PMCID: PMC6039208 DOI: 10.1111/cts.12555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Sorafenib administered at the approved dose continuously is not tolerated long-term in patients with acute myeloid leukemia (AML). The purpose of this study was to optimize the dosing regimen by characterizing the sorafenib exposure-response relationship in patients with AML. A one-compartment model with a transit absorption compartment and enterohepatic recirculation described the exposure. The relationship between sorafenib exposure and target modulation of kinase targets (FMS-like tyrosine kinase 3 (FLT3)-ITD and extracellular signal-regulated kinase (ERK)) were described by an inhibitory maximum effect (Emax ) model. Sorafenib could inhibit FLT3-ITD activity by 100% with an IC50 of 69.3 ng/mL and ERK activity by 84% with an IC50 of 85.7 ng/mL (both adjusted for metabolite potency). Different dosing regimens utilizing 200 or 400 mg at varying frequencies were simulated based on the exposure-response relationship. Simulations demonstrate that a 200 mg twice daily (b.i.d.) dosing regimen showed similar FLT3-ITD and ERK inhibitory activity compared with 400 mg b.i.d. and is recommended in further clinical trials in patients with AML.
Collapse
Affiliation(s)
- Tao Liu
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | - Vijay Ivaturi
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | - Philip Sabato
- Center for Translational MedicineUniversity of Maryland BaltimoreMarylandUSA
| | | | - Jacqueline M. Greer
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - John J. Wright
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMarylandUSA
| | - B. Douglas Smith
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Keith W. Pratz
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, Division of Clinical PharmacologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | |
Collapse
|
28
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
29
|
Zhang Y, Li G, Liu X, Song Y, Xie J, Li G, Ren J, Wang H, Mou J, Dai J, Liu F, Guo L. Sorafenib inhibited cell growth through the MEK/ERK signaling pathway in acute promyelocytic leukemia cells. Oncol Lett 2018; 15:5620-5626. [PMID: 29552199 PMCID: PMC5840677 DOI: 10.3892/ol.2018.8010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
The present study assessed the mechanism underlying the effect of sorafenib on the proliferation and apoptosis of the acute promyelocytic leukemia (APL) cell line NB4. NB4 cells were treated with different concentrations of sorafenib (0, 1.5, 3, 6, and 12 µM) for 24, 48 and 72 h. Cell proliferation, cell cycle, and apoptosis were analyzed using an MTT assay and flow cytometry analysis, respectively. Reverse transcription-semi-quantitative polymerase chain reaction and western blot analysis were performed to assess the expression of caspase-3, caspase-8, myeloid cell leukemia (MCL)1, cyclin D1, mitogen-activated protein kinase (MEK), phosphorylated (P)-MEK, extracellular signal-regulated kinase (ERK) and P-ERK. The results of the MTT assay demonstrated that, compared with untreated cells, the proliferation of sorafenib-treated NB4 cells was inhibited dose- and time-dependently. Furthermore, cell cycle arrest was induced in the G0/G1 phase and cell apoptosis was promoted in a dose-dependent manner in sorafenib-treated NB4 cells compared with untreated cells. In addition, the expression of the proapoptotic molecules caspase-3 and caspase-8 was significantly upregulated, and the expression of the antiapoptotic molecule MCL1 and the cell cycle-associated cyclin D1 was downregulated in sorafenib-treated NB4 cells compared with untreated cells. Furthermore, the phosphorylation of MEK and ERK was inhibited in sorafenib-treated NB4 cells compared with untreated cells. Sorafenib may inhibit proliferation and induce cell cycle arrest and apoptosis in APL cells. The underlying mechanisms of such effects may be associated with alterations to the expression of apoptosis-associated and cell cycle-associated molecules via MEK/ERK signaling pathway inhibition.
Collapse
Affiliation(s)
- Yunjie Zhang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China.,Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Gangcan Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yanping Song
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jia Xie
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Guang Li
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jingjing Ren
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hao Wang
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jiao Mou
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jinqian Dai
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Feng Liu
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Liang Guo
- Institute of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
30
|
Abstract
Internal tandem duplications (ITD) and tyrosine-kinase domain (TKD) mutations of the FMS-like tyrosine-kinase 3 (FLT3) can be found in up to one third of patients with acute myeloid leukemia (AML) and confer a poor prognosis. First discovered 20 years ago, these mutations were identified as viable therapeutic targets, and FLT3 tyrosine-kinase inhibitors (TKIs) have been in development for the last decade with steadily increasing potency. However, FLT3-mutated AML often acquires resistance to the growing armamentarium of FLT3 inhibitors through a variety of mechanisms. In this review, we discuss the distinct clinical phenotype of FLT3-mutated AML, historically and currently available therapeutics, mechanisms of resistance, ongoing trials, and future outlook at treatment strategies.
Collapse
Affiliation(s)
- Mark B Leick
- Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Harvey 805, Baltimore, MD, 21287, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Cancer Research Building 1, Room 2M44, Baltimore, MD, 21287, USA.
| |
Collapse
|
31
|
Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, Levis MJ, Pratz KW, Pratilas CA, Small D. Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies. Cancer Res 2017; 77:5554-5563. [PMID: 28923853 DOI: 10.1158/0008-5472.can-16-2593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 01/28/2023]
Abstract
FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) have been tested extensively to limited benefit in acute myeloid leukemia (AML). We hypothesized that FLT3/internal tandem duplication (ITD) leukemia cells exhibit mechanisms of intrinsic signaling adaptation to TKI treatment that are associated with an incomplete response. Here, we identified reactivation of ERK signaling within hours following treatment of FLT3/ITD AML cells with selective inhibitors of FLT3. When these cells were treated with inhibitors of both FLT3 and MEK in combination, ERK reactivation was abrogated and anti-leukemia effects were more pronounced compared with either drug alone. ERK reactivation was also observed following inhibition of other tyrosine kinase-driven cancer cells, including EGFR-mutant lung cancer, HER2-amplified breast cancer, and BCR-ABL leukemia. These studies reveal an adaptive feedback mechanism in tyrosine kinase-driven cancers associated with reactivation of ERK signaling in response to targeted inhibition. Cancer Res; 77(20); 5554-63. ©2017 AACR.
Collapse
Affiliation(s)
- J Kyle Bruner
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley S Ma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Li Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alice Can Ran Qin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle A Rudek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Keith W Pratz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Donald Small
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Naqvi K, Konopleva M, Ravandi F. Targeted therapies in Acute Myeloid Leukemia: a focus on FLT-3 inhibitors and ABT199. Expert Rev Hematol 2017; 10:863-874. [PMID: 28799432 DOI: 10.1080/17474086.2017.1366852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) remains a therapeutic challenge. Despite ongoing research, the standard therapy for AML has not changed significantly in the past four decades. With the identification of cytogenetic and molecular abnormalities, several promising therapeutic agents are currently being investigated. FLT3 mutation is a well-recognized target seen in 30% of the cytogenetically normal AML. More recently, the BCL2 family of anti-apoptotic proteins have also generated great interest as a therapeutic target. Areas covered: This review will cover the role of FLT3 inhibitors in AML, discussing trials in relapsed/refractory AML and in the frontline setting, including the young and elderly patient population. Toxicities and potential mechanism of resistance will also be covered. In addition, most current studies demonstrating the role of BCL-2 inhibitors namely ABT-199/venetoclax in AML will also be discussed. Expert commentary: AML is one of the most heterogeneous group of hematological malignancies. It remains a therapeutic challenge with limited therapeutic progress despite ongoing research. With the identification of different mutations in AML, several drugs are being evaluated in clinical trials. Targeted agents such as FLT3 inhibitors and BH3 mimetics so far have shown promising results in terms of response and toxicity profile.
Collapse
Affiliation(s)
- Kiran Naqvi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Farhad Ravandi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
33
|
Jarusiewicz J, Jeon JY, Connelly MC, Chen Y, Yang L, Baker SD, Guy RK. Discovery of a Diaminopyrimidine FLT3 Inhibitor Active against Acute Myeloid Leukemia. ACS OMEGA 2017; 2:1985-2009. [PMID: 28580438 PMCID: PMC5452050 DOI: 10.1021/acsomega.7b00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure-activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.
Collapse
Affiliation(s)
- Jamie
A. Jarusiewicz
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jae Yoon Jeon
- Division
of Pharmaceutics, College of Pharmacy, The
Ohio State University, 500 W. 12th Street, Columbus, Ohio 43210, United
States
| | - Michele C. Connelly
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Yizhe Chen
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Sharyn D. Baker
- Division
of Pharmaceutics, College of Pharmacy, The
Ohio State University, 500 W. 12th Street, Columbus, Ohio 43210, United
States
| | - R. Kiplin Guy
- Department
of Chemical Biology and Therapeutics, St.
Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
- E-mail: . Phone: 859-257-5290. Fax: 859-257-2128
| |
Collapse
|
34
|
Sorafenib Therapy for Pediatric Acute Myeloid Leukemia with FMS-like Tyrosine Kinase 3-internal Tandem Duplication Mutations: 2 Case Reports. J Pediatr Hematol Oncol 2017; 39:e199-e202. [PMID: 27571118 DOI: 10.1097/mph.0000000000000672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sorafenib is a promising agent for treating pediatric refractory acute myeloid leukemia (AML) exhibiting FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD); however, its optimal use needs to be established. We report 2 cases of refractory pediatric FLT3-ITD-positive AML treated with sorafenib. Case 1 underwent stem cell transplantation (SCT) without entering remission, despite the use of chemotherapy. This patient relapsed despite receiving post-SCT sorafenib. Chemotherapy combined with sorafenib successfully achieved complete remission in case 2. This patient received post-SCT sorafenib and remains in complete remission. The combination of pre-SCT and post-SCT sorafenib may thus be effective for pediatric refractory FLT3-ITD-positive AML.
Collapse
|
35
|
Mattina J, Carlisle B, Hachem Y, Fergusson D, Kimmelman J. Inefficiencies and Patient Burdens in the Development of the Targeted Cancer Drug Sorafenib: A Systematic Review. PLoS Biol 2017; 15:e2000487. [PMID: 28158308 PMCID: PMC5291369 DOI: 10.1371/journal.pbio.2000487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Failure in cancer drug development exacts heavy burdens on patients and research systems. To investigate inefficiencies and burdens in targeted drug development in cancer, we conducted a systematic review of all prelicensure trials for the anticancer drug, sorafenib (Bayer/Onyx Pharmaceuticals). We searched Embase and MEDLINE databases on October 14, 2014, for prelicensure clinical trials testing sorafenib against cancers. We measured risk by serious adverse event rates, benefit by objective response rates and survival, and trial success by prespecified primary endpoint attainment with acceptable toxicity. The first two clinically useful applications of sorafenib were discovered in the first 2 efficacy trials, after five drug-related deaths (4.6% of 108 total) and 93 total patient-years of involvement (2.4% of 3,928 total). Thereafter, sorafenib was tested in 26 indications and 67 drug combinations, leading to one additional licensure. Drug developers tested 5 indications in over 5 trials each, comprising 56 drug-related deaths (51.8% of 108 total) and 1,155 patient-years (29.4% of 3,928 total) of burden in unsuccessful attempts to discover utility against these malignancies. Overall, 32 Phase II trials (26% of Phase II activity) were duplicative, lacked appropriate follow-up, or were uninformative because of accrual failure, constituting 1,773 patients (15.6% of 11,355 total) participating in prelicensure sorafenib trials. The clinical utility of sorafenib was established early in development, with low burden on patients and resources. However, these early successes were followed by rapid and exhaustive testing against various malignancies and combination regimens, leading to excess patient burden. Our evaluation of sorafenib development suggests many opportunities for reducing costs and unnecessary patient burden in cancer drug development.
Collapse
Affiliation(s)
- James Mattina
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Yasmina Hachem
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Dean Fergusson
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
36
|
Fathi AT, Chen YB. The role of FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia. Eur J Haematol 2017; 98:330-336. [DOI: 10.1111/ejh.12841] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Amir T. Fathi
- Division of Hematology/Oncology; Massachusetts General Hospital; Boston MA USA
| | - Yi-Bin Chen
- Division of Hematology/Oncology; Massachusetts General Hospital; Boston MA USA
| |
Collapse
|
37
|
Sexauer AN, Tasian SK. Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia. Front Pediatr 2017; 5:248. [PMID: 29209600 PMCID: PMC5702014 DOI: 10.3389/fped.2017.00248] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/06/2017] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia of childhood and is associated with high rates of chemotherapy resistance and relapse. Clinical outcomes for children with AML treated with maximally intensive multi-agent chemotherapy lag far behind those of children with the more common acute lymphoblastic leukemia, demonstrating continued need for new therapeutic approaches to decrease relapse risk and improve long-term survival. Mutations in the FMS-like tyrosine kinase-3 receptor gene (FLT3) occur in approximately 25% of children and adults with AML and are associated with particularly poor prognoses. Identification and development of targeted FLT3 inhibitors represents a major precision medicine paradigm shift in the treatment of patients with AML. While further development of many first-generation FLT3 inhibitors was hampered by limited potency and significant toxicity due to effects upon other kinases, the more selective second- and third-generation FLT3 inhibitors have demonstrated excellent tolerability and remarkable efficacy in the relapsed/refractory and now de novo FLT3-mutated AML settings. While these newest and most promising inhibitors have largely been studied in the adult population, pediatric investigation of FLT3 inhibitors with chemotherapy is relatively recently ongoing or planned. Successful development of FLT3 inhibitor-based therapies will be essential to improve outcomes in children with this high-risk subtype of AML.
Collapse
Affiliation(s)
- Amy N Sexauer
- Dana-Farber Cancer Institute, Boston, MA, United States.,Boston Children's Hospital, Department of Pediatrics, Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Boston, MA, United States
| | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology, Center for Childhood Cancer Research, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
Ma F, Liu P, Lei M, Liu J, Wang H, Zhao S, Hu L. Design, synthesis and biological evaluation of indolin-2-one-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase3 (FLT3). Eur J Med Chem 2016; 127:72-86. [PMID: 28038328 DOI: 10.1016/j.ejmech.2016.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 01/26/2023]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately one third of acute myeloid leukemia (AML) patients, which has been proposed as a promising drug target for AML therapy. A series of indolin-2-one derivatives bearing different groups at the solvent interface position based on sunitinib as FLT3 inhibitors were designed, synthesized and evaluated in FLT3-dependent human AML cell line MV4-11. Structure-activity relationship (SAR)analysis showed that heterocyclic alkane at the solvent interface position could significantly increase the potency for the inhibition of proliferation of MV4-11 cell line. Compound 10a and 10d exhibited better efficacy (MV4-11, IC50: 14.7 nM for 10a and 24.8 nM for 10d) than positive control sunitinib (MV4-11, IC50: 38.5 nM). The kinase and cellular inhibition assay exhibited that 10d (FLT3, IC50: 5.3 nM) was a potent and selective FLT3 inhibitor. Furthermore, the pharmacokinetic experiments showed that 10d had good properties of oral bioavailability, Cmax, Tmax, T1/2 and AUC in mice, respectively. The in vivo study indicated that 10d could significantly suppress tumor growth in MV4-11 xenografts nude mice model and occupied with a commendable therapeutic window compared to sunitinib.
Collapse
Affiliation(s)
- Fei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Lei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, 200237, China.
| | - Hongtao Wang
- Shijiazhuang Yiling Pharmceutical Company, 238 Tianshan Street, Shijiazhuang, 050035, China
| | - Shaohua Zhao
- Shijiazhuang Yiling Pharmceutical Company, 238 Tianshan Street, Shijiazhuang, 050035, China
| | - Lihong Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, 200237, China.
| |
Collapse
|
39
|
Abstract
FLT3-mutated acute myeloid leukemia (AML), despite not being recognized as a distinct entity in the World Health Organization (WHO) classification system, is readily recognized as a particular challenge by clinical specialists who treat acute leukemia. This is especially true with regards to the patients harboring the most common type of FLT3 mutation, the internal tandem duplication (FLT3-ITD) mutation. Here we present 4 patient cases from our institution and discuss how our management reflects what we have learned about this subtype of the disease. We also reflect on how we anticipate the management might change in the near future, with the emergence of clinically useful tyrosine kinase inhibitors.
Collapse
|
40
|
De Kouchkovsky I, Abdul-Hay M. 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J 2016; 6:e441. [PMID: 27367478 PMCID: PMC5030376 DOI: 10.1038/bcj.2016.50] [Citation(s) in RCA: 881] [Impact Index Per Article: 97.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML.
Collapse
Affiliation(s)
- I De Kouchkovsky
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - M Abdul-Hay
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Department of Hematology/Oncology, New York University Perlmutter Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Booth L, Roberts JL, Tavallai M, Chuckalovcak J, Stringer DK, Koromilas AE, Boone DL, McGuire WP, Poklepovic A, Dent P. [Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget 2016; 7:23608-32. [PMID: 27015562 PMCID: PMC5029651 DOI: 10.18632/oncotarget.8281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
In the completed phase I trial NCT01450384 combining the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib it was observed that 20 of 33 patients had prolonged stable disease or tumor regression, with one complete response and multiple partial responses. The pre-clinical studies in this manuscript were designed to determine whether [pemetrexed + sorafenib] -induced cell killing could be rationally enhanced by additional signaling modulators. Multiplex assays performed on tumor material that survived and re-grew after [pemetrexed + sorafenib] exposure showed increased phosphorylation of ERBB1 and of NFκB and IκB; with reduced IκB and elevated G-CSF and KC protein levels. Inhibition of JAK1/2 downstream of the G-CSF/KC receptors did not enhance [pemetrexed + sorafenib] lethality whereas inhibition of ERBB1/2/4 using kinase inhibitory agents or siRNA knock down of ERBB1/2/3 strongly promoted killing. Inhibition of ERBB1/2/4 blocked [pemetrexed + sorafenib] stimulated NFκB activation and SOD2 expression; and expression of IκB S32A S36A significantly enhanced [pemetrexed + sorafenib] lethality. Sorafenib inhibited HSP90 and HSP70 chaperone ATPase activities and reduced the interactions of chaperones with clients including c-MYC, CDC37 and MCL-1. In vivo, a 5 day transient exposure of established mammary tumors to lapatinib or vandetanib significantly enhanced the anti-tumor effect of [pemetrexed + sorafenib], without any apparent normal tissue toxicities. Identical data to that in breast cancer were obtained in NSCLC tumors using the ERBB1/2/4 inhibitor afatinib. Our data argue that the combination of pemetrexed, sorafenib and an ERBB1/2/4 inhibitor should be explored in a new phase I trial in solid tumor patients.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Antonis E. Koromilas
- Department of Oncology, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, USA
| | | | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
42
|
Gill H, Leung AYH, Kwong YL. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. Int J Mol Sci 2016; 17:440. [PMID: 27023522 PMCID: PMC4848896 DOI: 10.3390/ijms17040440] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| | | | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
43
|
Gill H, Leung AYH, Kwong YL. Molecularly targeted therapy in acute myeloid leukemia. Future Oncol 2016; 12:827-38. [PMID: 26828965 DOI: 10.2217/fon.15.314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is molecularly heterogeneous. Formerly categorized cytogenetically and molecularly, AML may be classified by genomic and epigenomic analyses. These genetic lesions provide therapeutic targets. Genes targeted currently include mutated FLT3, NPM1 and KIT with drugs entering Phase III trials. Complete remission can be achieved in relapsed/refractory AML, albeit mostly transient. Mutated epigenetic modifiers, including DNMT3A, IDH1/2 and TET2, can be targeted by small molecule inhibitors, hypomethylating agents and histone deacetylase inhibitors. Other agents include cellular signaling pathway inhibitors and monoclonal antibodies against myeloid-associated antigens. Combinatorial strategies appear logical, mostly involving smaller molecular inhibitors partnering with hypomethylating agents. Currently limited to relapsed/refractory AML, targeted therapies are increasingly tested in frontline treatment with or without standard chemotherapy.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, Queen Mary Hospital, Hong Kong
| | | | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong
| |
Collapse
|
44
|
Xu G, Mao L, Liu H, Yang M, Jin J, Qian W. Sorafenib in combination with low-dose-homoharringtonine as a salvage therapy in primary refractory FLT3-ITD-positive AML: a case report and review of literature. Int J Clin Exp Med 2015; 8:19891-19894. [PMID: 26884901 PMCID: PMC4723746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
The presence of internal tandem duplications (ITD) in the Fms-related tyrosine kinase 3 receptor (FLT3) has been associated with a poor prognosis in acute myeloid leukemia (AML). Over the past decade, FLT3 is a promising target in FLT3-ITD-positive AML. Sorafenib which is one of the commonly focused FLT3 inhibitors may improve outcome, but only few patients display long-term responses in previously reported cases, prompting the search for underlying resistance mechanisms and therapeutic strategies to overcome them. To the best of our knowledge, this is the first case report about sorafenib in combination with low-dose-homoharringtonine as a salvage therapy successfully administrated and got complete remission (CR) in primary refractory FLT3-ITD-positive AML. Our result demonstrates the combination of this two drugs may be a good choice for the primary refractory FLT3-ITD-positive AML patient, although cooperative studies of large numbers of these patients are needed to evaluate and optimize this combination.
Collapse
Affiliation(s)
- Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| | - Hui Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang Province, People's Republic of China
| |
Collapse
|
45
|
Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol 2015; 230:2552-78. [PMID: 25858032 PMCID: PMC4843173 DOI: 10.1002/jcp.25014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi‐kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug‐treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged ‘rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre‐treatment with the ‘Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. ‘Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of ‘Rafenib drugs/pazopanib restored antibiotic sensitivity in pan‐antibiotic resistant bacteria including multiple strains of blakpcKlebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. J. Cell. Physiol. 230: 2552–2578, 2015. © 2015 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Aida Nourbakhsh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | - Christopher D Doern
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
46
|
Tavallai M, Hamed HA, Roberts JL, Cruickshanks N, Chuckalovcak J, Poklepovic A, Booth L, Dent P. Nexavar/Stivarga and viagra interact to kill tumor cells. J Cell Physiol 2015; 230:2281-98. [PMID: 25704960 PMCID: PMC4835179 DOI: 10.1002/jcp.24961] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/29/2022]
Abstract
We determined whether the multi‐kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over‐expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK‐1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re‐expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by ‘rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti‐tumor therapy for solid tumor patients. J. Cell. Physiol. 230: 2281–2298, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Hossein A Hamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Nichola Cruickshanks
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
47
|
Grunwald MR, Levis MJ. FLT3 Tyrosine Kinase Inhibition as a Paradigm for Targeted Drug Development in Acute Myeloid Leukemia. Semin Hematol 2015; 52:193-9. [DOI: 10.1053/j.seminhematol.2015.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Abstract
FLT3/ITD acute myeloid leukemia is a poor prognosis disease driven by a constitutively activated receptor tyrosine kinase, making it an obvious target for drug development. The development of clinically effective FLT3 inhibitors has been slow, in part because many are multi-targeted inhibitors that are not selective or specific for FLT3. Quizartinib is the first small molecule FLT3 tyrosine kinase inhibitor expressly developed as a FLT3 inhibitor. It is potent, selective and has ideal pharmacokinetics in comparison to other compounds previously tested. This article summarizes its advantages and limitations, and details the insights into the biology of the disease that have been uncovered through the laboratory and clinical use of quizartinib.
Collapse
|
49
|
NFATc1 as a therapeutic target in FLT3-ITD-positive AML. Leukemia 2015; 29:1470-7. [PMID: 25976987 DOI: 10.1038/leu.2015.95] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022]
Abstract
Internal tandem duplications (ITD) in the Fms-related tyrosine kinase 3 receptor (FLT3) are associated with a dismal prognosis in acute myeloid leukemia (AML). FLT3 inhibitors such as sorafenib may improve outcome, but only few patients display long-term responses, prompting the search for underlying resistance mechanisms and therapeutic strategies to overcome them. Here we identified that the nuclear factor of activated T cells, NFATc1, is frequently overexpressed in FLT3-ITD-positive (FLT3-ITD+) AML. NFATc1 knockdown using inducible short hairpin RNA or pharmacological NFAT inhibition with cyclosporine A (CsA) or VIVIT significantly augmented sorafenib-induced apoptosis of FLT3-ITD+ cells. CsA also potently overcame sorafenib resistance in FLT3-ITD+ cell lines and primary AML. Vice versa, de novo expression of a constitutively nuclear NFATc1-mutant mediated instant and robust sorafenib resistance in vitro. Intriguingly, FLT3-ITD+ AML patients (n=26) who received CsA as part of their rescue chemotherapy displayed a superior outcome when compared with wild-type FLT3 (FLT3-WT) AML patients. Our data unveil NFATc1 as a novel mediator of sorafenib resistance in FLT3-ITD+ AML. CsA counteracts sorafenib resistance and may improve treatment outcome in AML by means of inhibiting NFAT.
Collapse
|
50
|
Abstract
Together, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) make up approximately one-third of all pediatric cancer diagnoses. Despite remarkable improvement in the treatment outcomes of these diseases over the past several decades, the prognosis for certain high-risk groups of leukemia and for relapsed disease remains poor. However, recent insights into different types of 'driver' lesions of leukemogenesis, such as the aberrant activation of signaling pathways and various epigenetic modifications, have led to the discovery of novel agents that specifically target the mechanism of transformation. In parallel, emerging approaches in cancer immunotherapy have led to newer therapies that can exploit and harness cytotoxic immunity directed against malignant cells. This review details the rationale and implementation of recent and specifically targeted therapies in acute pediatric leukemia. Topics covered include the inhibition of critical cell signaling pathways [BCR-ABL, FMS-like tyrosine kinase 3 (FLT3), mammalian target of rapamycin (mTOR), and Janus-associated kinase (JAK)], proteasome inhibition, inhibition of epigenetic regulators of gene expression [DNA methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and disruptor of telomeric signaling-1 (DOT1L) inhibitors], monoclonal antibodies and immunoconjugated toxins, bispecific T-cell engaging (BiTE) antibodies, and chimeric antigen receptor-modified (CAR) T cells.
Collapse
Affiliation(s)
- Colleen E Annesley
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB-I 2M46, Baltimore, MD 21231, USA
| |
Collapse
|